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The Diffuse Supernova Neutrino Background

Neutrino flux from all distant core-collapse supernovae

2-3 galactic supernovae/century
1 SN/s in the observable Universe
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o Aggregate properties of core-collapse supernovae
o All flavors of neutrinos, redshifted

o Elusive low energy signal
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o Aggregate properties of core-collapse supernovae
o All flavors of neutrinos, redshifted

@ Elusive low energy signal
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Super-Kamiokande in a nutshell
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Mountain 3 :
2700 m.w.e. Kamioka Mine, Japan

50 kton Water Cherenkov detector
Water constantly recirculated and purified ‘

11129 Inner Detector PMTs
50 cm, 3 ns resolution

Energy coverage
4 MeV to ~TeV

Currently in phase VI, doping with
Gadolinium completed this summer

Current study: phase IV
longest data-taking period (2008-2017)
2790.1 live days
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The DSNB in Super-Kamiokande

Detecting antineutrinos via Inverse Beta Decay (IBD)

\ Most modern
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[Beacom and Vagins, Phys. Rev. Lett., 93:171101, 2004]
@ 5-20 events/year — Energy range 12-80 MeV
@ Need to characterize spallation and atmospheric backgrounds and identify

the neutrons
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The DSNB in Super-Kamiokande
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The three pillars of the DSNB analysis

After basic noise reduction cuts:
| - Spallation cuts

@ Remove radioactive isotopes produced by cosmic muons
Il - Atmospheric background reduction/characterization

@ Remove atmospheric signals with pions/muons/gammas

o Estimate spectral shapes of low energy atmospheric neutrinos
Il - Neutron tagging

@ Possible only since SK-IV

@ ldentify neutron capture signal in water
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Spallation backgrounds

Radioactivity induced by cosmic muon spallation in water

One spallation muon every two minutes
Needs to be reduced by O(10%)

Main signatures

>99% B decays: A — et 4+ v
< 1% IBD-like (°Li): A —» e* 4+ n

eutron capture: € ! 1
neutron copt J Isotopes’ half-lives up to 13 s

= correlations over large time scales
No existing simulation in WC detectors

[FLUKA simulation, A. Coffani]

Reduction strategy:
o ldentify isotope clusters and neutrons from muon showers
@ Investigate correlations between muons and candidate events
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Spallation: hunting for correlations

Pair each candidate event with muons up to 30 s before
Investigate correlations using a likelihood analysis
Observables Extracting distributions

relic candidate
muons muons
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Muon track
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@ At, Ly, L;: distance and time difference —
0 1000 2000 3000 4000 5000
@ resQ: charge deposited by the muon in addition £ (cm)

to minimum ionization

Final performance: > 90% background rejection (> 99% on “Li)

40-90% signal efficiency (depending on reconstructed energy) .



Evaluating and reducing atmospheric neutrinos

Interaction types
Neutral Current (NC)

Light patterns in SK
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Estimating normalization and spectral shapes:

@ O(100%) uncertainties on rates and spectral shapes below 100 MeV except
for decay electrons (measured Michel spectrum from stopping muons).

@ Strategies: Use T2K to estimate cross-sections and efficiencies (NC

backgrounds), or use sidebands in energy and Cherenkov angle.
[Y. Ashida, Ph D. thesis (2019)]
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Selecting neutrons: a needle in a haystack

Neutron capture occurs near the positron vertex
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@ New in SK-IV: “AFT" trigger window after the positron window
@ Sensitivity to dark noise: inject random trigger data into MC simulation

(SKDetSim — GEANT3) for cut optimization.

@ Preselection: define candidate neutron peaks with Nig > 5
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Selecting neutrons: final step

Use a Boosted Decision Tree (BDT) to tag neutron candidates.

o Neutron tagging performance

Very preliminary
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e Final performance: 0.2% — 3% background acceptance
18% — 30% signal efficiency.

@ Expect x4 performance enhancement after Gadolinium doping.
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Analysis procedures

Supernova model-independent analysis
@ Low energy analysis: 12 — 30 MeV reconstructed positron energy
@ Atmospheric CC: estimate by fitting Michel spectrum in 30 — 50 MeV
@ Atmospheric NC: estimate using T2K data = define 3 large energy bins
50% uncertainties for NC backgrounds — 30% uncertainties for CC
@ Bin-by-bin cut optimization and limit calculation
Spectral analysis
o Fit observed energy spectrum by DSNB + atmospheric spectra
@ Need to eliminate spallation + solar backgrounds
= 16 — 80 MeV energy range

@ Atmospheric spectral shapes: use sidebands in Cherenkov angle for NC
and p/m. Assume O(100%) uncertainties on normalizations and
shapes except for Michel spectrum.
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Supernova model-independent analysis

Flux limits close to optimistic DSNB models at high energy

Events/bin
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@ Neutron tagging: 16 — 12 MeV analysis threshold

@ Important uncertainties from NC ~ emission and neutron multiplicity
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Spectral analysis

Combination of SK-I to IV for an optimistic SRN model [Ando 03]
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The DSNB models are getting tantalizingly close...
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The near future: Super-K Gd and JUNO

Next 10 years: ldentify IBD neutrons by enhancing the capture signal

Super-K Gd (just started!) JUNO (2022)

1

‘Water
- 0.2% Gd,(SO,), Cherenkov

~200020" |

@ Super-K Gd and JUNO will probe most of the DSNB parameter space!

@ No spectral characterization: lack of statistics
Atmospheric NC becomes the dominant background (large systematics)
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The near future: Super-K Gd and JUNO

Next 10 years: Identify IBD neutrons by enhancing the capture signal

Super-K Gd (just started!) JUNO (2022)
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@ Super-K Gd and JUNO will probe most of the DSNB parameter space!

@ No spectral characterization: lack of statistics
Atmospheric NC becomes the dominant background (large systematics)
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Beyond a discovery: Hyper-Kamiokande

Hyper-Kamiokande will allow in-depth studies of the DSNB spectrum
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@ First analysis of the tail of the DSNB spectrum
@ Limits on the fraction of supernovae forming black holes

Combined studies with LSST to limit the supernova rate
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Hyper-Kamiokande: going further

Near Detector
Pure v, beam™  QERZE
L \

*280m

Opening the low energy region:

@ IWCD's cross-section studies
= Characterize neutrino-nucleus interactions
= Reduce atmospheric neutrino systematics

@ Use of multi-PMTs
= Improve vertex resolution?
= Impact on neutron tagging?

@ Doping HK with gadolinium?




Conclusion

@ Current limits in Super-Kamiokande: first analysis of the diffuse
supernova neutrino background with the full SK-1V dataset and
neutron tagging capabilities.

@ The most optimistic DSNB models are within a factor of two of the
current limits...maybe a discovery in Super-K Gd or JUNO?

@ Spectral characterizations and studies of astrophysical parameters will
be made possible in Hyper-Kamiokande

@ Combined studies with neutrino beams and telescopes will be essential

Stay tuned for the near and far future!
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Thank you for your attention
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