

BSM Searches with the Top Quark at the LHC

Romain Madar (CNRS/IN2P3/LPC) on behalf of ATLAS and CMS collaborations

IRN Terascale – 06/11/2020

Run: 282712 Event: 1212489545 2015-10-21 09:39:30 CEST Motivations

$y_t \sim 1$

$y_t \sim 1$

\rightarrow Heaviest known particle

$y_t \sim 1$

\rightarrow Heaviest known particle

\rightarrow Key role in the naturalness "problem"

Some people sees this more as matter of taste than a real problem. Yet, probably the most dominant *leitmotiv* for BSM model building for the LHC.

$y_t \sim 1$

\rightarrow Heaviest known particle

\rightarrow Key role in the naturalness "problem"

Some people sees this more as matter of taste than a real problem. Yet, probably the most dominant *leitmotiv* for BSM model building for the LHC.

\rightarrow Vacuum stability (Higgs field potential)

A Glimpse of BSM searches

Final state	Targeted process	Class of models
jets (all hadronic) Large BR's but large background	$X \to t \bar{t}$	Extra-dimensions
$\ell + \operatorname{jets}_{\operatorname{Good compromise}}$ (single lepton)	$\begin{array}{c} X \to t\bar{b} \\ X \to t \varphi_{\rm inv} \end{array}$	Additional symmetry
ℓ±ℓ∓ (dilepton - OS Clean signature but low BR's, perfect for Z's	$t\bar{t}t\bar{t}$	Vector-like Quarks
$\ell^\pm\ell^\pm/3\ell$ (dilepton - SS)	, tt	Compositeness
Very low background (and mostly instrumental), needs several tops	Q o V q Q ar Q o V q V' q' V	Alternative EWSB
	$t \to Hq t \to Zq gq \to t$	FCNC

A Glimpse of BSM searches

A Glimpse of BSM searches

Recent Selected Highlights

ATLAS

- Search for $pp \rightarrow t\bar{t}t\bar{t}$ arXiv:2007.14858
- Search for $X \rightarrow t\bar{t}$ hadronic JHEP **10** (2020) 61
- Lepton universality in $W
 ightarrow \ell
 u$ arXiv:2007.14040

CMS

- Search for *tttt* EPJC 80 (2020) 75
- Probing y_t with $pp \rightarrow t\bar{t}$ arXiv:2009.07123
- Measurement of $pp \rightarrow t\bar{t}$ at high p_T arXiv:2008.07860

ATLAS + CMS

• Spin correlation in $t\bar{t}$ LHCtopWG: prelim

High p_T Top Quarks

- Exploit high \mathcal{BR} of hadronic decay of $t\bar{t}$
- Exploit large-R jets sub-structure (boosted top quarks)

- Exploit high \mathcal{BR} of hadronic decay of $t\bar{t}$
- Exploit large-R jets sub-structure (boosted top quarks)
- Target $m_{t\bar{t}} > 1.4 \,\mathrm{TeV}$, data-driven background estimate

- Exploit high \mathcal{BR} of hadronic decay of $t\bar{t}$
- Exploit large-R jets sub-structure (boosted top quarks)
- Target $m_{t\bar{t}} > 1.4 \,\mathrm{TeV}$, data-driven background estimate

Top Yukawa Coupling from tt Events

Motivations and strategy

• Independent from H decay modes (as opposed to $pp \rightarrow t\bar{t}H$)

Top Yukawa Coupling from tt Events

- Independent from H decay modes (as opposed to $pp \rightarrow t\bar{t}H$)
- Sensitive to any top-coupled scalar field, denoted $\boldsymbol{\Gamma}$
- Additional amplitudes modifying $m_{t\bar{t}}$ and $\Delta y_{t\bar{t}}$ spectrum

