State-of-the-art of Higgs-CP measurements at the LHC

Merijn van de Klundert (DESY, Hamburg)

SEMINAR AT LLR (Virtual) 7-12/2020

Content

- Introduction Higgs physics
- In-depth discussion analysis CP structure Higgs-tau Yukawa coupling
- Birds eye view state-of-the-art CP structure Higgs gauge boson and Higgs-fermion (Yukawa) couplings
 - CP structure ttH coupling
 - CP structure ggH coupling in H->4/ and H->WW*
 - Anomalous couplings in VBF H-> $\tau\tau$ events
- Future and prospects

Links to refereces in purple throughout

Full Run-2 analyses indicated

Higgs boson: the pivotal constituent of the Standard Model of particle physics

- Most Gauge bosons and fermions have a mass
 - Direct mass assignments for gauge bosons and fermions forbidden in SM!
- Higgs field: 4 scalar bosons
- ⇒ Via electroweak symmetry breaking, obtain gauge-invariant and renormalizable massive bosons and charged fermions!
 - 3 goldstone bosons transferred into massive gauge bsosons
 - Charged fermion masses result of coupling fermions to non-zero vacuum expectation value (vev)
- Remaining Higgs field provides experimental signature
- ⇒ Pivotal particle, postulated in 1964, that couples to all massive particles!

Centuries of Higgs hunting

Tevatron set limits in proton collisions at $\sqrt{s} = 2 TeV$ CERN build underground circular tunnel. 27 km accomodating 2 colliders

- LEP (Large Electron Positron Collider). **1989-2000.** $\sqrt{s} = 209 \ GeV$
 - Main target precision measurement Zmass
 - Observed hints of Higgs boson decay

LHC (Large Hadron Collider; recycle tunnel!). **2008~2035.** $\sqrt{s} = 13 TeV$

- Dedicated hadron collider targeting Higgs discovery
- protons and lead ions, and mixture
- Four experiments:
 - ALICE (heavy ions)
 - LHC-b (b-quark physics)
 - ATLAS and CMS. Multi-purpose detectors for searches Higgs boson and beyond

Many decades of successful project management at CERN!

The ATLAS experiment at LHC

Collaborations with >3000 authors

DESY. |Higgs-CP measurements at the LHC | Merijn van de Klundert, 26.10.2020

The CMS experiments at LHC

Collaborations with >4000 members

2012: discovery!!

46 years after its prediction!

- New boson discovered in 2012 simultaneous by ATLAS and CMS experiment!
 - Using collision data of 7 a 8 TeV proton collisions
 - Using decay to photons and Z bosons
- 4 decades after its prediction, Nobel awarded
- Since then properties analysed by ATLAS and CMS experiment

Beyond the discovery

Production and decay modes

• Higgs decay modes

- Hadron collider: photon, Z and W boson optimal discovery modes
- Top quark too heavy (SM Higgs)
- b-quarks hard (QCD background)
- Di-leptons: substantial Z-decay background, light mass
- DESY. |Higgs-CP measurements at the LHC | Merijn van de Klundert, 26.10.2020

- Higgs production modes
 - Gluon fusion (87%)
 - Vector-boson fusion (7%)
 - Two forward jets
 - Associated top-quark production (2%)
 - Decay products top quarks
 - Associated V-boson production (4%)
 - Decay products vector boson

Page 8

Beyond the discovery

Precision era has started

- Higgs boson mass fixes all couplings
- All couplings sensitive to physics beyond Standard Model
 - Total Higgs decay width
 - Higgs couplings
 - W, Z, top, gamma, b-quark, tau established
 - Coupling 2nd generation (hot topic)
 - Once coupling established, refine granularity in dedicated kinematic bins (STXS) or Higgs-pt spectra
- Higgs potential via self-coupling
- CP-structure couplings
 - ⇒ Standard model: all couplings are CPeven!

CP-structure Higgs-fermion coupling

Fermionic couplings

- Couplings of (speudo) scalar boson to fermions can be:
 - CP-even (scalar), J^{CP}=0⁺⁺
 - CP-odd (speudoscalar), J^{CP}=0⁺⁻

 $\frac{1}{\sqrt{2}}\left[|\uparrow\downarrow\rangle-|\downarrow\uparrow\rangle\right]$

 $\frac{1}{\sqrt{2}}\left[\left|\uparrow\downarrow\right\rangle+\left|\downarrow\uparrow\right\rangle\right]$

- Mixture of even and odd couplings
- Even and odd coupling at leading order (but different tensor structure): $A(\text{Hff}) = -\frac{m_{\text{f}}}{v} \bar{\psi}_{\text{f}} \left(\kappa_{\text{f}} + \mathrm{i}\,\tilde{\kappa}_{\text{f}}\gamma_{5}\right) \psi_{\text{f}}$
- Define mixing angle in terms of even and odd coupling: $\tan(\phi_{\tau\tau}) = \frac{\tilde{\kappa}}{\kappa}$
- LHC: probe CP-structure Higgs-top and Higgs-tau couplings

First review recent analysis CP-structure Higgs-tau Yukawa coupling CMS!

CP-structure Higgs-tau Yukawa coupling (CMS)

HIG-20-006

• Parameterise CP even and odd couplings via mixing angle $\phi_{\tau\tau}$:

$$\mathcal{L}_{Y} = -\frac{m_{\tau}H}{v} (\kappa_{\tau}\bar{\tau}\tau + \tilde{\kappa}_{\tau}\bar{\tau}i\gamma_{5}\tau) \quad \tan(\phi_{\tau\tau}) = \frac{\tilde{\kappa}_{\tau}}{\kappa_{\tau}}$$

The CP information is transferred to correlations between transversal components tau spin
 CMS Simulation Preliminary

 $d\Gamma_{h\to\tau^+\tau^-} \sim 1 - s_z^- s_z^+ + |s_T^-| |s_T^+| \cos(\varphi_s - 2\phi_\tau) \stackrel{\neg}{e}_{0.1}$

 This correlation can be probed via the angle φ_{cp} between the **tau decay planes**

$$d\Gamma_{h\to\tau^{+}\tau^{-}} \approx 1 - b(E_{+}) b(E_{-}) \frac{\pi^{2}}{16} \cos(\varphi_{CP}^{*} - 2\phi_{\tau})$$

• Gen level distribution ϕ_{cp} for scalar, pseudoscalar and Z boson $\Rightarrow \phi_{cp}$ discriminating variable for this analysis!

