Unfolding with conditional invertible networks [2006.06685]

Armand Rousselot

with Marco Bellagente, Anja Butter, Gregor Kasieczka, Tilman Plehn, Ramon Winterhalder, Lynton Ardizzone, and Ullrich Köthe

ITP, Universität Heidelberg

05 November 2020

Inverting the simulation

Simulation

Measurement

Inverting the simulation

Simulation

Measurement

Simulating and Inverting Detector Effects

"Just GAN it"

- Good results on full phase space

- Unfold single event 3200 times
- Compare to closest dataset events

Invertible Neural Networks

- Learn bijective mapping \rightarrow inverse direction for free
- Same dimensionality for both sides
- Extra noise for probabilistic application \rightarrow extend with noise (eINN)

Coupling Blocks

Forward: $\quad v_{1}=u_{1} \times e^{s_{1}\left(u_{2}\right)}+t_{1}\left(u_{2}\right)$

$$
v_{2}=u_{2} \times e^{s_{2}\left(v_{1}\right)}+t_{2}\left(v_{1}\right)
$$

Backward: $\quad u_{2}=\left(v_{2}-t_{2}\left(v_{1}\right)\right) \times e^{-s_{2}\left(v_{1}\right)} \quad u_{1}=\left(v_{1}-t_{1}\left(u_{2}\right)\right) \times e^{-s_{1}\left(u_{2}\right)}$

- Split input in u_{1}, u_{2}
- Invertible for arbitrary s, t
- Jacobian triangular \rightarrow easily tractable

INN Training

INN Training

Detector \rightarrow Parton	Parton \rightarrow Detector
$\mathscr{L}_{y}=\mathscr{L}_{M M D}\left(x_{p}, \tilde{x}_{p}\right)+\mathscr{L}_{M S E}\left(x_{p}, \tilde{x}_{p}\right)$	$\mathscr{L}_{x}=\mathscr{L}_{M M D}\left(x_{d}, \tilde{x}_{d}\right)+\mathscr{L}_{M S E}\left(x_{d}, \tilde{x}_{d}\right)$

Invariant mass distribution

$\mathscr{L}_{M}=\mathscr{L}_{M M D}\left(M\left(x_{d}\right), M\left(\tilde{x}_{d}\right)\right)+$ $\mathscr{L}_{M M D}\left(M\left(x_{p}\right), M\left(\tilde{x}_{p}\right)\right)$

Gaussian latent distribution

$$
\mathscr{L}_{z}=\mathscr{L}_{M M D}\left(r, \tilde{r}_{p}\right)+\mathscr{L}_{M M D}\left(r, \tilde{r}_{d}\right)
$$

Maximum Mean Discrepancy: $\mathscr{L}_{M M D}=k(X, X)+k(Y, Y)-2 k(X, Y)$

INN Results

Calibration Curves

- Get parton distribution for fixed detector-level (noise sampling)
- Plot frequency of ground truth appearing in quantile x
- Expect diagonal \rightarrow Noise parton correlation incorrect

Conditional Invertible Neural Networks

- Network conditioned on detector information
- Map parton to normal distribution
- Minimize $\mathscr{L}_{G}=\mathbb{E}_{i \in 1, \ldots, N}\left[\frac{\left\|f\left(x_{p, i} \mid x_{d, i}, \theta\right)\right\|_{2}^{2}}{2}-\log \left|J_{i}\right|\right]+\tau\|\theta\|_{2}^{2}$

cINN Results

cINN and cGAN both perform well on full phase space

Calibration

Hidden Mother Particle

- Introduce new W' particle into test data \rightarrow decays into W and Z
- Adding their four-vectors results in distinct mass peak

Include Initial State Radiation

Train on inclusive channel
Evaluate on exclusive $2 / 3 / 4$ jets

Conclusion

- Unfolding of ZW Process works with cGAN/eINN/cINN
- Statistically coherent results with cINN
- Can reconstruct unseen structures on parton level (e.g. W' particle)
- Simultaneous unfolding of different numbers of jets