- Independent from H decay modes (as opposed to $pp \rightarrow t\bar{t}H$)
- Sensitive to any top-coupled scalar field, denoted $\boldsymbol{\Gamma}$
- Additional amplitudes modifying $m_{t\bar{t}}$ and $\Delta y_{t\bar{t}}$ spectrum
- Measure distribution shape $v.s(m_{t\bar{t}}, \Delta y_{t\bar{t}}) \dots$

- Independent from H decay modes (as opposed to $pp \rightarrow t\bar{t}H$)
- Sensitive to any top-coupled scalar field, denoted $\boldsymbol{\Gamma}$
- Additional amplitudes modifying $m_{t\bar{t}}$ and $\Delta y_{t\bar{t}}$ spectrum
- Measure distribution shape $v.s(m_{t\bar{t}}, \Delta y_{t\bar{t}}) \dots$
- ... or an more experimental-friendly variables, $m_{\ell\ell bb}$ and $\Delta y_{\ell\ell bb}$

- Independent from H decay modes (as opposed to $pp \rightarrow t\bar{t}H$)
- Sensitive to any top-coupled scalar field, denoted $\boldsymbol{\Gamma}$
- Additional amplitudes modifying $m_{t\bar{t}}$ and $\Delta y_{t\bar{t}}$ spectrum
- Measure distribution shape v.s $(m_{t\bar{t}}, \Delta y_{t\bar{t}})$...
- ... or an more experimental-friendly variables, $m_{\ell\ell bb}$ and $\Delta y_{\ell\ell bb}$

- Independent from H decay modes (as opposed to $pp \rightarrow t\bar{t}H$)
- Sensitive to any top-coupled scalar field, denoted $\boldsymbol{\Gamma}$
- Additional amplitudes modifying $m_{t\bar{t}}$ and $\Delta y_{t\bar{t}}$ spectrum
- Measure distribution shape v.s $(m_{t\bar{t}}, \Delta y_{t\bar{t}}) \dots$
- ... or an more experimental-friendly variables, $m_{\ell\ell bb}$ and $\Delta y_{\ell\ell bb}$

Issue and current methodology

• High transverse momentum regime

Issue and current methodology

• High transverse momentum regime

Issue and current methodology

- High transverse momentum regime
- Opening angle between leptons (probing spin correlation and additional radiations)

Issue and current methodology

- High transverse momentum regime
- Opening angle between leptons (probing spin correlation and additional radiations)
- Large (over-estimated?) uncertainties together with profiling

Four Top Quark Production

Motivations

• Small SM cross-section (12 fb), enhanced by many BSM scenarios

Motivations

- Small SM cross-section (12 fb), enhanced by many BSM scenarios
- Only way to detect spin-1 boson exclusively coupled to top quark

 $(gg \rightarrow Z'$ is forbidden for a spin-1 - Landau-Yang theorem)

Motivations

- Small SM cross-section (12 fb), enhanced by many BSM scenarios
- \bullet Only way to detect spin-1 boson exclusively coupled to top quark
 - (gg $\,\rightarrow\, Z'$ is forbidden for a spin-1 Landau-Yang theorem)
- Offers access to y_t , without any assumption on Γ_H value

Motivations

- Small SM cross-section (12 fb), enhanced by many BSM scenarios
- Only way to detect spin-1 boson exclusively coupled to top quark

(gg $\,\rightarrow\, Z'$ is forbidden for a spin-1 - Landau-Yang theorem)

• Offers access to y_t , without any assumption on Γ_H value

A long hunt ... from \sim 2010 (Les Houches 2011) to 2020 (ATLAS, CMS)

Strategy

• Exploit final state with two leptons with the same electric charge (not heavily produced by other SM processes)

Strategy

- Exploit final state with two leptons with the same electric charge (not heavily produced by other SM processes)
- Contamination from $t\bar{t} + W, Z, H$ with additionnal *b*-quarks

Strategy

- Exploit final state with two leptons with the same electric charge (not heavily produced by other SM processes)
- Contamination from $t\bar{t} + W, Z, H$ with additionnal *b*-quarks
- · Background is low but tricky to predict: data-driven estimate