Analysis strategy

In a nuthsell

- Utilise full Run 2 data set (137 fb⁻¹)
- For PAS HIG-20-006 analyse most important decay modes (~50%)
 - Muon plus hadronic
 - Fully hadronic

Mode	μ^{\pm}	π^{\pm}	$ ho^{\pm} ightarrow \pi^{\pm} \pi^{0}$	$a_1{}^\pm \to \pi^\pm \pi^0 \pi^0$	${\bf a_1}^\pm \to \pi^\pm \pi^\mp \pi^\pm$
$\mathcal{B}(\%)$	17.4	11.5	25.9	9.5	9.8
Symbol	μ	π	ρ	$a_1^{1 pr}$	a ₁ ^{3pr}

- Extract ~90% of background events in data-driven manner
- Categorise events in one signal and 2 background categories using Multivariate Discriminants (MVA)
- Extract mixing angle $\phi_{\tau\tau}$ via combined template fit to signal and background distributions
- First review parts analysis not specific to CP-analysis

=> Analysis indebted to work STXS analysis **HIG-19-010** (full Run 2) and **HIG-18-032** ('16/'17 with embedding and Machine learning techniques)

• Next focus on dedicated methods developed to optimise CP signal strength

Modelling background processes

90% of backgrounds obtained in data-driven way

- Background processes:
 - Drell-Yan (leading semileptonic BG), QCD (leading hadronic BG), W+jets, ttbar, single top, diboson
- May also categorise backgrounds instead in genuine tau, jet-fakes, leptonfakes, and prompt leptons
 - Backgrounds with 2 genuine taus obtained from tau embedding technique
 - Bg with QCD jet faking hadronic tau via fake-factor method
 - Remaining backgrounds via simulation
- \Rightarrow Overall, 90% of backgrounds obtained in data-driven manner!

Modelling background processes

Tau embedding, Link

- Tau embedding relies on principle lepton universality EWK processes
- Exploit principle to model genuine di-tau background:
 - Select di-muon events in real data
 - Remove hits associated to muons
 - Simulate decaying Z-boson to ditau with identical kinematics as di-muon pair (pt, invariant mass, eta-phi). In empty detector
 - Add the hits of tau decay products to the data event
- Obtain rate genuine tau background events, with fully datadriven rates and underlying event!

Modelling background processes

Fake factor method, link

- Fake factor: data-driven approach to obtain contribution in signal region of **quark or gluon jet faking a tau lepton**
 - Define jet-enriched determination region, orthogonal to signal region
 - Determine rate of jets faking a hadronic tau lepton using tight and loose tau isolation criteria
 - ⇒ Apply the fake factors to loose tau candidates in application region to obtain jet-fake rate!
 - Hadronic channel: QCD background only. Semileptonic: weighted average for QCD, ttbar and W+jets
- Obtain rate of jet faking tau, with fully data-driven underlying event

Using multivariate techniques for signalbackground separation

- Multivariate discriminant MVA to discriminate signal from background events
- Defines probability for event to be background or signal
- Key advantage: includes correlations between input observables
 - pt Higgs boson (boost)
 - Presence VBF jets and kinematics
 - Mass estimate di-tau pair

 Virtually all modern Higgs analyses use MVA techniques (direct or indirect)

Event categorisation Higgs-tau analysis

Separating signal from background events

•	Mu+tau channel: use neural net	Observable	$\tau_{\mu}\tau_{h}$	$\tau_{\rm h} \tau_{\rm h}$
•	Hadronic channel: use Boosted Decision tree	$p_{\rm T}$ of leading $\tau_{\rm h}$ or τ_{μ} $p_{\rm T}$ of (trailing) $\tau_{\rm h}$ for $\tau_{\mu}\tau_{\rm h}$ ($\tau_{\rm h}\tau_{\rm h}$) channel $p_{\rm T}$ of visible di- τ	~ ~ ~	✓ × ✓
•	Input variables as in PAS-18-032	$p_{T} \text{ of di-} \tau_{h} + p_{T}^{miss}$ $p_{T} \text{ of } \mu + \tau_{h} + p_{T}^{miss}$ Visible di- τ mass	× ✓	✓ × ✓
•	Categorise events in 3 mutually exclusive cats:	τ _μ τ _h or τ _h τ _h mass (using SVFIT) Leading jet p _T Trailing jet p _T	~ ~ ~	✓ ✓ ×
	 Signal (ggH, VBF, VH) 	Jet multiplicity Dijet invariant mass	4	4
	 Genuine tau pair 	Dijet p _T	✓	×
	 Jet fake (inc. prompt leptons and leptons faking hadronic tau) 	Dijet $ \Delta \eta $ $p_{\rm T}^{\rm miss}$	4	× ✓

MVA scores in background categories

Left: jet fake category

Right: genuine tau category

Extracting and optimising sensitivity

- ⇒ Next: review how **experimentally** assess ϕ_{CP}
- ⇒ Methods dedicatedly developped for analysis to optimise analysis sensitivity

Experimentally extracting \phi_{\tau\tau}

Extracting tau decay planes

Mode	μ^{\pm}	π^{\pm}	$ ho^{\pm} ightarrow \pi^{\pm} \pi^{0}$	${a_1}^\pm \to \pi^\pm \pi^0 \pi^0$	${\bf a_1}^\pm \to \pi^\pm \pi^\mp \pi^\pm$
$\mathcal{B}(\%)$	17.4	11.5	25.9	9.5	9.8
Symbol	μ	π	ρ	a_1^{1pr}	a ₁ ^{3pr}

- Decay to muon or single charged pion
 - Use Impact parameter method

• IP method: arXiv:1108.0670

- Decay to rho, a_1^{1p} , a_1^{3p}
 - Use neutral pion method

DP Method: arXiv:0307.331

Optimisation analysis sensitivity

Focus on additional corrections applied to optimise signal strength

- Decay mode identification important, migrations will lead to incorrect φ_{cp} estimates
- Per default, decay mode given by HPS (hadron-plus-strip) algorithm
- Dedicated MVA developpd for enhanced decay mode distinction (on top of deeptau discriminant, <u>CMS-DP-2019-033</u>)
 - Inputs: kinematics tau decay products and HPS decay mode
- Improves signal sensitivity by O(15%)

Improvements related to IP method

Improvements in Primary Vertex (PV) estimates

- Two improvements in determination PV location:
 - Remove tracks associated to tau decay products. If boosted Higgs, non-zero impact parameters may pull PV
 - Add beam spot information in fit of PV
- Resolution in transversal plane increases by factor 3 to 4 (!)

