Comparison of 2020 T2K and NOVA results

GDR Neutrino

22 Novembre 2020

S.Bolognesi (CEA/IRFU, T2K)

Outline

- Oscillation sensitivities: how the LBL experiments measures the different parameters (δ_{cP} for CP-violation and Mass Hierarchy)

- 2020 results of T2K and NOVA

Neutrino 2020 results stored on Zenodo: DOI 10.5281/zenodo.3959557 DOI 10.5281/zenodo.3959580

- Statistical uncertainties
- Systematic uncertainties: near and far detectors

Neutrino oscillations

Standard 3-flavors formalism: **PMNS** matrix

 U_{ai} are expressed in terms of 3 mixing angles ($\theta_{13}, \theta_{23}, \theta_{12}$) and a phase δ_{CP}

Long-baseline experiments

• Oscillation probability estimated by comparing v (and \overline{v}) rate by flavor between source (near detectors) and far detectors:

 v_{11} disappearance: $\sin\theta_{23}$, Δm^2_{32}

•
$$P(v_{\alpha} \rightarrow v_{\beta}) = \sin^2(2\theta) \sin^2 \left(1.27 \frac{\Delta m_{ji}^2 [eV^2] L[km]}{E_v [GeV]} \right)$$
 (amplitude frequency

(simplified 2-flavors approximation)

- $\sin\theta_{23} \sim \text{amplitude of the } v_{\mu} (v_{\mu})$ disappearance (height of spectrum minimum)
- $\Delta m^2_{31(32)}$ ~ frequency of the disappearance (position of spectrum minimum)

 v_{μ} disappearance: sin θ_{23} , Δm^{2}_{32}

 v_v / v_a appearance: δ_{CP}

7

 v_{p} apperance: MH

MH sensitivity comes from change of sign in term dominated by matter effects: the longer the baseline \rightarrow the larger the term

8

Statistics

The δ_{CP} results are dominated by stat uncertainty (limited number of v_{e} , v_{e} events)

17

Statistical treatment

Treatment of 'nuisances' = how to sample parameters in the fit which are profiled or marginalized (e.g. θ_{23} and Δm^2 in plots of δ_{CP} , MH sensitivity) In Bayesian term: which priors for nuisances?

- Effect become more important in case of degeneracies and boundary effects Safe at 1σ but what about 2σ , 3σ , etc...? Studies on-going

- Important effect at 5σ : in practice the region of 5σ exclusion may change with POT depending on sampling choice of nuisances. Important for HK and DUNE!

Systematics

- T2K-NOVA: very different detectors → very different analysis and treatment of systematics
- Crucial role of Near Detectors:

$$R_{ND}^{\nu'} = \int \Phi^{\nu}(E_{\nu}) \frac{d \sigma^{\nu'}}{dE_{\nu}} dE_{\nu} \text{ ND measures rate vs neutrino energy}$$

$$R_{FD}^{\nu'} = \int \Phi^{\nu}(E_{\nu}) P_{osc}^{\nu \rightarrow \nu'}(E_{\nu}) \frac{d \sigma^{\nu'}}{dE_{\nu}} dE_{\nu}$$

$$\text{-same flux at ND and FD}$$

$$\text{what we want to measure:} \text{oscillation probability} \text{ cross-section must be extrapolated from ND to FD (different neutrino energy distribution)}$$

• Important systematics for δ_{CP} (MH):

OSC

- difference between v and \overline{v} (xsec and flux)
 - Notably, "wrong sign" background: v in v mode (π^+ focused beam)
- v_{r} intrinsic background: v_{r} produced in the beam by K / π -> μ decays

T2K

Full tracking and particle reconstruction (<u>magnetized</u>!): measure precisely neutrino and

antineutrino rate before oscillation

SuperKamiokande

Huge water cherenkov detector (50 kTon) with optimal μ/e identification to distinguish ν_e , ν_μ

T2K ND fit

- magnetized ND: separate uncertainties for ν and $\overline{\nu}$
- constrain on v_e rate from ND ~8% $\rightarrow v_e$ / v_u xsec uncertainty from theory ~3%
- Crucial improvement expected from upgrade of ND280 (2022 → HK)
 - measurement of low momentum protons and neutrons to "validate" neutrino energy reconsctruction
 - larger statistics (beam upgrade) and better v_e efficiency and purity (~4%)

T2K ND: data fit

Fit to samples with 0,1,N pions in the final state, on C and C+O for nu and antinu selection in opposite beam focusing

NOVA

Very same technology (liquid scintillator) for near and far detector

Extrapolation from near to far detector does not rely on a detailed theoretical interpretation/understanding of the nuclear effects

How systematics on nuclear effects still affect ND to FD extrapolation:

- different Ev at ND and FD (before and after oscillation) \rightarrow different E_{had}/Ev, different resolution...

