ESCAPE WP5 Progress Meeting

26-27th October 2020

S. Luna, S. Sánchez-Expósito, J. Garrido, J. Moldón, L. Verdes-Montenegro IAA-CSIC

Outline

- Prototype of SKA Regional Centre at IAA-CSIC
- Activities in the context of ESCAPE's WP5

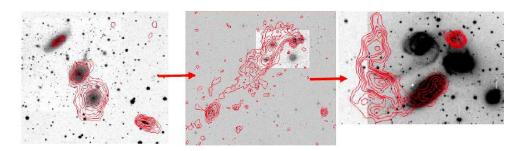
Prototype of SKA Regional Centre at IAA-CSIC

Activities

- Computing infrastructure procurement and setup
 - Face to face meetings with researchers at IAA-CSIC
 - Group A: 80% of researchers
 - o low number of CPU cores (<=16)
 - decent amount of RAM memory per CPU core (<=8 GB/core)
 - o access to fast and large storage (~10 TB/project)
 - Group B: 20% of researchers
 - high number of CPU cores (>100)
 - high amount of RAM per CPU core (>10 GB/core)
 - o access to fast but relatively small storage (<=1 TB).
 - Heterogeneous software requirements
 - Most of them transitioning to Python, but still with Fortran + IDL code
- Deployment of software and services
 - Focus on Open and Reproducible Science
 - Integration with the Virtual Observatory ecosystem
 - Offer support for the SKA Data Challenge 2 (SDC2)

Prototype of SKA Regional Centre at IAA-CSIC

- The computing infrastructure
 - OpenStack controllers: 3 nodes
 - OpenStack hypervisors: 5 nodes
 - o Ceph Monitors: 3 nodes
 - o Ceph OSDs: 8 nodes
 - Interconnect: 100 Gbps Ethernet
 - o Totals:
 - 200 CPU cores for hypervisors, 384 GB RAM each, except one with 1 TB
 - ~600 TB usable storage capacity, ~400 TB for file, ~200 TB for block



Activities in the context of ESCAPE WP5

- Open and reproducible paper
 - Evolution of compact groups from intermediate to final stages. A case study of the H I content of Hickson Compact Group 16

- Candidate project to deploy in ESCAPE?
- o https://github.com/AMIGA-IAA/hcg-16

Activities in the context of ESCAPE WP5

- JupyterHub deployment: work in progress
 - Thanks to Rohini and Stelios for sharing their examples!
 - Virtualized Kubernetes cluster with OpenStack Magnum
 - Used Zero to JupyterHub Helm chart
 - Currently under testing
 - Checked ESCAPE IAM authentication
 - Using OpenStack Cinder for persistent storage

Activities in the context of ESCAPE WP5

- JupyterHub deployment: our questions
 - Hardware and software requirements for integration with ESCAPE
 - Integration with rucio?
 - o Can we have multiple authentication sources for the same JupyterHub?
 - o What authorization options are available?
 - Can you limit access to subgroups of users?
 - Can you assign different resource limits to different groups of users?
 - o Pending issue: long timeout logging in, why?
 - Do you recommend block or file storage for persistent storage in JHub?
 - o Can you mount file shares into user sessions?
 - Can you mount extra additional block storage into user sessions?

What's next?

- Interests for the future
 - We are open to collaborate with other centres and SRC prototypes
 - Find synergies with other ESCAPE members
 - Best practices for operating a private cloud with OpenStack, Ceph
 - Deploying common interest tools like JupyterHub
 - Federated user authentication and authorization

