

Calibration of a gravitational-wave detector

Dimitri Estevez
Postdoctoral Researcher at IPHC

JOGLy October 8, 2020

What is gravity?

Newton's theory - 1687:

A massive object attracts another massive object by a force acting along the line intersecting both centers of mass.

Einstein's theory – 1915:

Gravity is due to spacetime curvature. Matter tells spacetime how to bend and spacetime tells matter how to move.

Gravitational Waves (GW)

Albert Einstein – 1916:

• Massive accelerating objects disturb spacetime creating waves of spacetime propagating at the speed of light in the Universe.

Generation and propagation of GW

Effect of GW on test mass particles

GW sources and detectors

Advanced Virgo (AdV)

Sensitivity of AdV (O3)

Principle of reconstruction of *h(t)*

ITF « locked » close to dark fringe \rightarrow most of the GW signal is in control signals

$$ightarrow$$
 Need to recontruct the GW signal $h = \frac{\Delta (L_N - L_W)}{L_0} = \frac{\Delta L_{free}}{L_0}$ $(L_0 = 3 \, km)$

Reconstruction of *h(t)*

- Frequency domain computation
- All blue boxes need to be calibrated to get a correct h(t)
- Latency production of $h(t) \sim 8 s$

Calibration motivations

Many results from GW detections, one example:

LIGO-Virgo (soon KAGRA) coincident detections/analyses:

- → Hubble constant requires a precise measurements of luminosity distance of a GW source
- Parameters estimation of GW sources should not be biased by calibration errors
- Absolute intercalibration of the detectors network in amplitude (based on NIST)
- → Absolute timing (GPS) between the detectors is also crucial for sky-localization

Compact Binary Coalescence (CBC) analysis uses matched filtering:

- → Following the GW signal in time and in frequency
- → Data of detectors network need to be calibrated from ~20 Hz to ~2 kHz

Past, present, future calibration

Electromagnetic actuator (EM)

Method (up to O2):

→ Move the mirror with EM force and reconstruct the motion using fringes onto the photodetector

Calibration reference:

→ Laser wavelength of the ITF

Calibration range:

 \rightarrow ~10 Hz to ~1 kHz

ITF not in observing configuration

Photon calibrator (PCal)

Method (O3 + future):

→ Induce a mirror motion by radiation pressure and compare it to an EM motion

Calibration reference:

→ Absolute laser power (NIST)

Calibration range:

 \rightarrow ~10 Hz to ~10 kHz

ITF in observing configuration

Newtonian calibrator (NCal)

Estevez et al. 2018, Class. Quant. Grav. 10.1088/1361-6382/aae95f Estevez et al. 2020, in preparation

Method (future):

→ Induce a mirror motion by variations of the local gravitational field (Second order effect of Newton's law in d-4)

Calibration reference:

→ Gravitational Constant G

Calibration range:

 \rightarrow ~10 Hz to ~200 Hz (maybe more)

ITF in observing configuration

Several EM actuators to calibrate

October 8, 2020 JOGLy – D. Estevez 13

Electromagnetic actuators

October 8, 2020 JOGLy – D. Estevez 14

Principle of calibration

R: Response of the system

A: Actuator

S: Output of the system

Exc: Excitations/Perturbations

$$\frac{S}{Exc_{ref}} = A_{ref} R$$

$$\frac{S}{Exc_{new}} = A_{new} R$$

$$A_{new} = \left[\frac{S}{Exc_{new}}\right] \left[\frac{S}{Exc_{ref}}\right]^{-1} A_{ref}$$

We need $A_{ref} \rightarrow Photon Calibrators (PCal)$

Photon Calibrator (PCal)

From laser power to force:

$$F = \frac{2\cos(\theta)}{c} P_{end}$$

From force to mirror motion assuming a rigid body:

$$x = -\frac{1}{m(2\pi f)^2}F$$

with f the modulation frequency of the laser power

Experimental setup

$$x_{pcal}^{free}(f) = -\frac{1}{m(2\pi f)^2} \frac{2\cos(\theta)}{c} P_{end}(f)$$

Geometrical parameters:

- Angle of incidence θ known with optomechanical constraints and design
- Mass of the mirror m known with density of mirror material and volume

Need to precisely estimate P_{ref} (~2 W):

- Using a laser pick-off sent to photodiodes (~3 mW)
- Photodiodes are calibrated with an integrating sphere (derive a conversion factor in V/W)
- Estimation of optical efficiency (viewports + end mirror)
- Does Virgo integrating sphere measure the same laser power as LIGO ones?

