

Status of the Ricochet experiment

Thomas Salagnac On the behalf of the Ricochet collaboration

GDR Neutrino 2020

24/11/2020

Coherent Elastic Neutrino-Nucleus Scattering

CEvNS: Coherent Elastic Neutrino-Nucleus Scattering

- First detection in 2017 by the COHERENT experiment
- Cross-section scale as N^2 (N: number of neutrons)

$$\frac{d\sigma}{d\cos\theta} = \frac{G^2}{8\pi} [Z(4\sin^2\theta_w - 1) + N^2] E^2(1 + \cos\theta)$$

- \rightarrow Allow small target of heavy elements
- Small nuclear recoil energy: sub-keV
 - \rightarrow Hard to detect in practice

One way to study CEvNS

A source:

A detector:

Nuclear reactor are very interesting neutrino source:

- High flux: $1 \text{ GW}_{\text{th}} \rightarrow 2 \times 10^{20} \nu/s$
- Neutrino energy < 10 MeV: almost fully coherent

Advantage of a phonon readout:

- Direct measurement of the recoil energy, no quenching
- $\blacksquare \sim 100\%$ of the recoil energy is sensed, allowing for low thresholds
- No intrinsic threshold (meV)
- From thermodynamics, ultimate energy resolution is:
 - ${\sim}eV$ (RMS) for $10\,g$ detectors

Probing new physics with CEvNS and reactor neutrinos

Example: Nuclear recoil spectrum inside 1kg Ge target at $\sim 8\,\mathrm{m}$ of the 58 MWth ILL reactor

Probing new physics with CEvNS and reactor neutrinos

Example: Nuclear recoil spectrum inside 1kg Ge target at $\sim 8\,{
m m}$ of the 58 MWth ILL reactor

Looking for physics beyond the Standard Model in the electro-weak sector:

- Anomalous large neutrino magnetic moment (NMM)
- New massive mediator: Z' boson

- Non standard neutrino interactions (NSI) at low energy
- Light sterile neutrino oscillation

T. Salagnac

Status of the Ricochet experiment

24/11/2019 3 / 15

Probing new physics with CEvNS and reactor neutrinos

Example: Nuclear recoil spectrum inside 1kg Ge target at $\sim 8\,{
m m}$ of the 58 MWth ILL reactor

Looking for physics beyond the Standard Model in the electro-weak sector:

- Anomalous large neutrino magnetic moment (NMM)
- New massive mediator: Z' boson

- Non standard neutrino interactions (NSI) at low energy
- Light sterile neutrino oscillation

T. Salagnac

Status of the Ricochet experiment

Projection for new physics using CEvNS

Detector wish list:

- \blacksquare Low energy threshold $\sim 50 \: eV$
- \blacksquare Low energy resolution $\sim 10\,eV$
- EM background rejection of $> 10^3$

Source wish list:

Decent neutrino flux: $10^{12} \text{ v/cm}^2/\text{s}$

Assume 1kg detector $\Rightarrow \sim 20 \nu/day$

Background wish list:

- 100 DRU of electronic recoils (ER)
- 5 DRU of nuclear recoils (NR)

Projection for new physics using CEvNS

T. Salagnac

Status of the Ricochet experiment

24/11/2019 4 / 15

The Ricochet experiment

Proposal paper: arXiv: 1612.09035

"The first low-energy kg-scale CEvNS neutrino observatory combining multi-target and multi-technology cryogenic detectors", J. Billard et al., J. Phys. G (2017)

ILL reactor site

- ILL: \Rightarrow Ricochet proposal accepted by ILL
 - Use STEREO casemate
 - \rightarrow Benefit from Stereo experience and background characterization <code>STEREO Collab., JINST 2018</code>
 - 8 m from 58 MWth core
 - $\rightarrow\,1.6\times10^{12}\,\nu/\text{cm}^2/\text{s}$ at the detector
 - \blacksquare 3 or 4 cycles of ~ 50 days per year
 - \rightarrow good ON / OFF ratio
 - 15 m.w.e overburden :
 - \rightarrow reduction factor 2 to 3 of muon flux
 - Close to reactor and neighboring experiments
 - \rightarrow High level of reactor correlated background

Expect 20 CEvNS events/day

- $\Rightarrow~5\,\sigma$ CEvNS detection in a couple of days !
- $\Rightarrow~1\,\%$ precision measurement after one year

Particle identification

- Ionization/Heat ratio depends on the particle type
- Need to achieve an unprecedented ${\sim}10\,{\rm eV}$ ionization resolution

