

 $\left(\right)$

Virgo-LIGO Data analysis activities at IP2I Lyon

R. Chierici, V Sordini

Why?

- The confirmation of the existence (and the subsequent study and understanding) of Gravitational Waves (GW) is of utmost importance for:
 - Testing general relativity
 - Studying the deep sky with a brand-new (non-electromagnetic) source of signals
 - This has immediate and far-reaching consequences in the domains of astrophysics, cosmology, nuclear matter, particle physics
- The only detectable GWs on earth can be of astrophysical origin
- We must resort to the most violent astrophysical events
 - Coalescent compact binaries are good GW radiators
 - They occur frequently in the universe and they are the loudest expected GW sources (in their frequency band)
 - Best candidates are Black Holes (BHs) and Neutron Stars (NSs)

The power of Compact Binary Coalescences (also known as CBCs)

- The direct observation of CBC signals has multiple implications
 - Confirmation of the existence of gravitational waves
 - Direct determination of the rate of these occurrences in the observable space
 - Assessment on rates and population of BH and NS
 - CBC waveforms encode much more information
 - Masses and spins of the individual object and the final object
 - Test the uncertain BH mass distribution and the maximum allowed mass for a NS
 - Information on tidal deformations

- Constrain nuclear matter of state for NS
- Help in constraining other cosmological facts
 - Infer the Hubble constant via an estimation of the redshift of the GW
 - Check counterparts for completing the information on the source (multi-messenger astronomy)
 - Electromagnetic: Direct redshift information, check for coincident gamma ray burst emission for BN-X mergers
 - Neutrinos: information from inner regions of astrophysical engines
- Probe dark matter candidates in coalescences
 - Primordial black holes, axions, ultralight bosons forming compact self-gravitating configurations...
- Possible deviation from GR expectations...

Keep in mind: not only CBC...

- There are different types of searches for GW signals in LIGO-Virgo
 - Many other astrophysical sources: pulsars, supernovae, unknown sources?
- Transient sources

- Coalescences of compact binaries (known waveform assumed)
- Generic GW bursts (poorly modeled)
- Persistent sources
 - Continuous waves (from pulsars)
 - Stochastic (relic GW from early evolution of the Universe)

How? Principle

- Gravitational waves are distortions of the spacetime curvature happening in a plane orthogonal to the wave direction
 - Their passage induces an apparent distortion of the mutual distances of particles in our reference frame
- Use an interferometer to study them
 - The wave amplitude is physically represented by a (dimensionless) strain
 - Measure the strain (O(10⁻²¹ !!) by the shift in wave-phase

How? Detectors running in O3 (2019-2020)

LIGO Livingston

5

Virgo

End Y (EY)

How? Data analysis (1/2)

- The time series (h(t)) from the interferometers' signals are very sensitive to many undesired "earthly" effects: seismic noise, human noise, optical noise
- The signals we look for are transient events of typical durations 0.5-100 seconds
 - The kind of waveform and duration are quite different according to the type of coalescence
 - BH-BH, BH-NS, NS-NS
 - function of their masses, possibly their spins
- Strategy for digging out a signal
 - h(t) is whitened

- known noise subtracted
- The signal is calibrated
- the presence of waveforms looked for by matched filtering techniques (using known waveforms as signal templates)

How? Data analysis (2/2)

Example event GW170814

- Use the coincidences of multiple detectors to drastically reduce local noise
 - Check if the same template waveforms is consistent with data across time-shifted h(t) from different detectors
 - Information from many places on earth also allows sky localization
- Several observations of CBC signals have been already made by LIGO-Virgo in the O2 (2016-2017) run
- More observations in O3 from the improved sensitivities of the detectors
 - A few papers on exceptional events already out

Online and offline data analysis(CBC)

- Analyses running « online » (low-latency, fastresponse) for alerts
 - Three pipelines during O2
 - GstLAL, PyCBC from LIGO groups
 - MBTA from Virgo groups (LAPP, Urbino)
 - Essential for multi-messenger astronomy
- Analyses running « offline » for publications
 - Use of the official final data calibration
 - Use updated data-quality vetoes
 - Refined monitoring of efficiency and fake rate
 - Better determination of the parameters
 - Only two pipelines during O2
 - Only the LIGO ones

Example event GW190814

- GW signal (BH-? coalescence)
- Most asymmetric coalescence to date
- Spatial resolution: 18.5 deg²

Who?

- Analysis-wise, the LIGO and Virgo collaboration(s) (LVC) work together
- The data stream is accessible for analysis to any of the groups belonging to the LVC
 - I.e. Virgo data are accessible to scientific groups belonging to LIGO, and vice-versa
- Meetings to present and discuss the results, as well as to plan publications and dedicated studies, are common
- The IP2I group has entered recently (2019) the Virgo collaboration and is contributing to the LVC CBC analysis via the Multi-Band Template Analysis (MBTA)
 - Two persons full time to analysis, previous experience from high energy physics
 - One student recently joined
 - Work in collaboration with members from groups in Annecy, Strasbourg, Urbino
 - This group also participates to the characterization of the detector and monitoring of the quality of the data (in collaboration with EGO/LAL)

