First results of the R2D2 Project A Spherical Gaseous TPC R&D

V. Cecchini

on behalf of the R2D2 collaboration

Université de Bordeaux, CENBG, CNRS/IN2P3 Subatech, IMT-Atlantique, Université de Nantes.

GDR Neutrino - 24/11/2020

Motivations

- A full simulation (*JINST 13 (2018) no.01, P01009*) shows that by using an extremely low background Spherical High-Pressure Gaseous TPC, we could reach a competitive sensitivity.
- Experimentally, founding evidence of $\beta\beta$ 0 ν requires at least three main features:
 - Excellent energy resolution;
 - Extremely low radioactive background;
 - **③** High masses of $\beta\beta$ emitter medium.
 - 2-tracks recognition can be an important additional asset.
- **R2D2** *Rare Decays with Radial Detector* : R&D project to evaluate the feasibility of a ton scale detector with **ultimate low background**.

Detector's principles

Main advantages

- Simplicity of readout: one channel (or few with sensor upgrade) + light readout.
- Simplicity of mechanical structure ⇒
 Low material budget ⇒ Low
 background.
- Scalable to large isotope masses (1 ton = 1m radius at 40bars).
- Low detection threshold (single electron).
- Two tracks recognition.
- High energy resolution (1% FWHM expected at $^{136}Xe \ Q_{\beta\beta} = 2.458 MeV$).

Spherical, High pressure, Xenon TPC (also used in NEWS-G).

R2D2 Roadmap

Prototype 1 Demonstrate the detector capabilities¹ with a focus on **energy resolution**, no radio-purity \rightarrow Up to 10 kg (40 bars) Xenon prototype.

* Funded by IN2P3 and Bordeaux University Idex (elctronics Grant OWEN)and Running

Prototype 2 Demonstrate the almost zero background \rightarrow 50kg of Xenon in radio-pure detector using Liquid Scintillator as veto; possibly first measurements with limits on $m_{\beta\beta} < 160 - 330 meV$:

* Sensitivity studies² carried out

Experiment Cover the Inverse Hierarchy $m_{\beta\beta} < 10 \text{ meV}$:

- $\longrightarrow\,$ Go to 1 ton of Xenon with background free detector.
- \rightarrow Investigate other gases (background cross-check; higher $Q_{\beta\beta}$; explore the tracking abilities).

¹ArXiv:2007.02570

JINST 13 (2018) no.01, P01009

V. Cecchini

The collaboration

R2D2 is **approved as IN2P3 R&D** since 2018 to assess the possibility to reach the required energy resolution.

A Proto Collaboration

R. Bouet^a, J. Busto^b, V. Cecchini^{a,f}, C. Cerna^a,
A. Dastgheibi-Fard^c, F. Druillole^a, C. Jollet^a, P. Hellmuth^a,
I. Katsioulas^d, P. Knights^{d.e}, I. Giomataris^e, M. Gros^e,
P. Lautridou^f, A. Meregaglia^a, X. F. Navick^e, T. Neep^d,
K. Nikolopoulos^d, F. Perrot^a, F. Piquemal^a, M. Roche^a,
B. Thomas^a, R. Ward^d, and M. Zampaolo^c
^aCENBG, Université de Bordeaux, CNRS/IN2P3, F-33175
Gradignan, France
^bCPPM, Université d'Aix-Marseille, CNRS/IN2P3, F-13288
Marseille, France
^cLSM, CNRS/IN2P3, Université Grenoble-Alpes, Modane,
France
^dSchool of Physics and Astronomy, University of

Birmingham, B15 2TT, United Kingdom

^eIRFU, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France

^fSUBATECH, IMT-Atlantique, Université de Nantes, CNRS-IN2P3, France

There are close synergies with the NEWS-G experiment.

