

Bound on 3+1 active-sterile neutrino mixing from the first science run of KATRIN

GDR Neutrino, Virtual Meeting, 23/11/2020

Thierry Lasserre (CEA Irfu & APC Laboratory)

On behalf the KATRIN collaboration

First KATRIN Neutrino Mass Result (2019)

https://indico.in2p3.fr/event/19474/contributions/75239/attachments/55626/73384/KATRIN-KNM1-GDR.pdf

Th. Lasserre - 2020

endpoint

Scanning Strategy

Integral spectrum modeling

... combination of 32058 spectra

Sterile Neutrino Search Dataset

Sterile Neutrinos – General Idea

eV-Sterile neutrino signature in KATRIN

Sterile Neutrino Modeling

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}E} = \left(1 - |U_{e4}|^2\right) \frac{\mathrm{d}\Gamma}{\mathrm{d}E} (m_{\beta}^2) + |U_{e4}|^2 \frac{\mathrm{d}\Gamma}{\mathrm{d}E} (m_{4}^2)$$

$$\lim_{k \to \infty} \mathrm{light \ neutrino} \qquad \mathrm{heavy \ neutrino}$$

Fit Parameters:

Ν

- m² neutrino mass (fixed/free/constrained)
- **E**_{0,fit} endpoint
 - signal normalization
- *B* energy-independent background rate

 m_4^2 4th neutrino mass $|U_{e4}|^2$ 4th neutrino mixing

KATRIN 3+1 Neutrino Fit (40 eV range)

No evidence for sterile neutrino signal

Best fit	3v (NH)	3+1
m_4^2	-	73.0
$ \text{Ue}_4^2 $	-	0.034
p — value	0.41	0.50
χ^2	22.9	21.3
$\Delta \chi^2$	1.6 (54.5% C.L)	

17

Confidence Interval (95 % C.L.)

- χ^2 analysis, systematic effects included via covariance matrix
- Likelihood ratio for given sterile parameters: $\Delta \chi^2 (|U_{e4}|^2, m_4^2) = \chi^2 (|U_{e4}|^2, m_4^2) \chi^2_{best}$

• Good approximation by Wilks' theorem: $\Delta \chi_c^2 = 5.99$ for the 95% C.L. 95 % quantile of χ^2 distribution with 2 dof was verified with >5000 MC simulations ($\Delta \chi_c^2 = 6.18$)

Complementary Investigations

Raster scan

- choose a fixed value of m_4^2 and extract a $|Ue_4^2|$
- repeat for all physical m_4^2 extract $\sigma(|Ue_4^2|)$

Systematic uncertainties are negligible for all m_4

Case i) 40 eV fit range, m_{β} = 0 eV fixed

- Results in the $|U_{e4}^2|$ m_4^2 plane
- m_{β} = 0 eV fixed
- Sensitive to
 - $m_4^2 < 1000 \,\mathrm{eV^2}$
 - |U_{e4}|² > 0.02
- Limit directly comparable to Mainz/Troitsk

Case ii) 40 eV fit range, free m_{β}

• Free m_{β}

- $\rightarrow m_{\beta}$ can be negative
- The most generic analysis
- Loosing sensitivity w.r.t. case i) for m_4^2 < 60 eV²
 - $\rightarrow m_{\beta}$ and m_4 correlation at large $|\text{Ue}_4^2|$

Case iii) 40 eV fit range, constrained m_{eta}

• Constrained m_{β}

Arbitrary constraint value, for illustration : 1 eV²

- Intermediate case, for illustration of the impact of an external constraint (here $m_{eta} < 1 \, \text{eV}$)
- Could be later used with with a bound from cosmology for instance

Synergy with oscillation experiments

- Oscillation Electron Disappearance Experiments
 - $\Delta m_{41}^2 = m_4^2 m_1^2 \approx \Delta m_{42}^2 \approx \Delta m_{43}^2$
 - $\sin^2 2\Theta = 4 |U_{e4}|^2 (1 |U_{e4}|^2)$
- KATRIN
 - m_β and m_4
 - $\sin^2\Theta = |U_{e4}|^2$
- Conversion KATRIN -to- Oscillation
 - $\Delta m_{41}^2 \simeq m_4^2 m_\beta^2$
 - $sin^2 2\Theta = 4 sin^2 \Theta (1 sin^2 \Theta)$
- Projected KATRIN final sensitivity (1000 days of data – reduced background)

Interplay with $0\nu\beta\beta$ experiments

Conclusion

High-quality data collected over 780 hours @25 GBg in 2019

- 2019: World Best Direct Neutrino Mass Measurement:
 - m_v < 1.1 eV (90% C.L.), <u>Phys. Rev. Lett. 123, 221802</u>

- 2020: First Results on the light sterile neutrino search, <u>Arxiv</u>
- x 10 more statistics already acquired

Bound on 3+1 active-sterile neutrino mixing from the first four-week science run of KATRIN