Inspired from the FID800 success of EDELWEISS-III

- Prompt / delayed heat signals depend on the particle type
- High risk / high reward

Toward a heat baseline resolution of 10 eV

From EDELWEISS R&D: Armengaud, E. et al., Phys. Rev. D 2019

Major accomplishments: with 32 g Ge detector

- 18 eV baseline energy resolution (RMS)
- 55 eV energy threshold
- %-level stability over a week

Reproducible: similar results on 6 other $\sim 30\,{\rm g}$ bolometers

- \Rightarrow Validates the choice of $~30~{\rm g}$ crystals as individual detectors for the CryoCube array
- \rightarrow Expect a factor 2 of improvement with HEMT

T. Salagnac

Status of the Ricochet experiment

Improving resolution and particle discrimination

Particle discrimination is right now limited by the ionization resolution (200 eV)

Goal: reach a ionization resolution below 20 eV

HEMT preamplifier: High Molity Electron Transistor

- Lower intrinsic noise than JFET (Junction Field Effect Transistor)
- HEMT Noise Model: goal implies a 20 pF total capacitance (detector & cabling)
- \blacksquare Low temperature threshold ${\sim}4\,{\rm K},$ closer to detector, less cable capacitance
- R&D ongoing, HEMT are being characterized

New electrode design:

- Good charge collection, for event reconstruction
- Large fiducial volume (75%)
- High surface event rejection efficiency (FID)
- Minimized capacitance: Cdet $\sim 10 \, \mathrm{pF}$
- Studies ongoing : multiple design simulated with COMSOL and data driven model

Neutron background characterization

- \blacksquare Ratio with/without AmBe source: $\sim 30 \Rightarrow$ Ge detector in agreement with He3 counters
- At the upper edge of the CENNS ROI (2 keV), neutron backgrounds inside Ge detectors with no shielding can be inferred at:
 - **R**&D lab. (no source): $\sim 10\,000$ DRU (measurement)
 - ILL reactor ON: $\sim 12\,500$ DRU (extrapolation)
 - ILL reactor OFF: $\sim 2\,500$ DRU (extrapolation)
- \blacksquare Neutron background level reduction goal: ~ 4 orders of magnitude
 - \Rightarrow manageable with shielding according to Geant4 simulation !

D.Mislak Calibration ER band Calibration ND band ackground ER hand cleansed MD hand AmBe @ 4.5 m Analysis Threshold: 2keV 0.24 n/cm²/ alibration seents in [2kaV-50keV] 4fe+06 Counts/kg/days Background events in [2kaV-50kaV] 4 BSe+04 Countriller/door Recoil Energy [keV]

П

Geant4 background simulation:

- Reactogenics: gamma and neutron backgrounds from HPGe measurements and MCNP sim. from STEREO
- Cosmogenics: use CRY generator, validated with STEREO muon-flux measurements and simulations

External shielding design:

- 20 cm of lead
- 40 cm of borated-polyethylene (PE)
- Muon-veto

Internal shielding design:

- 15 cm of lead/copper
- 30 cm of PE/copper

Lead Polyethylene	
p-veco Detector errey	abbilding Outer shfalding

Electronic recoil rates in [50 eV, 1 keV] energy range (in evts/day/kg)					
	Cosmogenic	Reactogenic	Total	Goa	
(I) No shielding	260 ± 5	4365 ± 301	4625 ± 301	-	
(II) Shielding	175 ± 4	26 ± 2	201 ± 5	-	
(III) Shielding $+ \mu$ -veto	7 ± 1		33 ± 2	100	
(IV) Shielding + full cover. µ-veto	0.6 ± 0.2		27 ± 2	100	
Nuclear recoil rates in [50 eV, 1 keV] er	nergy range (in e	vts/day/kg)		
	Cosmogenic	Reactogenic	Total	Goa	
(I) No shielding	1554 ± 12	53853 ± 544	55407 ± 545	-	
(II) Shielding	37 ± 2	0.8 ± 1	38 ± 2	-	
(III) Shielding + µ-veto	12 ± 1		13 ± 1	5	
(IV) Shielding + full cover. µ-veto	4 ± 1		5 ± 1	5	

Results:

- \blacksquare ER better than goals but NR 2.5 times larger (config. III) or equivalent (config. IV) \Rightarrow reachable
- Muon veto is essential, estimated dead time: 9-14% (config. III) and 20-30% (config. IV) \Rightarrow manageable
- With S = 15 evt/kg/day and PID, we expect S/B = 1 (config. III) or 3 (config. IV) \Rightarrow promising
- \blacksquare Correlated reactogenic neutrons reduced by $\sim 5\times 10^4$ thanks to shielding \Rightarrow 0.8 evt/kg/day