Production mode	Vertex type	σ_x^{PV}	σ_y^{PV}	σ_z^{PV}
U \ m m	Nominal	17	17	26
$\mathbf{n} \rightarrow \tau_{\mu} \tau_{h}$	Refitted Beamspot-Corrected	5	5	29
$7 \rightarrow \pi \pi$	Nominal	20	20	30
$\Sigma \rightarrow \iota_{\mu}\iota_{h}$	Refitted Beamspot-Corrected	5	5	34

Helical extrapolation

3-d vs 2-d extrapolation tracks

- Per default, track extrapolation to find PCA (point closest approach) performed in trasnversal plane
- Using helical, 3-dimensional approach has 2 profound advantages:
 - IP estimate better for tracks with high eta values
 - Can propagate uncertainties in track and PV in consistent manner
 - ⇒ Define an impact-parameters significance as |IP|/sigma(IP)
 - ⇒ throughout analysis require |IP|/sigma IP> 1.5
- Combined, lead to improvement sensitivity O(15%)

Unrolled phi-CP distributions

rho+rho channel. Resolution ~ 1.1 sigma

- Observe s/b improvement owing to BDT
- Observe resolution to distinguish CP-even and odd

Extracting mixing angle $\phi_{\tau\tau}$

Perform log-likelihood scan of $\phi_{\tau\tau}$

- Fit data in background and signal categories simultaneously with templates of different φ_{ττ} hypotheses
 - Background templates insensitive to φ_{ττ}, but help constraining background contributions
 - Unrolled distributions contain sensitivity to φ_{ττ}
 - Note: different signal templates obtained from linear combinations 0, 45, and 90°

First result direct measurement $\phi_{\tau\tau}!!$

Combined Negative log-likelihood fit

 Reject CP-odd hypothesis with observed (expected) 3.2 (2.3) sigma

 $\phi_{\tau\tau} = (4 \pm 17 \text{ (stat)} \pm 2 \text{(bin-by-bin)} \pm 1 \text{ (syst)} \pm 1 \text{(theory)})^{\circ}$

- \Rightarrow Statistical uncertainty leading, followed by hadronic tau trigger and E scale, theory, ...
- Mixing angle observed (expected) 68% CL:

 $4\pm17^\circ~(0\pm23^\circ)$

- \Rightarrow nMSSM: $|\phi_{\tau\tau}|$ <27° <u>Nuclear Physics B 901 526</u>
- \Rightarrow Part nMSSM phase space outside observed 68% CL!
- LHC Run-III and beyond: combine analysis with regressive ML algorithms for ϕ_{cp} determination

CP-structure Higgs to Vector-boson coupling

Bosonic couplings

- Couplings of (speudo) scalar boson to gauge bosons
 - CP-even (scalar), J^{CP}=0⁺⁺
 - CP-odd (pseudocalar) coupling <u>does not occur at leading</u> order
 - We can introduce non-renormalisable CP-odd effectivefield-theory operators
- An example: Standard model plus EFT dim-6 operators:

$$\mathcal{L}_{\mathrm HVV} = g \cdot \mathrm{H} V_{\mu} V^{\mu} + \tilde{g} \cdot \mathrm{H} \tilde{V}_{\mu\nu} V^{\mu\nu}$$

 $V^{\mu\nu} = \partial^{\mu}V^{\nu} - \partial^{\nu}V^{\mu}$

- ⇒ CP-even and (effective) CP-odd couplings have different tensor structure
 - Also applies, for example, to effective gluon Higgs coupling
- Note: CP-odd couplings to W and Z bosons already excluded

arXiv:1903.06973, arXiv:1712.02304

CP properties of Higgs-top interactions in tt̄H and tH using H→ɣɣ (ATLAS)

CERN-EP-2020-046

Analysis targets mixing angle and reduced coupling k_t:

$$\mathcal{L} = -\frac{m_t}{v} \{ \bar{\psi}_t \kappa_t [\cos(\alpha) + i\sin(\alpha)\gamma_5] \psi_t \} H$$

- Classify ttH and tH events in hadronic and leptonic channel (one or two W decay leptonically)
- Dedicated signal-background BDT, and BDT_{CP} to extract α:
 - BDT_{CP}: use top and diphoton system kinematics
- Extract signal strength in 20 categories via fit m_{yy}
- $\Rightarrow\,$ Obtain signal strength and mixing angle α

CP structure of Higgs-top Yukawa coupling in tīH production using H→ɣɣ (ATLAS)

Results

- Obtain 2-dimensional likelihood contour CP-even vs CP-odd
 - Pure CP-odd excluded at 3.9 sigma
 - |α|>43° excluded at 95% CL

CP structure of Higgs-top Yukawa coupling in ttH production using H→γγ (CMS) HIG-19-013

- Parameterise couplings via $f_{CP}^{Htt} = \frac{|\tilde{\kappa}_t|^2}{|\kappa_t|^2 + |\tilde{\kappa}_t|^2} \operatorname{sign}(\tilde{\kappa}_t/\kappa_t)$
- Use two optimal observables D_{0-} and D_{cp}
 - D₀₋: distinguish CP-even vs CP-odd (neglects interference term!)
 - D_{cp}: includes interference term
 - \Rightarrow This analysis focusses on D₀₋ (thus: $|f_{CP}|$ only!)
- Classify events as hadronic or leptonic
- Signal background separation via hadronic and leptonic BDT's

DESY. |Higgs-CP measurements at the LHC | Merijn van de Klundert, 26.10.2020

CP structure of Higgs-top Yukawa coupling in tīH production using H→ɣɣ (CMS)

- Dedicated BDT deployed to estimate D₀₋
 - Uses jet kinematics and b-tags, diphoton kinematics, lepton kinematics and multiplicity
- Simultaneously fit signal strength via m_{yy} in 12 bins
 - Note: <u>tH measurement</u> included in fit!
- Results:
 - Observed: $f_{CP}^{Htt} = 0.00 \pm 0.33$ at 68% CL
 - Expected: $f_{\rm CP}^{\rm Htt} = 0.00 \pm 0.49$
- Exclude CP-odd:
 - 3.2 sigma (observed)
 - 2.6 sigma (expected)

Anomalous couplings in H->4l decays (CMS) HIG-19-009

First direct measurement CP structure ggH coupling!