- different acceptance (in $\ensuremath{p_{\scriptscriptstyle T}}\xspace)$ at ND and FD due to different size

- still need to disentangle flux and xsec since they depends on Ev differently 23

Ev reconstruction

Ev reconstructed with hadronic deposits:

- important difference $v \overline{v}$: proton vs neutron (~undetected)
- proton/pion energy smeared by Final State Interactions

Important to tune model predictions for E_{had} **NOvA Preliminary** 25 Neutrino Beam Default GENIE $v_{\mu} + \overline{v}_{\mu}$ CC Selection NOvA 2020 Tune ND Data 20 MEC QE 15 RES DIS Other

0.4

0.6

Visible E_{had} (GeV)

0.2

Final State Interactions

Different reconstruction and energy resolution for v_u and v_e

0.8

Near Detector data vs prediction

Conclusions \rightarrow Stay tuned for more data!

- Still in $v_e I \overline{v}_e$ (so δ_{CP} measurements) the statistic uncertainties at the far detector is dominant over the systematics

- The model of systematics is extremely different in T2K and NOVA and their impact and treatment is extremely different

- The evaluation of systematics is the big challenge for the next years: **T2K and NOVA are** crucial to open the road to higher-statistics future LBL

Volume 580 Issue 7803, 16 April 2020 - Nature

T2K is a statistically-limited experiment which just got the Nature cover!

The next years T2K and NOVA will have an extremely interesting physics program (eg, beam and ND280 upgrade, joint T2K-NOVA and T2K-SK fits, ... \rightarrow sensitivity for 3σ CP-violation and MH determination)

COME AND JOIN US!

If you are interested in HyperKamiokande and DUNE, then T2K and NOVA is where you can pave the road to the future!!

BACK-UP

E_v (GeV)

2019 → 2020: T2K

2019 → 2020: NOVA

Oscillation formulas for ne/nebar appearance

Given an accelerator-driven neutrino beam, the long-baseline oscillation experiments are also sensitive to the neutrino mass ordering. Because of the interaction of neutrinos with terrestrial matter as they pass through the Earth, the probability of $\nu_{\mu} \rightarrow \nu_{e}$ oscillations can be approximately expressed as⁵⁹

$$P(\nu_{\mu} \to \nu_{e}) \simeq \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \frac{\sin^{2} (x-1) \Delta_{31}}{(x-1)^{2}} + \alpha \sin 2\theta_{12} \sin 2\theta_{13} \sin 2\theta_{23}$$
$$\times \cos \left(\Delta_{31} + \delta\right) \frac{\sin x \Delta_{31} \sin (x-1) \Delta_{31}}{x (x-1)}$$
$$+ \alpha^{2} \sin^{2} 2\theta_{12} \cos^{2} \theta_{23} \frac{\sin^{2} x \Delta_{31}}{x^{2}}, \qquad (7)$$

where $x \equiv 2\sqrt{2}G_{\rm F}N_e E/\Delta m_{31}^2$ and $\alpha \equiv \Delta m_{21}^2/\Delta m_{31}^2$. One may easily obtain the expression of $P(\overline{\nu}_{\mu} \to \overline{\nu}_{e})$ from Eq. (7) with the replacements $\delta \to -\delta$ and $x \to -x$. So the sign of Δm_{31}^2 affects the behaviors of neutrino oscillations via the signs of x and α . That is why the matter-induced resonant conversion can only occur for neutrinos in the normal mass hierarchy (x > 0) or for antineutrinos in the inverted mass hierarchy (x < 0), similar to the case of atmospheric neutrino or antineutrino

$$\mathcal{A}_{\rm CP} \equiv \frac{P(\nu_{\mu} \to \nu_{e}) - P(\overline{\nu}_{\mu} \to \overline{\nu}_{e})}{P(\nu_{\mu} \to \nu_{e}) + P(\overline{\nu}_{\mu} \to \overline{\nu}_{e})} \simeq -\frac{\sin 2\theta_{12} \sin \delta}{\sin \theta_{13} \tan \theta_{23}} \Delta_{21} + \text{matter effects} ,$$