Analysis timeline and activities

- Main current aim: port the MBTA pipeline offline for the search of CBC signals
 - Participate to the analyses (and subsequent papers) of the O3 observation run (2019-2020)
 - First Virgo analysis on offline detection of coalescent binaries
- Task is not straightforward: many new challenges for offline...
 - Handle massive runs and test performance on simulation before looking at the data
- ...but also opportunities

- No tight latency constraints, may loosen thresholds to increase in acceptance w.r.t. the online version, use more background time to reach lower fake rate values for significant events,...
- A lot has happened since last year
 - Analysis ported and running at the French CCIN2P3
 - Tuning of parameters, configuration, analysis flow and strategy
 - Systematic characterization of the analysis on simulation, comparison with other groups
 - Successfully run over all the O3 data
 - Work now ongoing for the interpretation of the results
 - Group integrated in the LVC CBC community; regular reports ongoing

Multi-Band Template Analysis

- Novelty: use several matched filters to extract the GW signal from the data by a split in the frequency domain
 - Split across two (or more) frequency bands

11

$$S(t,M) = \int_{f\min}^{f\max} h(f)T(M,f)df = \int_{f\min}^{fc} h(f)T(M,f)df + \int_{fc}^{f\max} h(f)T(M,f)df$$

Bands chosen so to ~equally share the signal-to-noise ratio (SNR)

- Each band is analyzed independently, and the results are then combined coherently
- Reduce computational costs, with ~no loss in SNR wrt single-band analyses
 - Less number of templates needed, the size of the FFT is reduced

Multi-Band Template Analysis

- The filtering is done by testing a huge number of signal templates from known astrophysical sources (NS-NS, BH-NS, BH-BH)
- Template banks:

- BNS: 26170 templates
- BHNS: 522934 templates
- BBH: 169427(standard)+9000(ungated) templates
- The searches are performed independently
- Results put together a posteriori
 - Computationally very intense

Multi-Band Template Analysis

- Full chains running at the CCIN2P3
 - 1 year of data taking analyzed
 - 60K injections/week analyzed in parallel

Background determination by using the data

14

- In order to determine the fake rate (FAR), the probability of getting an accidental coincidence between two (or three) detectors above a certain SNR threshold is determined by using single trigger information
 - They are overwhelmingly dominated by background, but real signals can be subtracted
 - Combinatorial approach: count the rate of random combinations of single triggers from the same template and coming from two (or three) different detectors which gives rise to a combined SNR larger than a threshold

Real astrophysical signals would appear as outliers in a cumulative FAR/IFAR plot

Performance on simulation (1/2)

15

The detection chain is systematically tested on simulated "injections"

- Known waveforms superimposed to background at known times
- The ability to detect them is investigated as a function of several parameters

Performance on simulation (2/2)

The "hit and miss" plots are easily converted in efficiency figures

Needed to quantify performance

16

Presentable differentially in the interesting variable(s)

Stay tuned

- New group at IP2I has joined the existing Virgo activities
 - 2 people, started 1.5 years ago
 - Now reinforced with one more student
- Mainly dedicated to LIGO-Virgo data analysis
- Well on track to participate to O3 data analysis for CBC searches
 - We are regularly presenting our results on candidates in O3 data
 - Participate to the O3 catalog papers, possibly on rates and population papers
 - Contribute to other papers on exceptional events (if any ⁽ⁱ⁾)
- Busy and exciting times, stay tuned...

Predicted rates

Study merger event rates as a function of redshift and metallicity, in several binary evolution scenarios. Results from arXiv:1308.1546v3

Noise profile

- At low frequencies dominated by seismic noise
- At high frequency we lose sensitivity because of the limited arm length, making the shot noise from individual photons become the dominant noise source
- Typical sensitivity to CBC signals in the 10-1000 Hz regime

Waveforms basics

- Typical frequency scales with 1/M
- For massive systems (>50 M_{\odot}) merger and ringdown features may contribute significantly to the signal SNR
- Spins, as well as matter effects, may add complications
- The number of parameters to describe a CBC waveform, θ , is large
 - Coalescence time and phase
 - Masses m1 and m2
 - Distance (=amplitude of the signal)
 - Spins s1 and s2
 - Sky position (RA and dec (α and δ), for instance)
 - Inclination of the orbiting plane (ι and ψ : inclination and orientation)
 - Eccentricity (typically small \rightarrow neglected)
 - Matter distribution and parameters of the EOS (irrelevant for a search)

$$h(t;\theta) = F_{+}(\alpha,\delta,\psi;t) h_{\pm}(t;\theta) + F_{\times}(\alpha,\delta,\psi;t) h_{\times}(t;\theta) \longrightarrow \text{ Strains from the GW}$$

$$h(t;\theta) = A(t;\theta) \cos \Phi(t;\theta) = -\left(\frac{G\mathcal{M}}{c^{2}r_{\text{eff}}}\right) \left(\frac{5G}{c^{3}} \frac{\mathcal{M}}{t_{c}-t}\right)^{1/4} \longrightarrow \text{ Chirp mass}$$

$$r_{\text{eff}} := r \left[F_{+}^{2}(\alpha,\delta,\psi) \left(\frac{1+\cos^{2}\iota}{2}\right)^{2} + F_{\times}^{2}(\alpha,\delta,\psi) \cos^{2}\iota\right]^{-1/2} \longrightarrow \text{ Effective distance: a degenerate parameter encoding several ones}$$