HNLs and their relation to the Active Neutrino Sector

Jacobo López-Pavón

GDR Neutrino meeting 2020

24 November 2020

• If we add heavy fermion singlets (HNL or N_R) to the SM field content, the most general lagrangian compatible with the SM gauge symmetries is

$$\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{K} - \frac{1}{2} \overline{N_{i}^{c}} M_{ij} N_{j} - Y_{i\alpha} \overline{N_{i}} \widetilde{H}^{\dagger} L_{\alpha} + h.c.$$

Minkowski 77; Gell-Mann, Ramond, Slansky 79 Yanagida 79; Mohapatra, Senjanovic 80.

• If we add heavy fermion singlets (HNL or N_R) to the SM field content, the most general lagrangian compatible with the SM gauge symmetries is

$$\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{K} - \begin{bmatrix} \frac{1}{2} \overline{N_{i}^{c}} M_{ij} N_{j} \\ \mathbf{N}_{ij} N_{j} \end{bmatrix} - Y_{i\alpha} \overline{N_{i}} \widetilde{H}^{\dagger} L_{\alpha} + h.c.$$
New
Physics
Scale
Lepton
Number
Violation

• If we add heavy fermion singlets (HNL or N_R) to the SM field content, the most general lagrangian compatible with the SM gauge symmetries is

$$\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{K} - \left[\frac{1}{2}\overline{N_{i}^{c}}M_{ij}N_{j}\right] - Y_{i\alpha}\overline{N_{i}}\widetilde{H}^{\dagger}L_{\alpha} + h.c.$$

$$\begin{array}{c} 0\nu\beta\beta \\ \text{decay!} \\ \text{New} \\ \text{Physics} \\ \text{Scale} \\ \end{array} \right]$$

$$\begin{array}{c} \text{Lepton} \\ \text{Number} \\ \text{Violation} \\ \end{array}$$

• If we add heavy fermion singlets (HNL or N_R) to the SM field content, the most general lagrangian compatible with the SM gauge symmetries is

$$\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{K} - \left[\frac{1}{2}\overline{N_{i}^{c}}M_{ij}N_{j}\right] - Y_{i\alpha}\overline{N_{i}}\widetilde{H}^{\dagger}L_{\alpha} + h.c.$$

$$\begin{array}{c} 0\nu\beta\beta\\ decay!\\ New\\ Physics\\ Scale\\ Scale\\ Fukujita, Yanagida 1986\\ \end{array}$$

• If we add heavy fermion singlets (HNL or N_R) to the SM field content, the most general lagrangian compatible with the SM gauge symmetries is

$$\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{K} - \frac{1}{2} \overline{N_{i}^{c}} M_{ij} N_{j} - Y_{i\alpha} \overline{N_{i}} \widetilde{H}^{\dagger} L_{\alpha} + h.c.$$

Introducing HNL automatically generates
 a contribution to light neutrino masses

$$m_{\nu} = -\frac{v^2}{2} Y^T M^{-1} Y$$

Type-I Seesaw Model

Minkowski 77; Gell-Mann, Ramond, Slansky 79 Yanagida 79; Mohapatra, Senjanovic 80.

Relation betwen HNLs and active sector

Constraint on HNL mixing from active sector

Light-active Sector

What we know ... $U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$ Interference/Reactor Solar sector Atmospheric sector $\sin^2 \theta_{23} = \frac{0.570^{+0.018}_{-0.024}}{0.575^{+0.017}_{-0.021}}$ $\sin^2 \theta_{12} = 0.304^{+0.013}_{-0.012}$ $\Delta m_{21}^2 = (7.42^{+0.21}_{-0.20}) \times 10^{-5} \text{eV}$ $\Delta m_{3l}^2 = \frac{+2.514^{+0.028}_{-0.027}}{-2.497^{+0.028}_{-0.028}} \times 10^{-3} \text{eV}$ $\sin^2 \theta_{13} = \frac{0.02221^{+0.00068}_{-0.00062}}{0.02240^{+0.00062}_{-0.00062}}$

Esteban, Gonzalez-Garcia, Maltoni, Schwetz, Zhou 2007.14792 http://www.nu-fit.org/

[See talk by Albert Zhou]

(1σ**)**

What we don't know ...

[See talks by Ruben Saakyan, Denys Poda & Christophe Wiesinger]

• Outstanding complementarity among neutrino oscillations, $0\nu\beta\beta$ decay and cosmology.