Strategy

- Exploit final state with two leptons with the same electric charge (not heavily produced by other SM processes)
- Contamination from $t\bar{t} + W, Z, H$ with additionnal *b*-quarks
- · Background is low but tricky to predict: data-driven estimate
- Use both cut-based and multivariate analysis to extract the signal

Strategy

- Exploit final state with two leptons with the same electric charge (not heavily produced by other SM processes)
- Contamination from $t\bar{t} + W, Z, H$ with additionnal *b*-quarks
- · Background is low but tricky to predict: data-driven estimate
- Use both cut-based and multivariate analysis to extract the signal

ATLAS

 $ightarrow \sigma_{t\bar{t}t\bar{t}} = 24^{+7}_{-6}$ fb (consistent with the SM prediction at 1.7 s.d.)

CMS

$$egin{array}{lll} & o \sigma_{t ar{t} t ar{t}} \ = \ 12^{+5.8}_{-5.2} \, {
m fb} \ & o |y_t| \ < \ 1.7 \ imes \ |y_t^{
m SM}| \ {
m at} \ 95\% \ {
m C.L.} \end{array}$$

An interesting phase-space region to monitor...

Summary plot from T. Theil (TOP2020)

Lepton universality

Measuring $R(W ightarrow au u)/R(W ightarrow \mu u)$ in $tar{t}$ events

- Lepton universality is an axiom of the SM, tension found at LEP
- Separate $W
 ightarrow \mu
 u$ decay from $W
 ightarrow au
 u
 ightarrow \mu
 u's$, and compare them

Measuring $R(W ightarrow au u)/R(W ightarrow \mu u)$ in $tar{t}$ events

- Lepton universality is an axiom of the SM, tension found at LEP
- Separate $W
 ightarrow \mu
 u$ decay from $W
 ightarrow au
 u
 ightarrow \mu
 u's$, and compare them
- Exploit τ time life, leading to a displaced vertex ($c\tau_{\text{life}} = 87 \,\mu\text{m}$)
- Key observables: transverse impact parameter $|d_0^{\mu}|$, and p_T^{μ}

Measuring $R(W ightarrow au u)/R(W ightarrow \mu u)$ in $tar{t}$ events

Motivation and strategy

- Lepton universality is an axiom of the SM, tension found at LEP
- Separate $W
 ightarrow \mu
 u$ decay from $W
 ightarrow au
 u
 ightarrow \mu
 u' s$, and compare them
- Exploit au time life, leading to a displaced vertex ($c\tau_{\text{life}} = 87 \, \mu \text{m}$)
- Key observables: transverse impact parameter $|d_0^{\mu}|$, and p_T^{μ}

Submitted to Nature Physics

Summary and outlook

Summary and outlook

Top quark sector is of particular interest to search for new phenomena

Top quark sector is of particular interest to search for new phenomena

Broad range of performed searches, both final state and BSM benchmark driven. No evidence for significant SM deviations so far.

Top quark sector is of particular interest to search for new phenomena

Broad range of performed searches, both final state and BSM benchmark driven. No evidence for significant SM deviations so far.

Newly observed rare processes (*e.g.* $t\bar{t}t\bar{t}$) and precision measurements (*e.g.* y_t from $t\bar{t}$) represent - according to me - the best way to move forward with the HL-LHC program.

Top quark sector is of particular interest to search for new phenomena

Broad range of performed searches, both final state and BSM benchmark driven. No evidence for significant SM deviations so far.

Newly observed rare processes (*e.g.* $t\bar{t}t\bar{t}$) and precision measurements (*e.g.* y_t from $t\bar{t}$) represent - according to me - the best way to move forward with the HL-LHC program.

Associated challenge: improve SM predictions for top-related processes (high p_T regime, additional heavy bosons and/or heavy flavour, etc ...)

Thanks for your attention!