L. Di Ciaccio, F. Costanza, C. Goy, I. Koletsou, N. Lorenzo Martinez,
L. Portales, <u>E. Sauvan</u>, L. Selem

(LAPP)

- Experimental methodology
- Pznu reconstruction methods
- Variables for polarisation extraction
- Phase space for the measurement(s)

How to extract f00 from data?

- Find one discriminating variable : \rightarrow A first candidate: $|\cos \theta_{v}|$
- Do a template fit

- → Try to scale integral of polarisation templates to match data
- → For sensitivity studies, replace data by the sum of templates (ie. Asimov data)
- Use a binned likelihood fit

- Use the constraint of sum of fractions =1
 - → Fit 3 fractions and the total cross section (or number of expected WZ events Ntot)

▲ Templates from MadGraph LO + pythia8 are used

How to extract f00 from data?

- For real data, need also to subtract backgrounds
 - With associated normalisation uncertainties

Signal / backgrounds ~ 3.3

- Includes the backgrounds in the fit
- ▲ Their amount and shape will reduce the sensitivity

How to extract f00 from data?

- Going beyond one single discriminating variable
 - → Associate 3 variables in a 3D fit
 - Here divide events in 4 categories in the plane ($|\cos \theta_{LZ}^*|$, $|\cos \theta_{LW}^*|$)
 - \rightarrow The 3rd dimension is $|\cos \theta_{\rm v}|$

Or combine more variables in a DNN, and fit the 1D DNN score

Pznu reconstructions

Pznu reconstruction problem :

$$p_z^{\nu} = \frac{p_z^l \xi \pm \sqrt{\Delta}}{{p_T^l}^2}$$

$$\Delta = p_z^{l^2} \xi^2 - p_T^{l^2} [E^{l^2} p_T^{\nu^2} - \xi^2], \xi = \frac{m_W^2}{2} + \vec{p_T^l} \vec{p_T^{\nu}}$$

- $\Delta > 0$: there are two physical solutions.
 - 1. Take the smallest solution in absolute
 - 2. Take the solution in the same hemisphere as the lepton, otherwise take the smallest
- Δ < 0 : there is no physical solutions. (~30% of events at detector level)
 - 1. Take the real part of the complex solution
 - 2. p_T^{ν} is rescaled so that m_T^W equals m_W^{PDG}
- Tested methods:
 - → "Baseline" = 1., 1. (was used in previous ATLAS publications)
 - → "Alternative" = 2., 2.
 - → Using a DNN regression (Francesco)

Pznu reconstructions

- Comparison of the methods :
 - → Check impact on the final fit for f00 extraction
- Fit of the DNN p00 score

(fractions measured at detector level)

p_z^{ν} reconstruction	f_{00}	f_{0T}	f_{TT}	$N_{ m tot.}$	$f_{00}/\delta f_{00}$
DNN regression	0.069 ± 0.0089	0.13 ± 0.14	0.67 ± 0.080	19142 ± 315	7.7
Alternative	0.069 ± 0.0092	0.13 ± 0.13	0.67 ± 0.078	19143 ± 315	7.5
Baseline	0.069 ± 0.0096	0.13 ± 0.15	0.67 ± 0.08	19144 ± 315	7.2

• Fit of $|\cos \theta_{v}|$ with 4 categories

(fractions corrected for detector efficiency)

p_z^{ν} reconstruction	f_{00}	f_{0T}	f_{TT}	$N_{\rm tot.}$	$f_{00}/\delta f_{00}$
DNN regression	0.063 ± 0.016	0.14 ± 0.04	0.67 ± 0.039	41195 ± 630	3.9
Alternative	0.063 ± 0.017	0.14 ± 0.05	0.67 ± 0.045	41205 ± 640	3.7
Baseline	0.063 ± 0.017	0.14 ± 0.046	0.67 ± 0.044	41201 ± 640	3.7

- Slight advantage to DNN pznu reconstruction
- ightharpoonup Attributed to a better separation from cos $\theta^*_{I,W(Z)}$

Best observables for polarisation separation

- |cosθ_V| is good, but huge
 NLO corrections ?
 - Need variables with ∼flat NLO corrections

- \rightarrow $\Delta \phi$ _{e+µ+} seems to be a good candidate
- → But no separation between 00 and 0T/T0 modes
- \rightarrow Combine with ($|\cos \theta_{17}^*|$, $|\cos \theta_{1W}^*|$)

Best observables for polarisation separation

Sensitivity using the full fit :

(fractions measured at detector level)

Variable	f_{00}	f_{0T}	f_{TT}	$N_{ m tot.}$	$f_{00}/\delta f_{00}$
$ \cos \theta_V $	0.061 ± 0.027	0.16 ± 0.12	0.62 ± 0.06	17234 ± 310	2.25
$ \cos \theta_V $, 4 categories	0.061 ± 0.019	0.16 ± 0.04	0.62 ± 0.04	17232 ± 300	3.3
$\Delta\phi(\ell_W,\ell_Z)^{sc}$, 4 categories	0.061 ± 0.017	0.16 ± 0.04	0.62 ± 0.04	17232 ± 310	3.6

(different MC sample than on p6 used)

- Better sensitivity than cos θ_V
- → Advantage of having 3 variables with ~ flat NLO corrections
- Need variables with ∼flat NLO corrections
- ▶ Interresting to see NLO corrections for DNN p00 observable

Phase space for polarisation measurement

- At least do a measurement + calculation in "inclusive" phase space (ie. the present one)
- Can we reduce impact of NLO (QCD, EW) corrections adding some cuts?
 - → using r21 ?

- To enhance sensitivity to f00 ?
 - → PTWZ < 120 GeV ?

Phase space for polarisation measurement

- Test effects of the cuts on the fit sensitivity
 - ightharpoonup Fits done using $\Delta\phi(\ell_W,\ell_Z)^{sc}$, 4 categories

Phase space	f_{00}	f_{0T}	f_{TT}	$N_{ m tot.}$	$f_{00}/\delta f_{00}$
Inclusive	0.061 ± 0.017	0.16 ± 0.04	0.62 ± 0.04	17232 ± 310	3.6
Inclusive $+ r21 > 0.6$	0.075 ± 0.022	0.13 ± 0.05	0.67 ± 0.05	11555 ± 189	3.35
Inclusive $+ p_T^{WZ} < 120 \text{ GeV}$	0.071 ± 0.022	0.15 ± 0.05	0.63 ± 0.05	14316 ± 255	3.15

- ▶ In terms of sensitivity "inclusive" PS looks still the best
- ▶ But no theory uncertainties considered

Summary

- Pznu reconstruction :
 - → Analytical: use options 2? → for theory calculation
 - DNN seems better for the fit at detector level
 - → For truth level reweighting: use directly the generated neutrino
- Observables for polarisation
 - → Better use variables with flat NLO QCD corrections
 - \rightarrow $\Delta \phi_{e+\mu+}$ together with cos $\theta_{l,Z}^*$, cos $\theta_{l,W}^*$ seems promising
 - → And DNN
- Phase space
 - → Would a cut on R21 or pTWZ reduce NLO corrections?
 - → Interesting to try a measurement at high pTZ (pTZ > ~200 GeV) ?

Additional material