

Doubly-polarised WZ production at the LHC: an update

Francesco Costanza (LAPP)
Ansgar Denner, Giovanni Pelliccioli (Uni-Würzburg)

Status of the NLO QCD calculation (A. Denner, G. Pelliccioli)

Process: pp \rightarrow e⁺ ν e μ ⁺ μ ⁻ + X.

Accuracy: NLO QCD.

Code: MoCaNLO Monte Carlo integrator, interfaced with Recola+Collier. Details: $N_F = 5$, G_u -scheme for α , complex-mass scheme for weak bosons.

PDFs.: NNPDF3.1 at (N)LO with $\alpha_s(M_Z) = 0.118$, LHAPDF interface.

Ren. and fact. scale: $\mu_R = \mu_F = (M_Z + M_W)/2$.

```
• fiducial region: p_{\rm T,e^+} > 20~{\rm GeV},~p_{\rm T,\mu^\pm} > 15~{\rm GeV},~|y_\ell| < 2.5,~\Delta R_{\mu^+\mu^-} > 0.2,~\Delta R_{\mu^\pm e^+} > 0.3,~M_{\rm T,W} > 30~{\rm GeV},~81~{\rm GeV} < M_{\mu^+\mu^-} < 101~{\rm GeV}.
```

Full process: σ_F (all off-shell, interferences). Unpolarized signal: σ_U (DPA, unpolarized). Singly-polarized signals: σ_λ (DPA, $W_\lambda Z_U$ or $W_U Z_\lambda$, $\lambda = L, T$). Doubly-polarized signals: $\sigma_{\lambda\lambda'}$ (DPA, $W_\lambda Z_{\lambda'}$, $\lambda = L, T$). Non-resonant background: $\sigma_F - \sigma_U$.

Interferences among pol. states: $\sigma_U - \sum_{\lambda} \sigma_{\lambda}$ or $\sigma_U - \sum_{\lambda} {}_{\lambda'} \sigma_{\lambda \lambda'}$.

Several observables and MC truth variables already studied in NLO QCD distribution, K-factors, polarization fractions, and normalized distribution shapes.

NN-based variables (F. Costanza, G. Pelliccioli)

Need to make $\operatorname{MoCaNLO}$ compute the NLO distribution for the output of a Neural Network (NN) built with Keras : both for neutrino momentum reconstruction and for other NN-based variables.

MoCaNLO written in fortran90, KERAS libraries written in python.

The strategy is to:

- interface MoCaNLO with KERAS via FKB libraries (Fortran-to-Keras Bridge arXiv:2004.10652[cs.LG]), such that the histogram module of MoCaNLO can load the NN modules
- put the NN-model trained with KERAS layers in a structure that is compatible with FKB interface.

Work in progress.

Next steps

Missing steps to be done/solved (from last meeting list of questions):

- Improving neutrino reconstruction? Can we do better? \rightarrow with or without NN
- Fiducial region additional cuts?
- Other observables? → NN output
- Comparison with other theory predictions? → LO avaliable
- Binning/format of SM templates?