- All production modes of H->4l assessed
- Analyse ggH events using matrix element techniques
- Determine D₀₋ and D_{CP} via likelihood fit
- Note: sign couplings determined via interference term

Parameter Observed Expected

 $f_{a3}^{ggH} = -0.53^{+0.51}_{-0.47} [-1,1] = 0 \pm 1 [-1,1]$

Anomalous couplings in H->4I decays (CMS)

CP structure ttH coupling

- CP structure analysed using D₀₋ observable (analogue to H->γγ analysis)
- Combine ggH with ttH with H->ZZ*->4I, assuming only top and b in fermion loop and kt=bt kt=bt

$$\left| f_{\text{CP}}^{\text{Hff}} \right| = \left(1 + 2.38 \left[\frac{1}{\left| f_{a3}^{\text{ggH}} \right|} - 1 \right] \right)^{-1} = \sin^2 \alpha^{\text{Hff}}$$

- Combine H->4I with tτH analysis in H->γγ
- Results consistent with SM

Constraints on Higgs couplings in H->WW*->evµv+jj (ATLAS)

ATLAS public Higgs results

CP structure ggH coupling

- Kinematics of top coupling may differ from on-shell associated production
- Deviation w.r.t. SM would point to CPviolation or new particles in loop:

$$\mathcal{L}_0^{\text{loop}} = -\frac{1}{4} \left(\kappa_{Hgg} g_{Hgg} G^a_{\mu\nu} G^{a,\mu\nu} + \kappa_{Agg} g_{Agg} G^a_{\mu\nu} \tilde{G}^{a,\mu\nu} \right) X_0$$

- Apply cuts plus BDT to define signal region
- Exploit Δφ_{jj} (signed angle between outgoing jets) and rate of process
- 2015+2016 data used

Constraints on Higgs couplings in H->WW*->evµv+jj (ATLAS)

CP in ggH production

- Scan $\kappa_{Agg}/\kappa_{Hgg}$ with rate fixed to BSM scenario (i.e. non-floating)
- \Rightarrow Consistent with SM!
- Stat uncertainty leading, theory leading sys.

 $\kappa_{Agg}/\kappa_{Hgg} = 0.0 \pm 0.4(\text{stat.}) \pm 0.31(\text{syst.})$

Test of CP invariance in VBF in H->ττ (ATLAS)

Analysis of 2015-2016 data CERN-EP-2020-009 Run-1: CERN-EP-2016-002

- Reminder: CP-odd HVV couplings in SM do not occur at tree level
- Introduce (non-renormalisable) dimension 6
 CP-odd operators of effective field theory (EFT):
- Assuming U(1) and SU(2) symmetry with additional assumption: $\tilde{g}_{HAA} = \tilde{g}_{HZZ} = \frac{1}{2}\tilde{g}_{HWW} = \frac{g}{2m_W}\tilde{d}$ and $\tilde{g}_{HAZ} = 0$
- \Rightarrow We have expressed new CP-odd operators in terms of single coupling \tilde{d}
- Obtain two CP-even and CP-odd interference term:

$$|\mathcal{M}|^{2} = |\mathcal{M}_{\rm SM}|^{2} + \tilde{d} \cdot 2\operatorname{Re}(\mathcal{M}_{\rm SM}^{*}\mathcal{M}_{\rm CP-odd}) + \tilde{d}^{2} \cdot |\mathcal{M}_{\rm CP-odd}|^{2}$$
Test of CP invariance in VBF in H->ττ (ATLAS)

Optimal observable

- Optimal observable O_{opt} (CP-odd): $O_{opt} = \frac{2 \operatorname{Re}(\mathcal{M}_{SM}^* \mathcal{M}_{CP-odd})}{|\mathcal{M}_{SM}|^2}$
 - O_{opt} proven more sensitive than $\Delta \phi_{jj}$ between VBF jets
- Expectation value <**O**_{opt}>:
 - Zero for SM (CP-even couplings)
 - Non-zero: CP-odd operator (or BSM particles in loops..)

Test of CP invariance in VBF in H->ττ (ATLAS)

Results using 2015-2016 data

- Profile likelihood as function of \tilde{d}
- Results consistent with SM:
- 68% CL observed: [-0.09, 0.035]
- Expected (SM): [-0.035, 0.033]
 - Jet systematics leading uncertainty
- Improved previous Run-1 result : [-0.11, 0.05]

Outlook Higgs in near and far future...

LHC schedule here

- Run-2 data (~140 fb⁻¹)
 - Many coupling analyses still expected
 - Higgs-tau final coupling result
 - VH(H->bb)
 - Grand combination Run-2 STXS and pT spectra
 - final Run-2 mass and width measurement combinations
 - di-Higgs production studies and their combination
 - Searches for Beyond Standard Model Higgs bosons (many!)
 - ... and many more!

- Run-3, start 2022. Combination with Run-2 data:(~300 fb⁻¹):
 - CP-structure Higgs-Yukawa couplings: exclusion pure-odd couplings perhaps feasible
 - Possibly observation Higgs-muon coupling
 - \Rightarrow Observations expected for combinations ATLAS and CMS experiments
 - Bosonic couplings:
 - precision will increase. Not for all measurements as \sqrt{L} though!
- Combined CP-analyses Yukawa and vector coupling
- High-Lumi LHC, start 2027 (~3000 fb⁻¹):
- A pivotal motivation is observation Higgs boson self-coupling

Beyond LHC

Higgs factories

- Recent European strategy update particle physics: next collider project should be Higgs factory
- Various options on the table:
 - ILC (Japan)
 - FCC-ee or FCC-pp (CERN)
 - CLIC (muon collider, CERN)
 - CEPC (Chinese electron-positron)

⇒ All these colliders could explore certain Higgs parameters ~order magnitude better than LHC

 \Rightarrow EXCITING TIME TO BE A PARTICLE PHYCISIST!!