• Extremely relevant input in order to probe New Physics models responsible for ν mass generation.

Capozzi, Di Valentino, Lisi, Marrone, Melchiorri, Palazzo 1703.0447

• Outstanding complementarity among neutrino oscillations, $0\nu\beta\beta$ decay and cosmology.

• Extremely relevant input in order to probe New Physics models responsible for ν mass generation.

Neutrinoless double beta decay signal?

• Outstanding complementarity among neutrino oscillations, $0\nu\beta\beta$ decay and cosmology.

• Extremely relevant input in order to probe New Physics models responsible for ν mass generation.

Posibilities:

- **Dominated by New Physics** as HNL contribution

- **Cosmological bound could be relaxed**. For instance, if neutrinos decay (new interactions required) Escudero, JLP, Rius, Sandner 2007.04994

• Outstanding complementarity among neutrino oscillations, $0\nu\beta\beta$ decay and cosmology.

• Extremely relevant input in order to probe New Physics models responsible for ν mass generation.

Connection to HNL sector

$$m_{\beta\beta} = \sum_{i=light} U_{ei}^2 m_i$$

Cosmology: HNLs scale vs Mlightest

• $m_{lightest} \ge \mathcal{O}\left(10^{-3} eV\right)$: the three HNLs thermalize.

Allowed HNL spectra

Hernandez, Kekic, JLP 2014

Allowed HNL spectra

Hernandez, Kekic, JLP 2014

Interplay with neutrinoless double beta decay

Hernandez, Kekic, JLP 2014

Interplay with neutrinoless double beta decay

Good News:

Ibarra, Molinaro, Petcov 2010 Mitra, Senjanovic, Vissani 2011

- Sizable HNL contribution posible for $\ 100 \, MeV \lesssim M \lesssim 1 \, TeV$

Not so Good News: Constraint from active sector

- For $M\gtrsim 5\,GeV$ one-loop corrections to the light neutrino masses become very large.
- Fine tuned cancellation between the tree level and 1-loop correction required.

JLP, Pascoli, Wang 2012 JLP, Molinaro, Petcov 2015 Bolton, Deppisch, Dev 2020

Direct searches of HNLs

Caputo, Hernandez, JLP, Salvado arXiv:1704.08721

• For instance, SHiP and FCC-ee can measure HNLs parameters:

 $M_1, M_2, |\theta_{ei}|, |\theta_{\mu i}|$ Sensitivity to PMNS CP-phases! δ, ϕ_1 • $|\theta_{e1}|^2 / |\theta_{\mu 1}|^2 \simeq |\theta_{e2}|^2 / |\theta_{\mu 2}|^2 \simeq$ $\frac{(1+s_{\phi_1}\sin 2\theta_{12})(1-\theta_{13}^2)+\frac{1}{2}r^2s_{12}(c_{12}s_{\phi_1}+s_{12})}{\left(1-\sin 2\theta_{12}s_{\phi_1}\left(1+\frac{r^2}{4}\right)+\frac{r^2c_{12}^2}{2}\right)c_{23}^2+\theta_{13}(c_{\phi_1}s_{\delta}-\cos 2\theta_{12}s_{\phi_1}c_{\delta})\sin 2\theta_{23}+\theta_{13}^2(1+\sin 2\theta_{12})s_{23}^2s_{\phi_1}}$ • $| heta_{ei}|^2, | heta_{\mu i}|^2 \propto e^{2\gamma}$ parametrizes size of R_{ii} (and thus heavy mixing)

5σ discovery PMNS CP-violation

Caputo, Hernandez, Kekic, JLP, Salvado arXiv:1611.05000

Input from active sector to leptogenesis

How relevant are the PMNS CP phases?

• The Baryon asymmetry generated depends on both light and heavy CP phases.

