Event reconstruction for KM3NeT/ORCA using convolutional neural networks

Stefan Reck, GDR meeting, 24.11.2020

 This talk is based on the paper published in JINST: <u>https://arxiv.org/abs/2004.08254</u>
by primary authors Michael Moser and Thomas Eberl

→ First application of a deep convolutional network in water-Cherenkov detector

KM3NeT/ORCA: a neutrino detector

ORCA: a deep sea neutrino detector

Aim: measure atmospheric neutrinos with energies from 1-100 GeV

ERLANGEN CENTRE FOR ASTROPARTICLE PHYSICS

Neutrino interactions

 $v_e - CC$ $v_\mu - CC$ $v_\tau - CC$ v - NC

Neutrino interactions

shower-like

track-like

shower-like (83%) track-like (17%)

shower-like

Event topologies

Reconstruction of neutrinos from low-level detector data

- 1. Discriminate *background* from neutrinos
- 2. Classify neutrino events into *track* and *shower*-like events
- 3. Reconstruct neutrino properties like *energy* and *direction*

This work:

Perform this based on so-called *deep learning* techniques.

Reconstruction of neutrinos from low-level detector data

- 1. Discriminate *background* from neutrinos
- 2. Classify neutrino events into *track* and *shower*-like events
- 3. Reconstruct neutrino properties like *energy* and *direction*

This work:

Perform this based on so-called *deep learning* techniques.

Event topology classification

- How to distinguish tracks and showers?
 - → Classical way: come up with characteristic features, e.g. Sphericity

Event topology classification

- Hand features to a machine learning based classifier
- Standard ORCA background classifier uses a Random Forest (RF) to combine the features
- Machine learning algorithm is "trained" with simulations
- Problem: feature design is not easy and maybe we missed some good features?

Deep Learning in ORCA

- Solution: let an algorithm learn the features by itself based on simulations of low-level detector data
- Possible with recently emerging machine learning algorithms like deep neural networks, also called *deep learning* techniques

• How can we apply deep learning methods to ORCA data?

Successful model architecture in image recognition: Convolutional neural networks (CNNs)

Source: https://www.mathworks.com/solutions/deep-learning/convolutional-neural-network/_jcr_content/mainParsys/band_copy_copy __14735_1026954091/mainParsys/columns_1606542234_c/2/image.adapt.full.high.jpg/1575485682772.jpg

Deep Learning in ORCA

• ORCA data can be interpreted to be 5D (XYZ, T, 31 PMT channels)

Most Deep Learning frameworks, like Google's Tensorflow, only support 4D input (colored videos)

• CNN expects image-like, pixelated input

Bin XYZT dimensions to get pixelated event images

ORCA event images

• Spatial binning (XYZ): 1 DOM / 3D pixel

ORCA event images

- Time binning:
 - \succ 100 bins \rightarrow ~ 9.5ns / bin
 - Number of bins limited by computational cost

XY & XT projection of the 4D XYZT "image" for an 80 GeV ν_{μ} - CC event

ORCA event images

- How to use convolutions on our 5D XYZT-P input?
 - → Supply network with two 4D projections

Event topology classification

• Network output: Probability of event being a track

 Separability between track and shower

Neural network (this work) VS random forest (standard method)

PHYSICS

direction reconstruction

Regression results – direction

- Also predicts the standard deviation of any regression variable
- Done by adding a second dense network at the end

Regression results – direction

• CNN reco is comparable to classical likelihood based reco

Regression results – direction

• can do cuts using network's error estimation

OrcaNet: Track like ($v_{\mu} - CC$), 100% of total events

OrcaNet: Track like ($v_{\mu} - CC$), 80% of total events

OrcaNet: Track like ($v_{\mu} - CC$), 50% of total events

OrcaNet: Track like ($v_{\mu} - CC$), 20% of total events

Summary

Background classification

significant improvement on rejection of atmospheric muons, same performance for random noise

Track-shower classification

significant improvement on the classification accuracy

• <u>Regression of energy, direction and neutrino interaction point</u>

- Significant improvement for the energy reconstruction of tracklike events
- Competitive performance for other variables
- error estimation for each reconstruction

backup

- Network needs to be trained in order to distinguish the background
 - 43 Mio. simulated events used for the training
 - Consists of neutrinos, atmospheric muons, random noise events
 - CNN architecture with 10 layers
 - 3 million free parameters
 - Trained for about 1.5 weeks

background rejection

ORCA backgrounds

- Two types of backgrounds producing photons in the deep sea:
 - 1. Atmospheric muons passing the detector from above
 - 2. Random noise, by K-40 beta decays and bioluminescent animals

Background separation performance

- Output of the CNN on never-before-seen test data
- Reject backgrounds by cutting on the predicted neutrino probability

Background separation performance

Assuming an oscillated neutrino and atmospheric muon flux

energy reconstruction

Deep Learning

standard reco

OrcaNet shower energy reco is comparable to max. Ikl. based reco

Regression results – shower energy

36

ERLANGEN CENTRE FOR ASTROPARTICLE PHYSICS

CNN energy reco is comparable to standard reco

ERLANGEN CENTRE **Regression results – shower energy** FOR ASTROPARTICLE PHYSICS

