Neutrino Physics Status 2020: looking back to Neutrino 2020

João Pedro Athayde Marcondes de André

IPHC, Strasbourg

October 12th 2020

Disclaimer: This comes from a personal selection, I can't possibly cover everything

Outlook

- Introduction
- Neutrino Mass
- Neutrino Interactions & Detectors
- Standard Neutrino Oscillations
- Light Sterile Neutrinos
- Using Neutrinos to look at the universe

The conferences

- As with all conferences this summer, they were virtual
- Large differences however on their organizations/interactions however
- Neutrino 2020 (22/06 02/07)
 - o plenary + VR posters
 - no replays
 - $\bullet \ 800 \rightarrow 4k \ participants$
 - lots of interaction over slack
 - moderators asked questions

ICHEP 2020 (28/07 - 06/08)

- plenary + parallel + 'short talk' posters
- scheduled replays
- 3k participants
- mattermost not very active
- questions 'mode' depended on track
- ICHEP slides in red boxes,

Neutrino slides in black boxes

- Boxes have links to indico
- For Neutrino talks: video or slides
- For ICHEP talks: only slides

J. P. A. M. de André

The Standard Model and Neutrinos

 ν properties:

- charge = 0
- spin = 1/2
- only interact weakly
 - in SM: ν_L , but no ν_R
- mass = 0 in SM
 - From oscillations, $m_{\nu} > 0$
 - $m_{
 u} \ll m_{u,d,e}$

• 3 families:

flavor: ν_e , ν_μ , ν_τ mass: ν_1 , ν_2 , ν_3

Standard Model of Elementary Particles

Absolute Neutrino Mass: Direct Measurement – KATRIN

Measure e⁻ energy close to end-point

J. P. A. M. de André

Absolute Neutrino Mass: Direct Measurement – KATRIN

- $m_{\nu_e} < 1.1 \text{ eV} (90\% \text{ CL}) \text{run 1} (\text{stats limited})$
- \bullet 2× more events to be unblinded soon; started run 3 with improved detector

J. P. A. M. de André

Absolute Neutrino Mass: Cosmology limits

- ν play a role in structure formation in the universe
 - some model dependency in results
 - * or we are really getting cosmology wrong... and getting good fits while at it
 - Measures $\sum m_{\nu}$ and N_{ν}^{eff}
- Current limits: $\sum m_{\nu} < 100 252 \text{ meV} [arXiv:2007.08991]$

CMB+GALAXIES: SUM OF NEUTRINO MASSES

SM neutrinos are relativistic in early universe (CMB), then non-relativistic (matter like) in the late universe (DE).

The transition between these regimes is sensitive to $M_{\rm v} = \Sigma \, m_{\rm v}$

J. P. A. M. de André

Detecting neutrinos

• We cannot detect the ν 'flow' \rightarrow detect only neutrinos that interact

- What we can (potentially) measure:
 - charge of lepton $\rightarrow \nu$ vs $\bar{\nu}$
 - flavor of lepton \rightarrow distinguish between ν_e, ν_μ, ν_τ
 - direction of I or I+N' \rightarrow neutrino direction
 - momentum of I or I+N' \rightarrow energy of neutrino
 - position of interaction

Neutrino Charged Current Interaction with matter

• data from ν_{μ} CC cross section (per nucleon)

 $\bullet\,$ low interaction probability \rightarrow large target mass and neutrino flux

J. P. A. M. de André

Neutrino Detectors - examples

non exaustive list of types...

Neutrino Detectors – examples

non exaustive list of types...

ΝΟνΑ

а

Super-Kamiokande IV

72K Bean Run 0 80111 995537 Run 66776 8ub 770 Event 176987674 1045111212145 10 TEK Even di = 1851.3 no marri 128 hits, 1851 po Outer: 6 hits, 5 po Triger: daticosoji Q.wali 1136.5 cm w.150. p 556.7 MRV/c

3.3-4.7
2.2-3.3
1.3-2.2
0.7-1.3
0.2-0.7

However interactions don't happen on free nuclei...

However interactions don't happen on free nuclei...

- Extensive work from many collaborations to measure cross-section & tune models
 - A few experiments *dedicated* to this purpose!
- Different atoms, energies, ...
- Still remains an important systematic to be taken into account!

