L. Di Ciaccio, F. Costanza, C. Goy, I. Koletsou, N. Lorenzo Martinez, L. Portales, <u>E. Sauvan</u>, L. Selem (LAPP) - Experimental methodology - Pznu reconstruction methods - Variables for polarisation extraction - Phase space for the measurement(s) ### How to extract f00 from data? - Find one discriminating variable : \rightarrow A first candidate: $|\cos \theta_{v}|$ - Do a template fit - → Try to scale integral of polarisation templates to match data - → For sensitivity studies, replace data by the sum of templates (ie. Asimov data) - Use a binned likelihood fit - Use the constraint of sum of fractions =1 - → Fit 3 fractions and the total cross section (or number of expected WZ events Ntot) ▲ Templates from MadGraph LO + pythia8 are used ### How to extract f00 from data? - For real data, need also to subtract backgrounds - With associated normalisation uncertainties Signal / backgrounds ~ 3.3 - Includes the backgrounds in the fit - ▲ Their amount and shape will reduce the sensitivity ### How to extract f00 from data? - Going beyond one single discriminating variable - → Associate 3 variables in a 3D fit - Here divide events in 4 categories in the plane ($|\cos \theta_{LZ}^*|$, $|\cos \theta_{LW}^*|$) - \rightarrow The 3rd dimension is $|\cos \theta_{\rm v}|$ Or combine more variables in a DNN, and fit the 1D DNN score #### Pznu reconstructions Pznu reconstruction problem : $$p_z^{\nu} = \frac{p_z^l \xi \pm \sqrt{\Delta}}{{p_T^l}^2}$$ $$\Delta = p_z^{l^2} \xi^2 - p_T^{l^2} [E^{l^2} p_T^{\nu^2} - \xi^2], \xi = \frac{m_W^2}{2} + \vec{p_T^l} \vec{p_T^{\nu}}$$ - $\Delta > 0$: there are two physical solutions. - 1. Take the smallest solution in absolute - 2. Take the solution in the same hemisphere as the lepton, otherwise take the smallest - Δ < 0 : there is no physical solutions. (~30% of events at detector level) - 1. Take the real part of the complex solution - 2. p_T^{ν} is rescaled so that m_T^W equals m_W^{PDG} - Tested methods: - → "Baseline" = 1., 1. (was used in previous ATLAS publications) - → "Alternative" = 2., 2. - → Using a DNN regression (Francesco) #### Pznu reconstructions - Comparison of the methods : - → Check impact on the final fit for f00 extraction - Fit of the DNN p00 score (fractions measured at detector level) | p_z^{ν} reconstruction | f_{00} | f_{0T} | f_{TT} | $N_{ m tot.}$ | $f_{00}/\delta f_{00}$ | |----------------------------|--------------------|-----------------|------------------|-----------------|------------------------| | DNN regression | 0.069 ± 0.0089 | 0.13 ± 0.14 | 0.67 ± 0.080 | 19142 ± 315 | 7.7 | | Alternative | 0.069 ± 0.0092 | 0.13 ± 0.13 | 0.67 ± 0.078 | 19143 ± 315 | 7.5 | | Baseline | 0.069 ± 0.0096 | 0.13 ± 0.15 | 0.67 ± 0.08 | 19144 ± 315 | 7.2 | • Fit of $|\cos \theta_{v}|$ with 4 categories (fractions corrected for detector efficiency) | p_z^{ν} reconstruction | f_{00} | f_{0T} | f_{TT} | $N_{\rm tot.}$ | $f_{00}/\delta f_{00}$ | |----------------------------|-------------------|------------------|------------------|-----------------|------------------------| | DNN regression | 0.063 ± 0.016 | 0.14 ± 0.04 | 0.67 ± 0.039 | 41195 ± 630 | 3.9 | | Alternative | 0.063 ± 0.017 | 0.14 ± 0.05 | 0.67 ± 0.045 | 41205 ± 640 | 3.7 | | Baseline | 0.063 ± 0.017 | 0.14 ± 0.046 | 0.67 ± 0.044 | 41201 ± 640 | 3.7 | - Slight advantage to DNN pznu reconstruction - ightharpoonup Attributed to a better separation from cos $\theta^*_{I,W(Z)}$ # Best observables for polarisation separation - |cosθ_V| is good, but huge NLO corrections ? - Need variables with ∼flat NLO corrections - \rightarrow $\Delta \phi$ _{e+µ+} seems to be a good candidate - → But no separation between 00 and 0T/T0 modes - \rightarrow Combine with ($|\cos \theta_{17}^*|$, $|\cos \theta_{1W}^*|$) # Best observables for polarisation separation Sensitivity using the full fit : (fractions measured at detector level) | Variable | f_{00} | f_{0T} | f_{TT} | $N_{ m tot.}$ | $f_{00}/\delta f_{00}$ | |---|-------------------|-----------------|-----------------|-----------------|------------------------| | $ \cos \theta_V $ | 0.061 ± 0.027 | 0.16 ± 0.12 | 0.62 ± 0.06 | 17234 ± 310 | 2.25 | | $ \cos \theta_V $, 4 categories | 0.061 ± 0.019 | 0.16 ± 0.04 | 0.62 ± 0.04 | 17232 ± 300 | 3.3 | | $\Delta\phi(\ell_W,\ell_Z)^{sc}$, 4 categories | 0.061 ± 0.017 | 0.16 ± 0.04 | 0.62 ± 0.04 | 17232 ± 310 | 3.6 | (different MC sample than on p6 used) - Better sensitivity than cos θ_V - → Advantage of having 3 variables with ~ flat NLO corrections - Need variables with ∼flat NLO corrections - ▶ Interresting to see NLO corrections for DNN p00 observable # Phase space for polarisation measurement - At least do a measurement + calculation in "inclusive" phase space (ie. the present one) - Can we reduce impact of NLO (QCD, EW) corrections adding some cuts? - → using r21 ? - To enhance sensitivity to f00 ? - → PTWZ < 120 GeV ? ### Phase space for polarisation measurement - Test effects of the cuts on the fit sensitivity - ightharpoonup Fits done using $\Delta\phi(\ell_W,\ell_Z)^{sc}$, 4 categories | Phase space | f_{00} | f_{0T} | f_{TT} | $N_{ m tot.}$ | $f_{00}/\delta f_{00}$ | |--|-------------------|-----------------|-----------------|-----------------|------------------------| | Inclusive | 0.061 ± 0.017 | 0.16 ± 0.04 | 0.62 ± 0.04 | 17232 ± 310 | 3.6 | | Inclusive $+ r21 > 0.6$ | 0.075 ± 0.022 | 0.13 ± 0.05 | 0.67 ± 0.05 | 11555 ± 189 | 3.35 | | Inclusive $+ p_T^{WZ} < 120 \text{ GeV}$ | 0.071 ± 0.022 | 0.15 ± 0.05 | 0.63 ± 0.05 | 14316 ± 255 | 3.15 | - ▶ In terms of sensitivity "inclusive" PS looks still the best - ▶ But no theory uncertainties considered # **Summary** - Pznu reconstruction : - → Analytical: use options 2? → for theory calculation - DNN seems better for the fit at detector level - → For truth level reweighting: use directly the generated neutrino - Observables for polarisation - → Better use variables with flat NLO QCD corrections - \rightarrow $\Delta \phi_{e+\mu+}$ together with cos $\theta_{l,Z}^*$, cos $\theta_{l,W}^*$ seems promising - → And DNN - Phase space - → Would a cut on R21 or pTWZ reduce NLO corrections? - → Interesting to try a measurement at high pTZ (pTZ > ~200 GeV) ? # Additional material