Summary

13 TeV proton collisions provided wealth of Higgs-CP asnalyses

- CMS first H->ττ CP-mixing angle measurement (Full Run-II)
 - Constrained to $\phi_{\tau\tau} = (4 + 17)^{\circ} (68\% \text{ CL})$
- ATLAS and CMS presented first measured ϕ_{tt} (Full Run-II)
 - ATLAS: |φ_{tt}|<43° (95% CL)
 - CMS: $f_{\rm CP}^{\rm Htt} = 0.00 \pm 0.33$ at 68% CL
- CMS anomalous couplings in H->4I (Run-II): first ggH CP analysis!
- ATLAS CP in ggH in H->WW*->evµv
- ATLAS: more tight constraints anomalous couplings from VBF H->ττ measurement (2015-2016 data)

....No clear sign of BSM physics (yet) Many more Run-II results expected Precision will be ever-increasing with data Hoping for the unexpected!

THANKS FOR YOUR ATTENTION!

Higgs-CP: state-of-the-art

Latest ATLAS and CMS Higgs-CP analyses in a nutshell

- ATLAS and CMS observed ttH coupling in H->yy full Run-II analyses and analysed CP-structure
 - ATLAS: <u>CERN-EP-2020-046</u>
 - CMS: <u>HIG-19-013</u>
- CMS analysis anomalous couplings in H->4I decays <u>HIG-19-009</u>
- ATLAS analysis CP structure Higgs-gluon effective vertex <u>ATLAS-CONF-</u> <u>2020-055</u>
- ATLAS analysis CP invariance in vector boson fusion with Higgs to tau decays: <u>CERN-EP-2020-009</u>

 \Rightarrow Reminder: this presentation focusses exclusively on CP parts of analyses

Begin backup slides

~90% of backgrounds data-driven manner!

- Genuine di-tau background: exploit lepton universality
 - use event-embedding (replace di-muon pair from data event) <u>ref</u>
- Jets faking hadronic tau: use fake-faktor method ref
 - Deduce jet misidentification rate in control region
 - Apply rate to jets in application region to get rate in signal region
- Apply MVA to separate signal, genuine background, jet-fake background
- Event selection, reconstruction, background methodology, event categorisation: mostly analogous to STXS analysis
 - One important difference: use one category for signal events instead
- Distribution: ϕ_{cp} unrolled in NN windows

Additional corrections applied to optimise signal strength

- Decay mode identification important, migrations will lead to incorrect φ_{cp} estimates
- Per default, decay mode given by HPS (hadron-plus-strip) algorithm
- Dedicated MVA developpd for enhanced decay mode distinction (on top of deeptau discriminant)
 - Inputs: kinematics tau decay products and HPS decay mode
- Substantial gain in purity and efficiency
- Improves signal sensitivity by O(15%)

Purity

Reference

DESY. |Higgs-CP measurements at the LHC | Merijn van de Klundert, 26.10.2020

Additional corrections applied to optimise signal strength

- Decay mode identification important, migrations will lead to incorrect φ_{cp} estimates
- Per default, decay mode given by HPS (hadron-plus-strip) algorithm
- Dedicated MVA developpd for enhanced decay mode distinction (on top of deeptau discriminant)
 - Inputs: kinematics tau decay products and HPS decay mode
- Substantial gain in purity and efficiency
- Improves signal sensitivity by O(15%)

• Efficiency

Reference

DESY. |Higgs-CP measurements at the LHC | Merijn van de Klundert, 26.10.2020

HIG-20-006

3-d vs 2-d extrapolation tracks

- Per default, track extrapolation to find PCA (point closest approach) performed in trasnversal plane
- Using helical, 3-dimensional approach has 2 profound advantages:
 - IP estimate better for tracks with high eta values
 - Can propagate uncertainties in track and PV in consistent manner
 - ⇒ Define an impact-parameters significance as |IP|/sigma IP
 - ⇒ throughout analysis require |IP|/sigma IP> 1.5
- Lead to improvement sensitivity O(15%)

rho+rho channel. Resolution:

- Observe s/b improvement owing to BDT
- Backgrounds with genuine τ expected to be flat in ϕ_{cp}
 - \Rightarrow Enhance sensitivity by merging bins. Jet fakes: symmetrise around $\phi_{cp}=\pi$

Unrolled phi-CP distributions

mu+pi channel. Resolution: ~1.0 sigma

- Using IP method twice results in correlated PV smearing effects
 - \Rightarrow Only symmetrise bins in ϕ_{cp} = π

DESY. |Higgs-CP measurements at the LHC | Merijn van de Klundert, 26.10.2020

Explanation observed vs expected significance

Figure 10: The ϕ_{CP} distribution for the three most sensitive channels combined. Events were collected from all years and NN/BDT bins in the three signal categories. The background is subtracted from the data. The events are reweighed via A S/(S + B), in which *S* and *B* are the signal and background rates, respectively, and *A* is a measure for the average asymmetry between the scalar and pseudoscalar distributions. The definition of the value of *A* per bin is $|CP^{even} - CP^{odd}|/(CP^{even} + CP^{odd})$, and *A* is normalised to the total number of bins. In this equation CP^{even} and CP^{odd} are the scalar and pseudoscalar is displayed in green. In the predictions, the rate parameters are taken from their best-fit values. The grey uncertainty band indicates the uncertainty on the subtracted background component. In combining the channels, a phase-shift of 180° was applied to the channel involving a muon since this channel has a phase difference of 180° with respect to the two hadronic channels due to a sign-flip in the muon spectral function.

Figure 9: Two-dimensional scan of the (reduced) CP-even (κ) and CP-odd ($\tilde{\kappa}$) τ Yukawa couplings.

