

DNN reconstruction of neutrino pz

L. Di Ciaccio, **F. Costanza**, C. Goy, I. Koletsou, N. Lorenzo Martinez, L. Portales, E. Sauvan, L. Selem *WZ Polarization MCI meeting*, October 7th 2020

No way to measure it directly

> Problematic for boson polarisation measurements, very sensitive to boson decay caracteristics

Usual evaluation methods:

> Assuming
$$M_W = M_{pole}$$
: $A p_{z,v}^2 + B p_{z,v} + C = 0$

$$A = p_{T, lep}^{2}$$

$$B = -2 p_{z, lep} (p_{x, lep} p_{x, v} + p_{y, lep} p_{y, v} + \frac{M_{w}}{2})$$

$$C = -(p_{x, lep} p_{x, v} + p_{y, lep} p_{y, v} + \frac{M_{w}}{2})^{2} + E_{lep}^{2} p_{T, v}^{2}$$

- > Second order equation → 2 solutions in most cases (& can be complex)
- Several methods tested to deal with the ambiguity

> No clear winner:

- Use a feedforward NN with 8h x 512nodes to predict pz.
- Sample: inclusive WZ simulated with Powheg+Pythia
- Inputs: 4-momentum of charged lepton from W.
 MET.
 neutrino pz as reconstructed from previous analysis.
- Output: 4-momentum of the neutrino and W mass
- Challenge: W mass is not fixed to PDG value, use regression to estimate truth W mass event by event.

Training = minimization of Mean Squared Error (MSE) of P4v
 → + MSE of Mw.

- Slight improvement w.r.t. previous reconstruction.
- Mw has a small bias: fix it with fine tuning of loss function.

E. Sauvan

Sensitivity increase: If the DNN for polarization is trained on variables calculated with DNN pz ν reconstruction the expected significance of λ LL modes increases from 6.5σ to 7.2σ .