October 8, 2020 JOGLy – D. Estevez

Worldwide intercalibration

Calibration transfer at LIGO Hanford between Virgo Integrating Sphere and Gold Standard

 P_{VIS} has to be corrected by +3.92%

Uncertainty on PCal simple model

Variable	1σ Uncertainty
GS responsivity (2018)	0.32%
VIS linearity	0.4%
VIS/GS responsivity ratio	0.1%
VIS/WSV responsivity ratio	0.5%
Voltage calibrator	0.007%
Conversion factor $[V/W]$	1%
Angle cosine	0.12%
Rotation of ETM	0.001%
Mass of ETM	0.05%
PD stability w.r.t temperature (O3a)	0.1%
PD stability in time (O3a)	0.5%
Total	1.34%

This table is only valid for a "free test mass" response, below 400 Hz, but we need to calibrate up to ~ 2 kHz

More realistic PCal model

The mirror is not a rigid body:

→ Excitation of internal axisymmetric high order modes due to the laser beam hitting the center of the mirror

$$x_{peal}(f) = \left[-\frac{1}{m(2\pi f)^2} + H_d(f) \right] \frac{2\cos(\theta)}{c} P_{end}(f)$$

$$H_d(f) = \frac{G_d}{1 + \frac{j}{Q_d} \frac{f}{f_d} - \left(\frac{f}{f_d}\right)^2}$$

Need to precisely measure G_d and f_d $(Q_d > 10^6)$

PCal	ΔG_d	Δf_d
WE	$\pm 0.35\%$	$\pm 0.014\%$
NE	$\pm 0.37\%$	$\pm 0.006\%$

JOGLy – D. Estevez

Uncertainty on PCal

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$\begin{array}{cccc} VIS \ linearity & 0.4\% \\ VIS/GS \ responsivity \ ratio & 0.1\% \\ VIS/WSV \ responsivity \ ratio & 0.5\% \\ Voltage \ calibrator & 0.007\% \\ Conversion \ factor \ [V/W] & 1\% \\ Angle \ cosine & 0.12\% \\ Rotation \ of \ ETM & 0.001\% \\ Mass \ of \ ETM & 0.05\% \\ PD \ stability \ w.r.t \ temperature \ (O3a) & 0.1\% \\ PD \ stability \ in \ time \ (O3a) & 0.5\% \\ \end{array}$	Variable	1σ Uncertainty
$\begin{array}{cccc} VIS/GS \ responsivity \ ratio & 0.1\% \\ VIS/WSV \ responsivity \ ratio & 0.5\% \\ Voltage \ calibrator & 0.007\% \\ Conversion \ factor \ [V/W] & 1\% \\ Angle \ cosine & 0.12\% \\ Rotation \ of \ ETM & 0.001\% \\ Mass \ of \ ETM & 0.05\% \\ PD \ stability \ w.r.t \ temperature \ (O3a) & 0.1\% \\ PD \ stability \ in \ time \ (O3a) & 0.5\% \\ \end{array}$	GS responsivity (2018)	0.32%
$\begin{array}{cccc} VIS/WSV \text{ responsivity ratio} & 0.5\% \\ Voltage \text{ calibrator} & 0.007\% \\ Conversion \text{ factor } [V/W] & 1\% \\ Angle \text{ cosine} & 0.12\% \\ Rotation \text{ of ETM} & 0.001\% \\ Mass \text{ of ETM} & 0.05\% \\ PD \text{ stability w.r.t temperature } (O3a) & 0.1\% \\ PD \text{ stability in time } (O3a) & 0.5\% \\ \end{array}$	VIS linearity	0.4%
$\begin{array}{cccc} & Voltage \ calibrator & 0.007\% \\ & Conversion \ factor \ [V/W] & 1\% \\ & Angle \ cosine & 0.12\% \\ & Rotation \ of \ ETM & 0.001\% \\ & Mass \ of \ ETM & 0.05\% \\ & PD \ stability \ w.r.t \ temperature \ (O3a) & 0.1\% \\ & PD \ stability \ in \ time \ (O3a) & 0.5\% \\ \end{array}$	VIS/GS responsivity ratio	0.1%
$\begin{array}{ccc} \text{Conversion factor [V/W]} & 1\% \\ \text{Angle cosine} & 0.12\% \\ \text{Rotation of ETM} & 0.001\% \\ \text{Mass of ETM} & 0.05\% \\ \text{PD stability w.r.t temperature (O3a)} & 0.1\% \\ \text{PD stability in time (O3a)} & 0.5\% \\ \end{array}$	VIS/WSV responsivity ratio	0.5%
$\begin{array}{ccc} \text{Angle cosine} & 0.12\% \\ \text{Rotation of ETM} & 0.001\% \\ \text{Mass of ETM} & 0.05\% \\ \text{PD stability w.r.t temperature (O3a)} & 0.1\% \\ \text{PD stability in time (O3a)} & 0.5\% \\ \end{array}$	Voltage calibrator	0.007%
$\begin{array}{ccc} \text{Rotation of ETM} & 0.001\% \\ \text{Mass of ETM} & 0.05\% \\ \text{PD stability w.r.t temperature (O3a)} & 0.1\% \\ \text{PD stability in time (O3a)} & 0.5\% \\ \end{array}$	Conversion factor [V/W]	1%
$\begin{array}{ccc} \text{Mass of ETM} & 0.05\% \\ \text{PD stability w.r.t temperature (O3a)} & 0.1\% \\ \text{PD stability in time (O3a)} & 0.5\% \end{array}$	Angle cosine	0.12%
PD stability w.r.t temperature (O3a) 0.1% PD stability in time (O3a) 0.5%	Rotation of ETM	0.001%
PD stability in time (O3a) 0.5%	Mass of ETM	0.05%
` ' /	PD stability w.r.t temperature (O3a)	0.1%
Total 1.34%	PD stability in time (O3a)	0.5%
	Total	1.34%