Decomposed ϕ_{cp} distribution for Drell-Yan events Observable α explained in this reference More auxiliary results here

DESY. |Higgs-CP measurements at the LHC | Merijn van de Klundert, 26.10.2020

Correlated effects of smearing primary vertex reviewed in this reference

Fig. 9 Left: $pp \to Z^*/\gamma^* \to \tau^-\tau^+ \to \pi^+\pi^-$ with $p_T^{\pi} \ge 20$ GeV and $n_{\pm} \ge 20 \,\mu m$. Normalized smeared φ_{CP}^* distribution for two different values of σ_z^{PV} . The *dotted black line* is the prediction with-

CP properties of Higgs-top interactions in tt̄H and tH using H→ɣɣ (ATLAS)

Begin backup

CP properties of Higgs-top interactions in tt̄H and tH using H→ɣɣ (ATLAS)

Signal-background BDT

- Uses as input top quark reconstruction BDT
- Input
 - Pt, eta, phi and E of W boson and bjets
 - Angular distance between W boson and b-jet

- Signal-background BDT explained in ref
- One for leptonic events
 - Uses p_T, η, φ, E of up to 4 (2) leading jets (leptons)
 - Missing energy and its angle
 - Photon p_T divided by invariant mass of the pair, and photon η, φ
- Hadronic events:
 - 6 leading jets, inc b-jet scores
 - Further same observables as for leptonic BDT

CP structure of Higgs-top Yukawa coupling in tt̄H production using H→ɣɣ (CMS)

Begin backup

CP structure of Higgs-top Yukawa coupling in tīH production using H→ɣɣ (CMS)

Signal-background BDT

- Kinematic properties of jets, leptons, photons, and di-photons (but not the di-photon mass)
- Jet and lepton multiplicities
- B-tagging scores of jets
- Missing transverse momentum
- Generally, jets and leptons of signal events higher pt and more central pseudorapidity than background
- Validated in sidebands

- Further inputs
 - Top-tagger BDT
 - DNN to separate ttH from dominant background in signal enriched phase space
 - Exploits low-level information, four vectors
 - Score is input to signalbackground BDT. If used standalone, suffers from overfitting

CP structure of Higgs-top Yukawa coupling in tt H production using $H \rightarrow \gamma \gamma$ (CMS)

Invariant mass

Figure 2: Invariant mass distribution for the selected events (black points) weighted by S/(S + B), where S (B) is the numbers of expected signal (background) events in a $\pm 1\sigma_{eff}$ mass window centered on $m_{\rm H}$. The σ_{eff} is defined as the smallest interval containing 68.3% of the $m_{\gamma\gamma}$ distribution, and ranges from 1.2 to 1.6% for different categories. We show curves for fitted signal + background (solid red) and for background only (dashed red), with bands covering the $\pm 1\sigma$ and $\pm 2\sigma$ uncertainties in the fitted background. The inner panel shows the likelihood scan for $\mu_{t\bar{t}H}$ with $m_{\rm H}$ profiled.

Anomalous couplings in H->ZZ*->4I decays (CMS)

Begin backup

Anomalous couplings in H->ZZ^{*}->4I decays (CMS)

D_{0-} and D_{CP}

$$\begin{split} \mathcal{D}_{\mathrm{alt}}\left(\Omega\right) &= \quad \frac{\mathcal{P}_{\mathrm{sig}}\left(\Omega\right)}{\mathcal{P}_{\mathrm{sig}}\left(\Omega\right) + \mathcal{P}_{\mathrm{alt}}\left(\Omega\right)}, \\ \mathcal{D}_{\mathrm{int}}\left(\Omega\right) &= \quad \frac{\mathcal{P}_{\mathrm{int}}\left(\Omega\right)}{2\sqrt{\mathcal{P}_{\mathrm{sig}}\left(\Omega\right) \ \mathcal{P}_{\mathrm{alt}}\left(\Omega\right)}}, \end{split}$$

• D_{0-} is given by $P_{odd}/(P_{even}+P_{odd})$

Anomalous couplings in H->ZZ^{*}->4I decays (CMS)

D₀₋ and **D**_{CP} Link

FIG. 4: The definition of observable in the sequential process of production and decay of $t\bar{t}H$, see text for details. Each angle is defined in the respective reference frame of the decaying system.

Anomalous couplings in H->ZZ*->4I decays (CMS)

D₀₋ and D_{CP} Link

- $m_{t\bar{t}H}$: invariant mass of the $t\bar{t}H$ system;
- θ_H : angle between the H boson direction and the incoming partons in the $t\bar{t}H$ frame;
- θ_V^* : angle of the $H \to VV(f\bar{f})$ decay with respect to the opposite $t\bar{t}$ direction in the H frame;
- Φ_V^* : angle between the production plane, defined by incoming partons and H, and $H \to VV(f\bar{f})$ decay plane;
- θ_t : angle between the top quark direction and the opposite Higgs direction in the $t\bar{t}$ frame;
- Φ_t^* : angle between the decay planes of the $t\bar{t}$ system and $H \to VV(f\bar{f})$ in the $t\bar{t}H$ frame;
- m_{tt} : invariant mass of the $t\bar{t}$ system;
- θ_W : angle between W^+ and opposite of the $b\bar{b}$ system in the W^+W^- frame;
- Φ_W : angle between the production $(b\bar{b})(W^+W^-)H$ plane and the plane of the W^+W^- system in the $t\bar{t}$ frame;
- θ_b : angle between the *b* quark and opposite of the W^+W^- system in the $b\bar{b}$ frame;
- Φ_b : angle between the planes of the $b\bar{b}$ and W^+W^- systems in the $t\bar{t}$ frame;
- m_{Wb1} or m_{Wb2} : invariant mass of the W^+b or $W^-\bar{b}$ system;
- θ_{f1} or θ_{f2} : angles between fermion direction and opposite of the b or \bar{b} quark in the W^+ or W^- frame;
- Φ_{f1} or Φ_{f2} : angle between the W^+ or W^- decay plane and the $\bar{t}W^+b$ or $tW^-\bar{b}$ plane in the t or \bar{t} quark frame;
- $m_{f1\bar{f}1}$ or $m_{f2\bar{f}2}$: invariant mass of the $f_1\bar{f}_1$ or $f_2\bar{f}_2$ system.