J. P. A. M. de André

Neutrino Oscillation (in vacuum) - overview

• For oscillations to happen $\{|\nu_{\alpha}\rangle\}$ and $\{|\nu_{j}\rangle\}$ different

Neutrino Oscillations - simplest case

2 flavor case, vacuum

- 2 ν interaction flavours (ν_e and ν_{μ})
- mass eigenstates $\{|\nu_j\rangle\} = \{|\nu_1\rangle, |\nu_2\rangle\} \neq \{|\nu_\alpha\rangle\}$ flavour eigenstates
- mixing matrix $U: |\nu_{\alpha}\rangle = \sum_{j} U_{\alpha j}^{*} |\nu_{j}\rangle$ with $UU^{\dagger} = \mathbb{1}$ (ie, U rotation matrix)

$$J = \left(\begin{array}{cc} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{array}\right)$$

• Propagate through space time as plane waves in mass state:

$$|\nu_{e},t\rangle = \sum_{j} U_{ej}^{*} e^{-iE_{j}t} |\nu_{j}\rangle = \cos\theta e^{-iE_{1}t} |\nu_{1}\rangle + \sin\theta e^{-iE_{2}t} |\nu_{2}\rangle$$

•
$$P(\nu_e \to \nu_e, t) = ||\langle \nu_e | \nu_e, t \rangle||^2 = 1 - \sin^2(2\theta) \sin^2[(E_2 - E_1)t/2]$$

• Given m_i small: $E_i = \sqrt{m_i^2 + p^2} \approx p + \frac{1}{2} \frac{m_i^2}{p}$ and $t \approx L$, therefore $(E_2 - E_1)t \approx \frac{1}{2} \frac{m_2^2 - m_1^2}{p} L \approx \frac{\Delta m^2 L}{2E}$

$$\Rightarrow P(\nu_e \rightarrow \nu_e, L) = 1 - \sin^2(2\theta) \sin^2\left(\Delta m^2 \frac{L}{4E}\right)$$

Neutrino Oscillations

3 flavor case, vacuum

$$P(
u_{lpha}
ightarrow
u_{eta}) = \sum_{j,k} U_{eta j} U^*_{lpha j} U^*_{eta k} U_{lpha k} e^{-i\Delta m^2_{jk}rac{L}{2p}}, \qquad \Delta m^2_{jk} = m^2_j - m^2_k$$

• 3 known ν interaction flavours : ν_e , ν_μ and $\nu_\tau \Rightarrow$ matrix U is 3 \times 3

- $\theta_{23}, \theta_{13}, \theta_{12}$: ν mixing angles
- Δm_{32}^2 , Δm_{21}^2 : ν mass splitting
 - Note: $\Delta m_{31}^2 = m_3^2 m_1^2 = \Delta m_{32}^2 + \Delta m_{21}^2$
- δ_{CP} : leptonic CP violation phase \rightarrow different oscillations for ν and $\bar{\nu}$

Neutrino Oscillations: Experimental Overview

Neutrino Oscillations Matter Effects

• In vaccum Hamiltonian H_0 is

$${\it H}_0 = rac{1}{2E} U \; {
m diag}(m_1^2,m_2^2,m_3^2) \; U^{\dagger}$$

• In matter, Hamiltonian $H_m = H_0 + H_{int}$, with H_{int} describing interaction ν – matter

- ν u and ν d not interesting as $H_{int}^{u} \propto 1$ and $H_{int}^{d} \propto 1$
- ▶ ν e interesting: $H_{int}^e = \text{diag}(V^W, 0, 0) + V^Z \mathbb{1}$, with $V^W = \pm \sqrt{2}G_F N_e$ ★ N_e : electron density in medium ★ + sign for ν and - sign for $\bar{\nu}$
- For 2-flavor osc.: $\theta \to \theta_m$ related to matter mass-eigenstates $|\nu_i^m\rangle$

$$\tan 2\theta_m = \frac{\tan 2\theta}{1 \mp N_e/N_e^r}; \ \Delta m_m^2 = \Delta m^2 \cos 2\theta \sqrt{\left(1 \mp \frac{N_e}{N_e^r}\right)^2 + \tan^2 2\theta}; \ N_e^r = \frac{\Delta m^2 \cos 2\theta}{2E\sqrt{2}G_F}$$

- Resonance condition for specific densities if ν and $\Delta m^2 > 0$ (or $\bar{\nu}$ and $\Delta m^2 < 0$)
- Large matter effects in Solar (Δm_{21}^2) & Atmospheric (Δm_{32}^2) ν
- As δ_{CP} , produce $\nu \bar{\nu}$ asymmetry (size of effect depends on L)

J. P. A. M. de André

October 12th 2020

19/40

Global fit to v oscillation parameters

Neutrino Mass Ordering

- Sign of △m²₂₁ determined thanks to matter effects in sun
- Sign of Δm_{32}^2 yet unknown
- This means ν₁ (mostly ν_e) might not be lightest ν!
 - \blacktriangleright 'Inverted' ordering \rightarrow IO
- NB: You might see 'hierarchy' rather than 'ordering' (NO→NH; IO→IH)