This is the limiting calibration uncertainty for the reconstructed h(t)

Calibration of EM actuators

• A_{mir} has to be calibrated

$$A_{mir} = \left[\frac{S}{Cal_{new}}\right] \left[\frac{S}{P_{ref}}\right]^{-1} A_{pcal}$$

$$A_{mir} = A_{mech} \cdot A_{elec}$$
 with $A_{mech} \propto f^{-2}$

Normalize A_{mir} by the simple pendulum response:

→ Better see the fine effects of the electronics

Check *h(t)* reconstruction

EM actuators are calibrated $\rightarrow h(t)$ can be reconstructed

 \rightarrow Need to assess how well we reconstruct h(t)

Transfer function from h_{ini} to h_{rec}

- Perfect case → amplitude 1, phase 0 rad
- Real case → frequency dependent bias

October 8, 2020

JOGLy - D. Estevez

Uncertainty on the reconstructed *h(t)*

Adding uncertainty from calibration:

Amplitude uncertainty $\rightarrow \delta A = \pm 5\%$

Phase uncertainty $\rightarrow \delta \Phi = \pm 35 \text{ mrad}$

Timing uncertainty $\rightarrow \delta \tau = \pm 10 \ \mu s$

Uncertainty provided with online h(t)

EM actuators and PCal measurements:

- \rightarrow Same bias in h(t)
- Something is not accurate in the reconstruction

Absolute calibration issue

2009 EUROMET Comparison Project no. 156

Reference: Gold Standard calibrated by NIST at the level of 0.32%

Need another calibration method to check the absolute calibration
→ Newtonian Calibrator (NCal)

October 8, 2020 JOGLy – D. Estevez 25

Newtonian Calibrator (NCal)

$$F = \frac{9}{2} \frac{GMmr^2}{d^4} \left[\cos(2\theta) \right]$$

For frequency well above pendulum resonance (0.6 Hz):

$$\Delta x_{ncal}(\theta,f_h) = rac{F(\theta)}{M(2\pi f_h)^2} \quad ext{ f}_{ ext{h}} = 2 ext{f}_{ ext{rotor}}$$

$$\alpha_h(f_h) = \frac{RP}{f_h^2}$$
 $R = \frac{Gmr^2}{8\pi^2}$ $P = \frac{9}{d^4}$

The rotor geometry is not just point masses:

→ We developed and used a finite element analysis model to analyse the O3 NCal data

Tests with the NCal

Verification of h(t) reconstruction

NCal independent method:

- → Same frequency dependent shape as with PCal and EM actuators
- → Offset on amplitude (~3%)
- → Nice agreement on the phase

Parameter	h_{rec}/h_{inj} near [%]	h_{rec}/h_{inj} far [%]
NCal to mirror distance d	2.02	1.31
NCal to mirror angle Φ	0.23	0.23
NCal vertical position z	1.6 e-4	0.7 e-4
Rotor geometry	0.53	0.53
Modeling method	0.018	0.017
Mirror torque from NCal	0.05	0.03
Total	2.1	1.4

(Uncertainty on G is ~0.002%)

Not incompatible with the PCal systematic uncertainty

Takeaway

- Calibration of the gravitational-wave detectors is (will be) of prime importance not to bias the scientific results
 - → Current level of uncertainty is between 2% and 5% in amplitude and ~2° in phase
 - → "Good enough" for the current sensitivity of the detectors
 - → Expect to go below 1% in amplitude in the future
- Method: compare an injected known signal to the output of the interferometer
- Photon Calibrators are the reference calibration tools for the detectors network
 - → Possibility to intercalibrate the integrating spheres on a common "Gold Standard" calibrated by NIST
 - \rightarrow Fastest way to validate the reconstructed h(t) from 10 Hz to 2 kHz (and beyond)
 - → Measurement of laser power is not that simple, dependence on temperature, humidity etc...
- Relative calibration between the detectors has been tackled but is the calibration absolute?
 - Development of Newtonian Calibrators with "simpler" parameters to control (distance and geometry)
 - \rightarrow Difficult to check the reconstructed h(t) at high frequency
 - Possibility to calibrate the PCals at low frequency and extend the calibration with the PCals at high frequency

EXTRA SLIDES

Uncertainty on online h(t)

October 8, 2020 J

JOGLy – D. Estevez

Advanced Virgo sensitivity O3

Sensitivity for best BNS range of the day (59 Mpc)

Noise budget O3

Not only "fundamental noise"

Advanced Virgo super-attenuator

NCal geometry

Virgo:

Two aluminum 90° cylindrical sectors Expected force at 2f Spins up to f ~100 Hz LIGO:

Expected forces at 2f, 3f, 4f and 6f (but forces > 2f are very small in practice...)
Spins up to f ~10 Hz