

CdWO₄ scintillating bolometers to search for 0*νββ* decay of ¹¹⁶Cd

> GDR Neutrino online meeting 23-24/11/2020 Dounia Helis

Outline

- Neutrinoless double beta decay and ¹¹⁶Cd
- Tests of ¹¹⁶CdWO₄ as scintillating bolometers
- Performances of ¹¹⁶CdWO₄ at LSM and LSC
- $0\nu\beta\beta$ sensitivity with ¹¹⁶CdWO₄ at LSM
- Low energy threshold CdWO₄ scintillating bolometer
- Conclusion and prospect

Neutrinoless double beta decay in a nutshell

¹¹⁶Cd brief ID as a 0νββ decay candidate

- ★ Q value of the decay 2813.5 keV
- ★ Isotopic abundance I.A. = 7. 5 %
- ★ Possibility of enrichment with centrifugal method
- ★ It is possible to embed ¹¹⁶Cd in CdWO₄ crystals which are well known scintillators

State of art of ¹¹⁶Cd 0νββ experiments

Experiment	Detection technology	Limit on T _{1/2} at 90% CL
Solotvina at Solotvina underground lab in Ukraine	enriched ¹¹⁶ CdWO ₄ (~83%) crystal scintillators	1.7 x 10 ²³ years https://doi.org/10.1103/PhysRevC.68.0355 01
NEMO-3 at LSM in France	¹¹⁶ Cd foils (~93%) with tracking calorimetric technology	1.0 x 10 ²³ years https://doi.org/10.1103/PhysRevD.95.0120 07
Aurora at LNGS in Italy	enriched ¹¹⁶ CdWO ₄ (~82%) crystal scintillators at room temperature	2.2 x 10 ²³ years https://doi.org/10.1103/PhysRevD.98.0920 07

The Aurora experiment used two $^{116}CdWO_4$ crystals (total mass 1.162 kg) as scintillation detectors.

We used the two crystals from Aurora as cryogenic scintillating bolometers. The sample $^{116}CdWO_4$ No. 1 was installed in the EDELWEISS cryostat and $^{116}CdWO_4$ No. 2 was installed in the CROSS cryostat.

Scintillating bolometers

thermal sensor: **Neutron Transmutation Doped Ge (NTD-Ge)**

¹¹⁶CdWO₄ scintillating bolometers

Motivation

First bolometric test of **34 g** ¹¹⁶**CdWO**₄ above ground at IJCLab (ex CSNSM) in 2016

Performances of ¹¹⁶CdWO₄ scint. bolometers

Performances of ¹¹⁶CdWO₄ scint. bolometers

Performances of ¹¹⁶CdWO₄ scint. bolometers

Radiopurity of ¹¹⁶CdWO₄ crystal

0vββ sensitivity with ¹¹⁶CdWO₄ at LSM

- Data production and analysis finalization is on going
- Total expected exposure ~ 0.36 kg.y (March 2019 to July 2020)
- No event in the ROI (142 days)

Low energy threshold CdWO₄ scintillating bolometer

- $g_A can be quenched =>$ the sensitivity to $0\nu\beta\beta$ decay will change
- How to measure the g_A^{eff}? in the spectral shape of highly forbidden beta decays
- The Spectral Shape Method: different values of g_A give different spectral shapes.

https://doi.org/10.1103/PhysRevC.95.024327 Investigation of the four-fold forbidden β decay in ¹¹³Cd. This decay is not masked by other lower order of forbiddenness or allowed beta decays

$$(T_{1/2}^{0\nu})^{-1} = G^{0\iota}g_A^4 |M^{0\nu}|^2 < m_{\beta\beta} >^2$$

12

We are using a natural CdWO₄ crystal (12.5% of ¹¹³Cd) as a scintillating bolometer at LSC to perform a measurement of g_{Δ}

Low energy threshold CdWO₄ scintillating bolometer

Low energy threshold CdWO₄ scintillating bolometer

Conclusions and prospects

- Two massive enriched ¹¹⁶CdWO₄ crystals (~ 0.6 kg each) were operated successfully as scintillating bolometers for the first time
- The twin scintillating bolometers were installed at LSM and LSC underground laboratories
- The detectors showed very good performances in both underground laboratories in terms of energy resolution (9-16 keV FWHM at 2.6 MeV), PID (~ 20 σ) and high radiopurity
- A competitive limit on the 0vββ of decay ¹¹⁶Cd could be set with only 1.3 kg.yr of exposure (to be compared with 4.68 kg.yr with scintillating counters)
- A background model is under study and development for the natural CdWO₄ to extract the effective value of g_A

Back-up slides

¹¹⁶CdWO₄ scint. bolometers in underground laboratories SC Commissioning in April 2019 The final setup is not finished ¹¹⁶CdWO₄ No. 1 yet (complete lead shielding, radon box, muon veto,...) 1st layer ¹¹⁶CdWO₄ No. 2 2nd layer

Massive ¹¹⁶CdWO₄ scintillating bolometers in underground laboratories

LSM, France	LSC, Spain
¹¹⁶ CdWO₄ No.1	¹¹⁶ CdWO₄ No.2
Ø45x47 mm	∅45x47 mm
~ 580 g	~ 582 g
Ge LD	Ge LD
Ø44x0.17 mm	∅44x0.17 mm
SiO	SiO
EDELWEISS suspended tower 03/2019 to 07/2020 20.7-22 mK	CROSS No suspension 04-07/2020 Suspended tower 12/2019 to 04/2020 10-18 mK
Complete shielding	Not completed shielding
anti-radon system	no anti-radon system
muon veto	no muon veto

Trigger efficiency measurement

- Inject synthetic event, based on an average pulse of physical event scaled to a given energy, in the stream data
- 2. Process and analyse the data with the synthetic pulses as physical data
- 3. Subtract the data with synthetic event from the physical data
- 4. Compute the integral of each peak that corresponds to the injected events

This work is done on the light and on the heat channel

Radiopurity of ¹¹⁶CdWO₄ crystal