Light Sector Heavy Sector

$$Y = \frac{U_{PMNS}\sqrt{m}R^{\dagger}\sqrt{M}\frac{\sqrt{2}}{v}$$
 Casas-Ibarra

• The Dirac CP phase becomes particularly relevant mainly in two cases:

See for instance: Merlo, Rosauro-Alcaraz 1801.03937 Hagedorn, Mohapatra Molinaro Nishi, Petcov 1711.02866 Yukawa structure (R matrix) is constrained by flavor symmetries

Minimal model with 2 NR Small number of phases: 1 Dirac + 1 Majorana + 1 Heavy

Asaka, Shaposnikov (AS) Akhmedov, Rubakov, Smirnov (ARS)

High Scale (vanilla) Leptogeneis (N_R=3

Moffat, Pascoli, Petcov, Turner 1809.08251

No CP-violation from HNL sector

Hernandez, Kekic, JLP, Racker, Salvado 1606.06719

Hernandez, Kekic, JLP, Racker, Salvado 1606.06719

Conclusions

HNL relation to active neutrino sector present if HNL account for light neutrino massess (as in seesaw models)

- Complementarity among different observables as neutrino oscillations, cosmology, neutrinoless double beta decay and HNLs direct searches.
- Strongest constraints from active neutrino sector in minimal models.
- Constraints still present but can change when introducing new interactions. See for instance: Nemevsek, Senjanovic, Tello 1211.2837 [Minimal Left-Right model] Ballett, Hostert, Pascoli 1903.07590 [U(1)' extension]
- Low scale Minimal (Type-I) Seesaw Model is strongly constrained by active neutrino sector:
- Very constrained flavor structure with strong correlation to PMNS CP phases.

- Mechanisms generating neutrino masses and Baryon asymmetry can be potentially tested. Very relevant input from active neutrino sector required.

Thank you!

Standard Leptogenesis

Low Scale Leptogenesis (ARS)

Are the PMNS CP phases relevant?

• Dependence on CP phases encoded in the Yukawa couplings:

Direct searches of HNLs $\begin{array}{ccc}
 W & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 &$ $Z \sim \theta$

• Direct detection requires:

$$\theta \gg \sqrt{m/M} \iff R_{ij} \gg 1$$

• Phenomenological constraint automatically satisfied in inverse and direct seesaw realizations based on a symmetry protected scenario.

Mohapatra 1986; Mohapatra, Valle 1986; Bernabeu, Santamaria, Vidal, Mendez, Valle 1987; Malinsky, Romao, Valle 2005...

 $M_1(\text{GeV})$

Inverted light neutrino ordering

Hernandez, Kekic, JLP, Racker, Salvado 1606.06719

Inverted light neutrino ordering (IH)

Hernandez, Kekic, JLP, Racker, Salvado 1606.06719

Approximated LNC

$$M_{\nu} = \begin{pmatrix} 0 & Y_1^T v / \sqrt{2} & \epsilon Y_2^T v / \sqrt{2} \\ Y_1 v / \sqrt{2} & \mu' & \Lambda \\ \epsilon Y_2 v / \sqrt{2} & \Lambda & \mu \end{pmatrix}$$

Mohapatra, Valle 1986; Bernabeu, Santamaria, Vidal, Mendez, Valle 1987; Malinsky, Romao, Valle 2005...

Light nu masses suppressed with LNV parameters

$$m_{\nu} = \mu \frac{v^2}{2\Lambda^2} Y_1^T Y_1 + \frac{v^2}{2\Lambda} \epsilon Y_2^T Y_1 + \frac{v^2}{2\Lambda} Y_1^T \epsilon Y_2$$

• Quasi-Dirac heavy neutrinos:

$$M_2 \approx M_1 \approx \Lambda \qquad \Delta M \approx \mu' + \mu$$

Approximated LNC

Neutrinoless Double Beta Decay

Model Independent Approach: EFT

 The leading NP effects are encoded in effective d=5 operators that can be constructed in a gauge invariant way with the SM fields and the Nj

$$\mathcal{O}_{W} = \sum_{\alpha,\beta} \frac{(\alpha_{W})_{\alpha\beta}}{\Lambda} \overline{L}_{\alpha} \tilde{\Phi} \Phi^{\dagger} L_{\beta}^{c} + h.c.,$$
$$\mathcal{O}_{N\Phi} = \sum_{i,j} \frac{(\alpha_{N\Phi})_{ij}}{\Lambda} \overline{N}_{i} N_{j}^{c} \Phi^{\dagger} \Phi + h.c.,$$
$$\mathcal{O}_{NB} = \sum_{i \neq j} \frac{(\alpha_{NB})_{ij}}{\Lambda} \overline{N}_{i} \sigma_{\mu\nu} N_{j}^{c} B_{\mu\nu} + h.c.$$

Graesser 2007; del Aguila, Bar-Shalom, Soni, Wudka 2009; Aparici, Kim, Santamaria, Wudka 2009.