M. Aker,¹ K. Altenmüller,^{2,3} A. Beglarian,⁴ J. Behrens,^{5,6} A. Berlev,⁷ U. Besserer,¹ B. Bieringer,⁸ K. Blaum,⁹ F. Block,⁵ B. Bornschein,¹ L. Bornschein,⁶ M. Böttcher,⁸ T. Brunst,^{2,10} T. S. Caldwell,^{11,12} L. La Cascio,⁵ S. Chilingaryan,⁴ W. Choi,⁵ D. Díaz Barrero,¹³ K. Debowski,¹⁴ M. Deffert,⁵ M. Descher,⁵ P. J. Doe,¹⁵ O. Dragoun,¹⁶ G. Drexlin,⁵ S. Dyba,⁸ F. Edzards,^{2,10} K. Eitel,⁶ E. Ellinger,¹⁴ R. Engel,⁶ S. Enomoto,¹⁵ M. Fedkevych,⁸ A. Felden,⁶ J. A. Formaggio,¹⁸ F. M. Fränkle,⁶ G. B. Franklin,¹⁹ F. Friedel,⁵ A. Fulst,⁸ K. Gauda,⁸ W. Gil,⁶ F. Glück,⁶ R. Grössle,¹ R. Gumbsheimer,⁶ T. Höhn,⁶ V. Hannen,⁸ N. Haußmann,¹⁴ K. Helbing,¹⁴ S. Hickford,⁵ R. Hiller,⁵ D. Hillesheimer,¹ D. Hinz,⁶ T. Houdy,^{2,10} A. Huber,⁵ A. Jansen,⁶ L. Köllenberger,⁶ C. Karl,^{2,10} J. Kellerer,⁵ L. Kippenbrock,¹⁵ M. Klein,^{6,5} A. Kopmann,⁴ M. Korzeczek,⁵ A. Kovalík,¹⁶ B. Krasch,¹ H. Krause,⁶ T. Lasserre,^{3,*} T. L. Le,¹ O. Lebeda,¹⁶ N. Le Guennic,¹⁰ B. Lehnert,²⁰ A. Lokhov,^{8,7} J. M. Lopez Poyato,¹³ K. Müller,⁶ M. Machatschek,⁵ E. Malcherek,⁶ M. Mark,⁶ A. Marsteller,¹ E. L. Martin,^{11,12} C. Melzer,¹ S. Mertens,^{2,10} S. Niemes,¹ P. Oelpmann,⁸ A. Osipowicz,²¹ D. S. Parno,¹⁹ A. W. P. Poon,²⁰ F. Priester,¹ M. Röllig,¹ C. Röttele,^{1,6,5} O. Rest,⁸ R. G. H. Robertson,¹⁵ C. Rodenbeck,⁸ M. Ryšavý,¹⁶ R. Sack,⁸ A. Saenz,²² A. Schaller (née Pollithy),^{2,10} P. Schäfer,¹ L. Schimpf,⁵ M. Schlösser,¹ K. Schlösser,⁶ L. Schlüter,^{2,10} M. Schrank,⁶ B. Schulz²² M. Šefčík¹⁶ H. Seitz-Moskaliuk⁵ V. Sibille¹⁸ D. Siegmann^{2,10} M. Slezák^{2,10} F. Spanier⁶ M. Steidl⁶ M. Sturm,¹ M. Sun,¹⁵ H. H. Telle,¹³ T. Thümmler,⁶ L. A. Thorne,¹⁹ N. Titov,⁷ I. Tkachev,⁷ N. Trost,⁶ D. Vénos,¹⁶ K. Valerius,⁶ A. P. Vizcaya Hernández,¹⁹ S. Wüstling,⁴ M. Weber,⁴ C. Weinheimer,⁸ C. Weiss,²³ S. Welte,¹ J. Wendel,¹ J. F. Wilkerson,^{11,12} J. Wolf,⁵ W. Xu,¹⁸ Y.-R. Yen,¹⁹ S. Zadoroghny,⁷ and G. Zeller¹ (KATRIN Collaboration) ¹Tritium Laboratory Karlsruhe (TLK), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany ² Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany ³IRFU (DPhP & APC), CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France ⁴Institute for Data Processing and Electronics (IPE). Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany Institute of Experimental Particle Physics (ETP), Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Str. 1, 76131 Karlsruhe, Germany ⁶Institute for Astroparticle Physics (IAP), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany ⁷Institute for Nuclear Research of Russian Academy of Sciences, 60th October Anniversary Prospect 7a, 117312 Moscow, Russia ⁸ Institut f
ür Kernphysik, Westf
älische Wilhelms-Universit
ät M
ünster, Wilhelm-Klemm-Str. 9, 48149 M
ünster, Germany ⁹Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany ¹⁰Max-Planck-Institut f
ür Physik, Föhringer Ring 6, 80805 M
ünchen, Germany ¹¹Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599, USA ¹²Triangle Universities Nuclear Laboratory, Durham, NC 27708, USA ¹³ Departamento de Química Física Aplicada, Universidad Autonoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain ¹⁴Department of Physics, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstr. 20, 42119 Wuppertal, Germany ¹⁵Center for Experimental Nuclear Physics and Astrophysics, and Dept. of Physics, University of Washington, Seattle, WA 98195, USA ¹⁶Nuclear Physics Institute of the CAS, v. v. i., CZ-250 68 Řež, Czech Republic ¹⁷Institute for Technical Physics (ITEP), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany ¹⁸Laboratory for Nuclear Science, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA ¹⁹Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA ²⁰Institute for Nuclear and Particle Astrophysics and Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA ²¹University of Applied Sciences (HFD) Fulda, Leipziger Str. 123, 36037 Fulda, Germany ²²Institut für Physik, Humboldt-Universität zu Berlin, Newtonstr. 15, 12489 Berlin, German ²³Project, Process, and Quality Management (PPQ), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany (Dated: November 11, 2020)

> We report on the light sterile neutrino search from the first four-week science run of the KATRIN experiment in 2019. Beta-decay electrons from a high-purity gaseous molecular tritium source are analyzed by a high-resolution MAC-E filter down to 40 eV below the endpoint at 18.57 keV. We consider the framework with three active neutrinos and one sterile neutrino of mass m_4 . The analysis is sensitive to a fourth mass state $m_4^2 \lesssim 1000 \text{ eV}^2$ and to active-to-sterile neutrino mixing

Thanks for your attention