SPL-Fréjus studies: status report

EUROnu WP2 EVO meeting 14 September 2009

Andrea Longhin - CEA Saclay

Status report

Short summary of previous results

Graphite target option investigations presented in previous meetings have been documented in a note available at www.euronu.org (Documents -> WP2-> Study of the performance of the SPL-Frèjus Super Beam using a graphite target)

- much lower energy deposition in the target (FLUKA08+GEANT4)
- much lower neutron flux (~x15 FLUKA08)
- pion yields more asymmetric but comparable
- neutrino fluxes less E dependent similar
- higher antinu contamination
- sin22th13 sensitivities better for delta =0
- limit more delta dependent (worse in some regions) probably due to higher antinu and shape of flux (high energy tail is more relevant)

3 sigma sensitivity C-Hg comparison

Presented at NUFACT09 in July

"Minimal change" scenario i.e. same horn and simulation (geant3) 78 cm long graphite target in place of 30cm mercury

Carbon limit (dashed) more δ dependent than for Mercury (continuous). Nevertheless quite competitive.

AEDL file SPL.glb developed by M.Mezzetto et al.

News since last EVO meeting (15 July 09)

- * Comparison of FLUKA results with Christoph Bobeth
- * Rewriting of the full simulation chain in GEANT4: ~ finished
- * Implementation of nu_e fluxes from muon and K 3 body decays into GEANT4
- * Detailed comparison of GEANT3 and new GEANT4 with standard horn geom.
- * First preliminary results on sensitivity with an upgrade of the horn shape

FLUKA multiplicities X-check: Mercury

Test points by Christoph superimposed in colors

Fluka multiplicities X-check: Carbon

Test points by Christoph superimposed in colors

GEANT4

- GEANT4: modern, updated tool (C++)
- more flexible in view of the wish of studying many different geometries and optimize horn for a longer target
- A tool for "exploring" interesting geometries has been developed within G4:

Parametric model implemented in GEANT4 simulation (MINIBOONE inspired) with 9 parameters

In general with this shape better wrong charge pion rejection (more "forward closed") but conversely higher mean energy is obtained

Flexible enough to reproduce also standard conical geometry

GEANT 4-3 early comparison

GEANT 4-3 "mature" comparison: total fluxes GEANT3 (dashed)

GEANT4

Ek(p) = 4.5 GeV

Andrea Longhin - CEA Saclay

Fluxes contributions

Internal numbering scheme

GEANT 4-3: nu from primary pions

30

31

 $\pi^+ \rightarrow \mu^+ \nu_{\mu}$ $\pi^- \rightarrow \mu^- antiv_{\mu}$

Andrea Longhin - CEA Saclay

Status report

GEANT 4-3: nu from K+/- and K0

GEANT 4-3: decays in flight z

Ek(p) = 4.5 GeV

Andrea Longhin - CEA Saclay

GEANT 4-3: pi+/- at tunnel entrance

Ek(p) = 4.5 GeV

Andrea Longhin - CEA Saclay

GEANT 4 control plots for muon decay neutrino fluxes

GEANT 4 control plots for pion focusing

Andrea Longhin - CEA Saclay Ek(p) = 4.5 GeV_{Status report}

GEANT 4 control plots for geometry

The **geant4** and **geant 3** hit maps are superimposed in the (r,z plane)

Andrea Longhin - CEA Saclay

GEANT 4 control plots for branching ratios

Implementation of Branching rations in Geant4 checked a posteriori For decays of charged pions, kaons, neutral kaons

Andrea Longhin - CEA Saclay

Status report

Conclusions and Outlook (I)

TODO after GEANT4 setup validation:

- * finalize characterization of a new shape for the horn
- * Implement multiple-horn configuration and study the impact on fluxes and sensitivities. Expected effects:
- each horn sees an "off-axis tunnel (~on axis with lower effective radius) interference among horns for high angle tracks in terms of material (and B field depending from proton injection-horn pulsing strategy)

Outlook (II)

Presentations/documentation :

- * Abstract for poster CERN workshop 1-3 October to be submitted (today)
- * EURONU technical note: "geant3-4 comparison". Being written.

Also:

HARP data -> FLUKA comparison to validate results on carbon target

BACK-UP

Andrea Longhin - CEA Saclay

Status report

A "promising" configuration

No fine tuning tried

- * much less antinumu! -> CPV :)
- * higher flux (+10cm for reflector, forward "plug")

- Original study by J-E. Campagne redone with GEANT4 and realistic graphite source.
- Colored dots marks the optimal shape in bins of z of production for a pion of 600 MeV. (r,z) at with dr/dz = 0.
- Each z sample requires "its" shape to focalize "monochromatic pions"
- Some "shrinkage" of optimal shapes is obtained by using a small negative slope for the inner conductor (not fully studied yet) (idea is to equalize region of magnetic field crossed by pions created at different z)

Horn shape and long target

"Bouncing" pions (cylinder with 1/r field). Not present when conductors are in place

black thin points are pion trajectories in the $z\sim 0$ bin

Status report

Andrea Longhin - CEA Saclay

Horn parametric model

Miniboone horn - inspired

in general with this shape better antinumu rejection (more "forward closed") and conversely higher mean energy 9 parameters + constraints

governed with external input card

flexible enough to reproduce also current setup (anyway also already implemented "faithfully"replica of GEANT3 previous setup)

Distribution of the parameters

Numu spectra results over configurations

Andrea Longhin - CEA Saclay

Status report

A "good" configuration

Andrea Longhin - CEA Saclay

Status report

Dependence of sensitivity (GloBES) on nu spectra characteristics

Preliminary results: sin22th13 best limit @ 90% CL vs parameters

P(numu->nue) vs E with L=130 km

Colors: 4 delta values

Andrea Longhin - CEA Saclay

P(numu->nue) x numu flux (a.u.)