Anomalous couplings in H->ZZ^{*}->4I decays (CMS) D0- and DCP

Figure 4: Distribution of the \mathcal{D}_{bkg} (left), \mathcal{D}_{0-}^{ggH} (middle), and \mathcal{D}_{CP}^{ggH} (right) discriminants in the VBF-2jet category in Scheme 1. The latter two distributions are shown with the requirement $\mathcal{D}_{bkg} > 0.2$ in order to enhance signal over the background contribution.

Anomalous couplings in H->ZZ*->4I decays (CMS)

Schemes for observables

Category	Selection	Observables \vec{x} for fitting
Scheme 1		
Untagged VBF-1jet	none below $\mathcal{D}_{1 m jet}^{ m VBF} > 0.7$	$\mathcal{D}_{ m bkg} \ \mathcal{D}_{ m bkg}$
VBF-2jet VH-leptonic VH-hadronic ttH-leptonic ttH-hadronic Scheme 2	$\mathcal{D}_{2jet}^{VBF} > 0.5$ see Sec. 3 $\mathcal{D}_{2jet}^{VH} > 0.5$ see Sec. 3 see Sec. 3	$\mathcal{D}_{bkg}, \mathcal{D}_{2jet}^{VBF}, \mathcal{D}_{0-}^{ggH}, \mathcal{D}_{CP}^{ggH}$ \mathcal{D}_{bkg} $\mathcal{D}_{bkg}, \mathcal{D}_{0-}^{t\overline{t}H}$ $\mathcal{D}_{bkg}, \mathcal{D}_{0-}^{t\overline{t}H}$
Untagged Boosted VBF-1jet VBF-2jet VH-leptonic VH-hadronic	$\begin{array}{l} \text{none below} \\ p_{\mathrm{T}}^{4\ell} > 120 \; \mathrm{GeV} \\ \mathcal{D}_{1\mathrm{jet}}^{\mathrm{VBF}} > 0.7 \\ \mathcal{D}_{2\mathrm{jet}}^{\mathrm{VBF}} > 0.5 \\ \text{see Sec. 3} \\ \mathcal{D}_{2\mathrm{jet}}^{\mathrm{VH}} > 0.5 \end{array}$	$ \begin{array}{l} \mathcal{D}_{\mathrm{bkg}}, \mathcal{D}_{\mathrm{0-}}^{\mathrm{dec}}, \mathcal{D}_{\mathrm{0h+}}^{\mathrm{dec}}, \mathcal{D}_{\mathrm{A1}}^{Z\gamma,\mathrm{dec}}, \mathcal{D}_{\mathrm{CP}}^{\mathrm{dec}}, \mathcal{D}_{\mathrm{int}}^{\mathrm{dec}} \\ \mathcal{D}_{\mathrm{bkg}}, p_{\mathrm{T}}^{4\ell} \\ \mathcal{D}_{\mathrm{bkg}}, p_{\mathrm{T}}^{4\ell} \\ \mathcal{D}_{\mathrm{bkg}}, \mathcal{D}_{\mathrm{0-}}^{\mathrm{VBF+\mathrm{dec}}}, \mathcal{D}_{\mathrm{0h+}}^{\mathrm{VBF+\mathrm{dec}}}, \mathcal{D}_{\mathrm{A1}}^{\mathrm{VBF+\mathrm{dec}}}, \mathcal{D}_{\mathrm{A1}}^{Z\gamma,\mathrm{VBF+\mathrm{dec}}}, \mathcal{D}_{\mathrm{CP}}^{\mathrm{VBF}}, \mathcal{D}_{\mathrm{int}}^{\mathrm{VBF}} \\ \mathcal{D}_{\mathrm{bkg}}, p_{\mathrm{T}}^{4\ell} \\ \mathcal{D}_{\mathrm{bkg}}, p_{\mathrm{0-}}^{4\ell}, \mathcal{D}_{\mathrm{0h+}}^{\mathrm{VH+\mathrm{dec}}}, \mathcal{D}_{\mathrm{A1}}^{\mathrm{VH+\mathrm{dec}}}, \mathcal{D}_{\mathrm{A1}}^{Z\gamma,\mathrm{VH+\mathrm{dec}}}, \mathcal{D}_{\mathrm{CP}}^{\mathrm{VH}}, \mathcal{D}_{\mathrm{int}}^{\mathrm{VH}} \end{array} $

Begin backup slides

Leading diagrams contributing to ggH anf VBF production with 2 jets

DESY. |Higgs-CP measurements at the LHC | Merijn van de Klundert, 26.10.2020

Selection criteria and BDT input variables

Table 3: Event selection criteria used to define the signal regions for the ggF + 2 jets and VBF event categories.

	ggF + 2 jets	VBF		
	Two isolated, different-flavour leptons $(\ell = e, \mu)$ with opposite charge			
Dresslastion	$p_{\rm T}^{\rm lead} > 22 \text{ GeV}, p_{\rm T}^{\rm sublead} > 15 \text{ GeV}$			
Preselection	$m_{\ell\ell} > 10 \text{ GeV}$			
	$N_{\rm jet} \ge 2$			
	$N_{b-\text{jet},(p_{\text{T}}>20 \text{ GeV})} = 0$			
	$m_{\tau\tau} < 66 \text{ GeV}$			
Background rejection	$\Delta R_{jj} > 1.0$			
Dackground rejection	$p_{\mathrm{T},\ell\ell} > 20 \mathrm{~GeV}$	central jet veto		
	$m_{\ell\ell} < 90 \text{ GeV}$	outside lepton veto		
	$m_{\rm T} < 150 { m ~GeV}$			
BDT input variables	$m_{\ell\ell}, m_{\mathrm{T}}, p_{\mathrm{T},\ell\ell}, \Delta\phi_{\ell\ell}$	$m_{jj}, \Delta Y_{jj}, m_{\ell\ell}, m_{\mathrm{T}}, \Delta \phi_{\ell\ell}$		
DD1 input variables	$\min \Delta R(\ell_1, j_i), \min \Delta R(\ell_2, j_i)$	$\sum_{\ell} C_{\ell}, \sum_{\ell,j} m_{\ell,j}, p_{\mathrm{T}}^{\mathrm{tot}}$		

2 dimensional scan of κ_{Agg} vs κ_{Hgg}

New!