Design

- It aims to demonstrate that the desired energy resolution is achievable.
- Prototype built in aluminum (radio-purity not required at this stage).
- Improvement of noise:
 - Vibration reduction
 - Controlled temperature and environment
 - Low noise custom electronics (OWEN project³)

³https://r2d2.in2p3.fr/owen.html

Operation

- ²¹⁰*Po* source of 5.3 MeV α allows to study gas and signal behaviours.
- Argon P2 (98% Ar, 2%CH₄) used in the early stage of the experiment (like Xe, Ar is an inert gas, it emits scintillation light, it has a similar ionization threshold).
- Different pressures tested (various track length): mainly 200 and 1100 mbars.
- In sealed mode: short runs (30min) to avoid contamination effects.
 Purification technology mature^{4,5} for longer runs.

⁴ V Álvarez et al, JINST 7 (2012) T06001

⁵ Chen et al, Science China Physics, Mechanics & Astronomy 60 (2017) no.6, P061011

Stability

In gaseous detectors, energy **response could vary** according to:

- Temperature (\rightarrow pressure, electronics)
- Gas electronegative impurities
- Control the electronics response: use a generator signal in input to test the electronic.
 - \rightarrow Correct the source signal.
- evaluate signal variations due to gas: -0.05%/h.
 → Allow offline corrections for several weeks data taking .

Signal variation (%) over 14 days.

Waveform analyses

For very high precision measurements, we compute **variables from integrator and deconvoluted** signals.

The shape of the deconvoluted signal contain the event history.

- $\bullet\,$ Charge observables (linked to energy): Qt compares to Ct \to accuracy of deconvolution
- Temporal observables linked to anode distance and track length: Dt (signal width neglecting ion tail) and Dh $\rightarrow \alpha$ angular direction
- Pt: direction of the track (toward anode \Rightarrow small Pt)

V. Cecchini

Simulation Tools

Based on

- Finite Elements Software: Ansys¹ or Gmsh²+Elmer³
- Geant4⁴: simulation of primary interaction
- Garfield++⁵: simulation of gas, electrons transport and charge collection.

Main Garfield++ classes.

Simulation outcomes

The observables combination are closely linked to the **event topology**, **resulting in specific patterns**, *e.g.* 3 regions in the following plots:

- Tracks toward the anode.
- Iracks at larger angles but contained in gas.
- Solution Tracks hitting the cathode (loosing energy in it).

Data

Simulation

 $\rightarrow\,$ Allow a good understanding of the data (e.g. the α track direction).

 $\rightarrow\,$ Cross-check with data: good agreement.

V. Cecchini

Resolution - Track length effects

Explore response at **200mbar (720V) and 1100mbar (2000V)** at the same gain level, with a main difference:

 \rightarrow The α track length (~20cm vs ~4cm respectively)

 \Rightarrow Track length and pressure do not (strongly) affect the energy resolution

N.B.: The contribution of the source and the electronic are estimated to account for ${\sim}0.6\%$

Resolution - Direction effects

Cuts for angle selection from simulation.

Dt cuts corresponding to angular direction selection.

⇒ Track direction doesn't affect energy resolution.

Results

Next steps

- Onfirm the result in different conditions:
 - Using $\textbf{Xenon} \rightarrow \text{Recuperation system under construction}$
 - Ionization by **electrons** \rightarrow Need at least 10bars to contain electrons track
 - At **higher pressure** \rightarrow Detector certified for high pressure is being installed
 - Using a **diffuse source** \rightarrow Need to find a Radon source clean from electronegative impurities.
- Read the scintillation light to get precise timestamp (promising test are ongoing).
- 3 Electronics developments are ongoing.
- Upgrade sensor from single anode one to a multi-anode one (ACHINOS⁶ project).

First result of light readout.

⁶ JINST 12 (2017) no.12, P12031

Conclusions

- A good understanding of detector was achieved, demonstrated by a **simulation in agreement with data**.
- 1.1% energy resolution have been reached in Argon with 5.3MeV α .
- Neither track length nor direction affect the energy resolution.

Improved performances still expected:

- $\rightarrow\,$ Sensor updates and light readout could improve performances.
- \rightarrow Results have to be confirmed in Xenon.
- \Rightarrow Expect to build prototype with features adapted to physics measurements (depending on results).

BACKUP

Backup

ACHINOS

Multi-anode sensor "ACHINOS" design