Tera-Z phase of FCCee as a portal to composite dynamics

Abhishek Iyer
IP2I Lyon France

IRN Meeting
06 November 2020

Motivation of the talk

What are the signatures for composite models?

Is there a way to distinguish them from other BSM scenarios: elementary BSM frameworks

NO-GO signatures?

Not possible in elementary but only in composite models

The Higgs sector of the SM is still a mystery:

Spontaneous symmetry breaking is not explained: simply modelled

Shielding of the electroweak scale from higher scales: Naturalness

Elementary or Composite?

A solution to the above two questions: Compositeness

Several motivations to consider these kind of models:

Use lessons from QCD: chiral symmetry breaking

Lightness of the "pion"
New states implies new signatures

Several realisations of such phenomenon

Disclaimer: We are interested in models with fundamental fermions charged under new confining group. Motivated by QCD, we have a global symmetry for fermions.

Technicolor:

Electroweak symmetry breaks due to the formation of condensates. Higgs is the lightest

PNGB Higgs:
Underlying dynamics breaks only the global symmetry of underlying fermions

In a generic vacuum alignment, the Higgs is neither a PNGB or a TC-Higgs

Choice of global symmetries

Begin with single Dirac species of fermions: ψ
The possibilities for the flavour symmetry are $S U(2 N f)$ or $S U(N f) \times S U(N f)$
$S U(N f) \times S U(N f)$: Fermions sitting in the complex representations. $Q C D$ like $S U(2 N f)$: Fermions sitting in the (pseudo-)real representations.

Breaking of global symmetries and cosets

$$
\begin{array}{ccc}
S U(2 N f) / S O(2 N f): & S U(2 N f) / S P(2 N f): & S U(N f) \times S U(N f) / S U(N f): \\
\text { Real } & \text { Pseudo-Real } & \text { Complex }
\end{array}
$$

"Minimal versions of each"

Partial compositeness for the top.

Requirement of partial compositeness makes it convenient to add another species of fermion: ψ and χ. They transform under different representation of the Confining group
The introduction of a new coloured state allows us to construct coloured top partners. They are a bound state of three quarks $<\psi \chi \chi>$ or $<\psi \psi \chi>$

The introduction of a new coloured state allows us to construct coloured top partners and Separating the possibility of light coloured PNGB in the Higgs sector.

U(1) PNGB's

Each fundamental fermion is associated with an underlying $U(1)$ symmetry

The global is symmetry is then:

$$
S U\left(N_{\psi}\right) \times S U\left(N_{\chi}\right) \times U(1)_{\psi} \times U(1)_{\chi}
$$

The abelian symmetries are also spontaneously broken by the formation on condensates One linear combination of the two $\mathrm{U}(1)$'s is anomalous: Possibly heavy η^{\prime}

The other linear combination of the two $U(1)$'s is non-anomalous: PNGB

The mass of this PNGB is unrelated to the mechanism of ew symmetry breaking.

Spectrum:

Electroweak cosets: Higgs, triplets and singlets

QCD cosets: octets, triplets and sextets

Two $U(1)$ singlets

We are interested in the singlets sitting in the electroweak coset.

For a detailed model zoology and classification see

Properties of the PNGB " a "

Coupling to Gauge bosons
The coupling to a pair of gauge bosons are through the anomalous WZW interactions

$$
\mathcal{L} \supset \frac{g_{i}^{2}}{32 \pi^{2}} \frac{\kappa_{i}}{f_{a}} a \epsilon^{\mu \nu \alpha \beta} G_{\mu \nu}^{i} G_{\alpha \beta}^{i},
$$

The underlying dynamics also fixes the co-efficients.
Note: In this instance we are interested in scenarios where the tree-level. $a \gamma \gamma$ WZW interaction is zero-Photophobic
Coupling to Fermions:

No tree level interaction. They are loop induced and also through the WZW interaction.

Free
parameters

Terra-Z portals for compositeness

This process is always associated with a monochromatic photon.
Let us look at the production of these states "a"

Branching fractions
Cacciapaglia, Deandrea, A.I, Sridhar
$\mathrm{f}=10 \mathrm{TeV}$
Does not depend

$$
f=10 \mathrm{TeV}
$$

Does not depend on f

Preliminary

Cacciapaglia, Deandrea, A.I,
Invisible or Displaced or Prompt

Preliminary

Are displaces vertices possible with elementary scalars?

Let us consider a simple extension with a singlet scalar

Its couplings to the SM is through mixing with the Higgs

$$
\begin{gathered}
\mathscr{L}=\mathscr{L}_{\mathrm{SM}}+\frac{1}{2}\left(\partial_{\mu} S\right)^{2}-\frac{m_{S}^{2}}{2} S^{2}-\left.\frac{\lambda_{H S}}{2} S^{2}| |\right|^{2}-a_{H S} S|H|^{2}-V(S), \\
h=h^{0} \cos \theta+s^{0} \sin \theta \\
a=-h^{0} \sin \theta+s^{0} \cos \theta
\end{gathered}
$$

Unlike the composite case, its production with a photon is only through loops of gauge Bosons and fermions

Enhancement of its production requires an enhancement of the mixising angles.

PS: Ignoring constraints on mixing anghegeqs this is for purpose of illustration

Enhancement of mixing angles implies- PROMPT Decays ${ }^{\text {Sridhar }}$

$-\theta=0.08$

The Beginning

Is a monochromatic photon associated with a displaced vertex a definite hint for compositeness? Maybe! But it is a positive direction to pursue.

Such signatures could also be studied at the HL-LHC

There are plethora of processes to be explored in both the current and the future experiments: NA62, BELLE-II, KOTO..

BACKUP

Axion Like particles

$$
\begin{aligned}
\mathcal{L}_{\mathrm{eff}}^{D \leq 5}= & \frac{1}{2}\left(\partial_{\mu} a\right)\left(\partial^{\mu} a\right)-\frac{m_{a, 0}^{2}}{2} a^{2}+\frac{\partial^{\mu} a}{\Lambda} \sum_{F} \bar{\psi}_{F} \boldsymbol{C}_{F} \gamma_{\mu} \psi_{F} \\
& +g_{s}^{2} C_{G G} \frac{a}{\Lambda} G_{\mu \nu}^{A} \tilde{G}^{\mu \nu, A}+g^{2} C_{W W} \frac{a}{\Lambda} W_{\mu \nu}^{A} \tilde{W}^{\mu \nu, A}+g^{\prime 2} C_{B B} \frac{a}{\Lambda} B_{\mu \nu} \tilde{B}^{\mu \nu}
\end{aligned}
$$