Test of CP invariance in VBF in H->ττ (ATLAS)

Begin backup slides

Test of CP invariance in VBF in H->ττ (ATLAS) Strategy

- Generally, signal/background strategy follows observation analysis
- Study four event classes
 - Hadronic, semileptonic, same-flavour (SF) and different-flavour (DF) leptonic
 - \Rightarrow Improvement w.r.t. Run-I analysis (only leptonic and semi-leptonic)

Test of CP invariance in VBF in H->ττ (ATLAS)

Signal-background separation

• Separate BDT per class

DE

- Split in High BDT-score region (signal) and control region (bg normalisation)
- Few other cats for better control background normalisation

Table 2: Summary of the event selection requirements for the four analysis channels. In the case of the p_T requirements on the τ -lepton decay candidates, the asterisk marks the lowest p_T threshold, which varies depending on the trigger used. Details of this are given in Ref. [41]. The transverse momentum of the visible decay products of the τ -lepton candidate with the higher (lower) transverse momentum is denoted by $p_T^{\tau_1}$ ($p_T^{\tau_2}$). The input variables used for the BDT training and the BDT_{score} threshold used to define the signal regions are also reported.

Channel	$\tau_{lep}\tau_{lep}$ SF	$\tau_{\rm lep} \tau_{\rm lep} {\rm DF}$	$\tau_{\rm lep} \tau_{\rm had}$	$ au_{\mathrm{had}} au_{\mathrm{had}}$		
	Two isolated τ -lepton decay candidates with opposite electric charge					
Preselection	$p_{\rm T}^{\tau_1} > 19^*/15^* {\rm GeV}(\mu/e)$	$p_{\rm T}^e > 18 {\rm GeV}$	$p_T^{\text{Thad}} > 30 \text{ GeV}$	$p_{\rm T}^{\tau_1} > 40 {\rm GeV}$		
	$p_{\rm T}^{\tau_2} > 10/15^* {\rm GeV}(\mu/e)$	$p_{\rm T}^{\mu} > 14 {\rm GeV}$	$p_{\rm T}^{\tau_{\rm lep}} > 21^* {\rm GeV}$	$p_{\rm T}^{\tau_2} > 30 {\rm GeV}$		
	$m_{\tau\tau}^{coll} > m_Z$ -	- 25 GeV	$m_{\rm T} < 70 {\rm GeV}$	$0.8 < \Delta R_{\tau\tau} < 2.5$		
	$30 < m_{\ell\ell} < 75 \text{GeV}$	$30 < m_{\ell\ell} < 100{\rm GeV}$		$ \Delta \eta_{\tau\tau} < 1.5$		
	$E_{\rm T}^{\rm miss} > 55 {\rm GeV}$	$E_{\rm T}^{\rm miss} > 20 {\rm GeV}$		$E_{\rm T}^{\rm miss} > 20 {\rm GeV}$		
	$E_{\rm T}^{\rm miss, hard} > 55 {\rm GeV}$					
		$N_{b-\text{jets}} = 0$	•			
VBF topology	$N_{\text{kets}} \ge 2, p_{\text{T}}^{f_2} > 30 \text{GeV}, m_{11} > 300 \text{GeV}, \Delta \eta_{11} > 3$					
		$p_{\rm T}^{f_1} > 40 {\rm GeV}$		$p_{\rm T}^{f_1} > 70 { m GeV}, \eta_{f_1} < 3.2$		
BDT input variables	$m_{\tau\tau}^{\text{MMC}}, m_{jj}, \Delta R_{\tau\tau}, C_{jj}(\tau_1), C_{jj}(\tau_2), p_{\text{T}}^{\text{tot}}$					
	$m_{\tau\tau}^{\rm vis}, m_{\rm T}^{\tau_1,E}$	$r^{mass}, p_T^{f_3}$	$C(\phi^{\text{miss}})/\sqrt{2}$			
	$\Delta \phi_{\tau \tau}$	$E_{\mathrm{T}}^{\mathrm{miss}}/p_{\mathrm{T}}^{\tau_{1}}, E_{\mathrm{T}}^{\mathrm{miss}}/p_{\mathrm{T}}^{\tau_{2}}$	$m_{\tau\tau}^{\rm vis}, \Delta\eta_{\tau\tau} $	$p_{\mathrm{T}}^{\tau\tau E_{\mathrm{T}}^{\mathrm{miss}}}, \Delta\eta_{\tau\tau} $		
Signal region	$BDT_{score} > 0.78$		$BDT_{score} > 0.86$	$BDT_{score} > 0.87$		

Test of CP invariance in VBF in H->ττ (ATLAS) Strategy

- Generally, signal/background strategy follows observation analysis
- Study four event classes
 - Hadronic, semileptonic, same-flavour (SF) and different-flavour (DF) leptonic
 - \Rightarrow Improvement w.r.t. Run-I analysis (only leptonic and semi-leptonic)
- Signal-background separation
 - Separate BDT per class
 - Split in High BDT-score region (signal) and control region (bg norm)
 - Few other cats for better control background normalisation
- Fit:
 - Simultaneous to Signal and Control region
 - Signal strength floating parameter
 - Signal templates by reweighing SM signal events

DESY. |Higgs-CP measurements at the LHC | Merijn van de Klu
Test of CP invariance in VBF in H-> $\tau\tau$ (ATLAS)

Optimal observable postfit

Channel

 $\tau_{\rm lep} \tau_{\rm lep} \, {\rm SF}$

 $\tau_{\rm lep} \tau_{\rm lep} \, {\rm DF}$

Combined

 $\tau_{\rm lep} \tau_{\rm had}$

 $\tau_{\rm had} \tau_{\rm had}$

Leptonic channel most sensitive

 -0.54 ± 0.72

 0.71 ± 0.81

 0.74 ± 0.78

 -1.13 ± 0.65

 -0.19 ± 0.37

myosotis

- Perhaps ratio higgs cross sectioon in pp vs total cross section
- Backup: plots with phi_cp in DY.
 Explain the correlated vertex smearing effect
- What is established for Higgsgamma vertex?