-2AlnL

2019 → 2020: T2K

2019 → 2020: NOVA

Statistical treatment: Fieldman Cousin

Treatment of 'nuisances' = parameters in the fit which are profiled or marginalized (e.g. θ_{23} and Δm^2 in plots of δ_{CP} , MH sensitivity)

When uncertainties are not Gaussian, you cannot simply calculate σ as units of $\delta \chi^2$ (i.e. the test-statistic has not χ^2 distribution \rightarrow need to run toys over all the parameters)

For each values of true $\delta_{CP} \rightarrow$ look which χ^2 corresponds to 68%, 95% ...

How to sample nuisances? [In Bayesian terms: which prior on nuisances?]

- Near the δ_{CP} minimum, obviuos way to sample the nuisances: from data results Far from minimum is less obvious: eg, sample over nuisances distribution for Asimov at that true δ_{CP} value? (different in T2K and NOVA)

Safe at 1σ but what about 2σ , 3σ , etc...? Studies on-going

- Effect become more important in case of degeneracies and boundary effects

- Important effect at 5σ : in practice the region of 5σ exclusion may change! Important for HK and DUNE!

T2K ND fit

Near detector measurement $R_{ND}^{\nu'}(E_{\nu}) = \Phi^{\nu}(E_{\nu}) \frac{d\sigma^{\nu'}}{dE} = F(p_{\mu}, \cos\theta_{\mu}; \alpha_{ND}, \alpha_{model})$ nuisances = parametrization of detector Reconstruction of energy at the far detector systematics and nuclear effects uncertainties $E_{v} = R(p_{\mu}, \cos\theta_{\mu}; \alpha_{FD}, \alpha_{model})$ - smearing due to nucleon motion in the Martini et al PhysRevD.87.013009 nucleus E_v (GeV) 50 $d(\overline{E_v,\overline{E_v}}) (10^{-39} \text{ cm}^2/\text{GeV})$ u-/e-0.2 - bias due to energy to extract the nucleon from 2p2h Wthe nucleus Fermi gas - tail due to 0π non-QE CCQE (eg. 2p2h) total n р 10 separate uncertainties for nu and nubar constrained by ND 0.8 1.2 0.2 0.41.4 1.6 0.6 E, (GeV)

• Constrain on v_e rate from ND ~8% . $v_e I v_u$ xsec uncertainty from theory ~3%

Systematic pulls from NOVA FD fit

Systematics for T2K FD samples

	$\parallel 1 R \mu \parallel$			$1 \mathrm{R}e$	
Error source (units: $\%$)	\parallel FHC	RHC F	HC RHC	FHC CC1 π^+	FHC/RHC
Flux Xsec (ND constr)	$ \begin{vmatrix} 2.9 \\ 3.1 \end{vmatrix}$	$\begin{array}{c cccccc} 2.8 & & 2 \\ 3.0 & & 3 \end{array}$	$\begin{array}{ccc} 2.8 & 2.9 \\ 3.2 & 3.1 \end{array}$	$\begin{array}{c} 2.8 \\ 4.2 \end{array}$	$ 1.4 \\ 1.5 $
Flux+Xsec (ND constr) Xsec (ND unconstrained) SK+SI+PN	$ \begin{array}{ c c c c c } 2.1 \\ 0.6 \\ 2.1 \\ \end{array} $	$\begin{array}{c c c} 2.3 & & 2 \\ 2.5 & & 3 \\ 1.9 & & 3 \end{array}$	$\begin{array}{ccc} 2.0 & 2.3 \\ 3.0 & 3.6 \\ 3.1 & 3.9 \end{array}$	$4.1 \\ 2.8 \\ 13.4$	$ \begin{array}{c c} 1.7 \\ 3.8 \\ 1.2 \end{array} $
Total	3.0	$4.0 \parallel 4$	4.7 5.9	14.3	4.3

ND280 (left) → ND280 upgrade (right)

Vertical TPCs: instrumented with Standard Bulk Micromegas.

Running with astonishing stability and reliability since 11 years

+Time of Flight modules all around the new tracker

New HA-TPC: to increase acceptance at high angle (→ lower momentum particles) Required same performances (momentum resolution and PID) as "old" vertical TPCs