Updates to solar neutrinos from SK

Updates to T2K results

Updates to NO ν A results

24/40

J. P. A. M. de André

T2K vs NO ν A

• T2K sees large $\nu_{\mu} \rightarrow \nu_{e}$ vs $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ asymmetry, NO ν A doesn't

- However, to complicate things: different baselines \Rightarrow different matter effects
- Better agreement between exps for IO, but both prefer NO themselves...
- T2K and NO ν A working on joint analysis
- T2K and NO ν A are still running. . . (with improvements to come)

26

Future Neutrino Oscillations Experiments

Determine the ordering

- JUNO: reactor neutrinos
- ORCA: atmospheric neutrinos

Determine δ_{CP}

• HK and DUNE: accelerator neutrinos

The Hyper-Kamiokande project is officially approved

2020 February : First year construction budget approved by Japanese Diet 2020 May: Univ. of Tokyo President and KEK Director General signed MOU

KEK will upgrade and operate the J-PARC accelerator to produce a high-intensity neutrino beam

The University of Tokyo will construct and operate the Hyper-Kamiokande detector

Hyper-K is under construction Operation will begin in 2027

• Further on the future ESS*v*SB, THEIA, T2HK, ...

Light Sterile Neutrinos

LSND

Reactor

MiniBooNE

Gallium

Reactor and Gallium anomalies may be theory problem (though there may be wiggles...) LSND and MiniBooNE anomalies: same L/E, no obvious culprits, difficult to imagine correlated background All four anomalies come from **very** different experiments

J. P. A. M. de André

Why 'sterile' neutrinos?

• LEP measured width of Z⁰ boson

- only 3 u with $m_{
 u}$ < 45 GeV
- from SM symmetries, and small m_{ν} \Rightarrow only 3 families of particles
- However, if ν_4 needed
 - it doesn't interact in the SM!
 - 'doesn't interact' \rightarrow 'sterile'

Light Sterile Neutrinos – tensions

2020 29/40

Light Sterile Neutrinos: Very Short Baseline Reactor

- PROSPECT, STEREO, DANSS exclude reactor anomaly best fit (RAA)
- Neutrino 4, rejects RAA, but claims discovery of $\Delta m^2 = 7 \text{ eV}^2$ oscillation
 - assumes Wilks theorem valid...

Light Sterile Neutrinos – Neutrino 4 claim

Light Sterile Neutrinos - on-going work for other anomalies

Short Baseline Program (SBN)

 LArTPC detectors at different baselines from Booster neutrino beam searching for sterile neutrino oscillations measuring both appearance and disappearance channels with three detectors

- SBND: under construction
- µBooNE: taking data, unblinding soon
- ICARUS: starting commissioning
- JSNS² aims to test the LSND anomaly directly.
 uses the same neutrino source (muon), target (H) and detection principle (IBD), but much smaller accidental background due to Gdloaded LS and low duty factor J-PARC MLF beam.

Summary

- The BEST experiment first direct search for neutrino oscillations into 4-th flavor with radioactive source has started 5 July 2019 in BNO INR RAS
- The first stage of BEST is finished and the second stage is nearing completion. Currently preparatory works have begun for the implementation of the third final one.

Testing SM – coherent scattering

Testing SM – coherent scattering

Solar Neutrinos – understanding the sun

J. P. A. M. de André

Quest for CNO neutrinos

J. P. A. M. de André

Solar Neutrinos – first measurement of CNO neutrinos!

J. P. A. M. de André

Status Neutrino 2020

October 12th 2020 38/40

HE ν : ν_{τ} & glashow resonance candidate events

And much more...

- Neutrinoless 2β decay ν Majorana particles?
- Short Baseline Reactor neutrino oscillations
- Atmospheric neutrino oscillations
- keV sterile neutrino searches
- BSM theory
- Neutrinos for non-proliferation
- Diffuse SN ν background
- ν Dark Matter or searches for Dark Matter with ν
- Multi messenger astronomy
- . . .
- Improvements in facilities
- For several areas I didn't show *all* people working on them...

Backup slides

Light Sterile Neutrinos – Neutrino 4 claim

In experiments on nuclear power plants sensitivity to identification of effect of oscillations with $\Delta m_{14}^2 \approx 7.25 eV^2$ is considerably suppressed because of the big sizes of an active zone. The period of oscillation for neutrino energy 4 MeV is (1.4 m.) But size of reactor core is about 4 m.

Experiment Neutrino-4 has some advantages in sensitivity to large values of Δm_{14}^2 owing to a compact reactor core, close minimal detector distance from the reactor and wide range of detector movements.

30