Calibration setup

DT generator: allow for pulsated neutron calibration \Rightarrow background free Mono-energetic neutron production steps:

- 1) $n \rightarrow 2n$ process in Pb, neutrons < 1 MeV
- 2) Moderator Al/F, neutrons < 100 keV
- 3) Filter Fe, neutrons = 24 keV

Calibration spectra for a few pairs of detectors:

P.Patel's talk @ Magnificent CEvNS 2020 workshop

Status of the Ricochet experiment

Experimental setup

- Setup optimization, design and drawings ongoing:
 - Must comply with safety regulations
 - Must be compatible with dedicated neutron source
 - Supported thanks to RICOCHET-ANR (2020)
- \blacksquare Anticipated load of ~ 15 tons over $4\,{\rm m}^2$
- Cryostat to be delivered at IP2I early 2021
- Blank assembly at IP2I prior to ILL deployment

Ricochet timeline

and Ge detector design finalized

Conclusion

■ Strong interest in CEvNS physics from the Neutrino and DM communities ⇒ Magnificent CEvNS 2020 workshop last week (link)

Ricochet detector key feature: particle identification down to 50 eV

- R&D phase on track:
 - Sub-100 eV heat energy threshold secured on 33.4 g Ge crystal,
 - HEMT-based preamplifier expected for end-2020 \Rightarrow ionization resolution down to 100 eV
- Background studies: simulations and measurements
 - According to simulations and neutron measurements, background seems be manageable
 - 1st shielding design: should allow Ricochet to reach its specifications
- Ricochet experimental setup and integration at ILL funded thanks to recently awarded ANR (2020)
- Ricochet has been accepted at ILL by Scientific Council and directorate for onsite integration in 2022/2023

Thanks for your attention !

Backup

Neutron background characterization (1/2): ILL vs R&D lab

- Excellent relative flux measurements (correlation) between the two apparatus
 - Includes the very low alpha background from « Dubna detector » (*b*_{LSM})
 - Ongoing studies to extract neutron energy spectrum from Dubna He3 detector
- \blacksquare Fast neutron flux at ILL reactor ON ~ 5 times larger than reactor OFF
- ILL reactor ON only 25% higher than the fast neutron flux at IP2I (inside Pb shield)

Neutron background characterization (2/2): bolometer at R&D lab

- Clear separation between electronic and nuclear recoils down to $\sim 1 \, {
 m keV}$ (limited by current J-FET electronics)
- Ratio with/without AmBe source: $\sim 30 \Rightarrow$ in agreement among the Ge bolometers and He3 counters
- At the upper edge of the CENNS ROI (2 keV), neutron backgrounds with no shielding can be inferred at:
 - **R**&D lab. (no source): $\sim 10\,000$ DRU (measurement)
 - ILL reactor ON: $\sim 12\,500$ DRU (extrapolation)
 - ILL reactor OFF: $\sim 2\,500$ DRU (extrapolation)
- Data driven extrapolations consistent with preliminary Ricochet Geant4 simulations
- Neutron background level reduction goal: ~ 4 orders of magnitude \rightarrow manageable with shielding according to Geant4 simulation !

Other experiments probing CEvNS in the sub-100 eV region

- At the Mitchell Insti. research reactor(1 MW) with movable core
- Use of SuperCDMS Soudan detectors iZIP (625 g Ge) in HV mode
- Background reduction with passive and active shielding - No particle identification < 1 keV
- Science run started, Phase 2 in 1 year

R. Mahapatra et al., NIMA 853 (2017) 53

- 80 meters away from Chooz reactors (2 × 4.25 GW)
- Phase 1: total target mass of 10 g 9 x 0.8 g CaWO 4 and 9 x 0.5 g Al2O 3
- Background reduction with passive and active shielding (w. bolometers) - no particle identification
- Phase 1 start in 2020, then switch to phase 2 with 10 kg (2000 crystals)

G. Angloher et al., arXiv:1905.10258 (2019)

Ricochet - CryoCube

- Nuclear site to be finalized by end-2019
- Two detector technologies:
 - CryoCube: 1 kg array of detectors 30g (Ge & Zn)
 O-Array: 100 g (Zn & Al)
 - Q-Array: 100 g (Zri & Al)
- Background reduction with passive and active shielding + particle identification
- First science data taking planned for 2023

J. Billard et al., JPG 44 (2017) 10