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What is gravity?
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Force Force

Newton’s theory – 1687:

A massive object attracts another massive object 
by a force acting along the line intersecting both 
centers of mass.

Einstein’s theory – 1915:

Gravity is due to spacetime curvature.
Matter tells spacetime how to bend and spacetime 
tells matter how to move.
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Gravitational Waves (GW)
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Albert Einstein – 1916:

● Massive accelerating objects disturb spacetime creating waves of spacetime 
propagating at the speed of light in the Universe. 

Effect of GW on test mass particlesGeneration and propagation of GW

δ L=
1
2
h⋅L

GW strain

Length at rest
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GW sources and detectors
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 Virgo LIGO

Moore 2014, Class. Quant. Grav.
  10.1088/0264-9381/32/1/015014

https://iopscience.iop.org/article/10.1088/0264-9381/32/1/015014
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Interferometric detection
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Beamsplitter Mirror

Interferences
Photodetector

Laser

Mirror
Michelson interferometer

● Converts length variations into power 
variations

● GW effect:
● Need controls to stay close to dark fringe

δ L⩽10−18m

Beamsplitter Mirror

Interferences
Photodetector

Laser

Mirror

1- GW, detection, reconstruction
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1- GW, detection, reconstructionAdvanced Virgo (AdV)
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Advanced Virgo – Cascina, Italy
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PR and BS positions also controlled

Advanced Virgo (AdV)
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Laser

λlaser=1064 nm

Photodetectors
North

West

LW = 3 km
FW = 450

LN = 3 km
FN = 450

NENI

WI

WE

BS

PR

modulation

IMC

OMC1
OMC2

SR

lW = 5.4 m

lN = 5.6 m

lPR = 5.8 m

Squeezing system

Control
Filters

Control
signals

Control
signals

~h∝
1
L√P

Suspended mirrors
     → free test masses
Interferometer close to dark fringe:
     → better photon signal to noise ratio
Sensitivity:

    → long arm-length L
    → high laser power P



October 8, 2020 JOGLy – D. Estevez

Sensitivity of AdV (O3)
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At 100 Hz:
δ L=6⋅10−24

⋅3000=1.8⋅10−20m/√Hz

Best measured sensitivity O3
A

SD
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Principle of reconstruction of h(t)
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Photodetector
signal

Control
signals

Online reconstructed
GW amplitude h(t)-

Real differential arm 
length variation of the 

ITF
Δ Lreal

Controlled differential 
arm length variation of 

the ITF
Δ Lctrl

Free differential arm 
length variation of the 

ITF
Δ Lfree≡L0⋅h

(L0=3 km)

ITF « locked » close to dark fringe  most of the GW signal is in control signals→ 

  → Need to recontruct the GW signal h=
Δ(LN−LW )

L0
=

Δ Lfree
L0
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Reconstruction of h(t)
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1/Optical Response of ITF
1/Photodiodes sensing

Photodetector
signal [W]

-

Electromagnetic
actuators [m/V]

Control signals [V]

1/Optical gain ITF
[m/W] h(f)

1/L
0

[1/m]

Optical gain cavities
[W/m]

Main focus of the 
presentation

● Frequency domain computation
● All blue boxes need to be calibrated to get a correct h(t)
● Latency production of h(t)  ~8 s

h(t)
FFT-1
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Calibration motivations
Many results from GW detections, one example:

Compact Binary Coalescence (CBC) analysis uses matched filtering:
➔ Following the GW signal in time and in frequency
➔ Data of detectors network need to be calibrated from ~20 Hz to ~2 kHz

Hubble constant with GW170817

➔ Absolute intercalibration of the detectors network 
in amplitude (based on NIST)

➔ Absolute timing (GPS) between the detectors is also 
crucial for sky-localization

hH
rec

(t)

hL
rec

(t)

hV
rec

(t)

LIGO-Virgo (soon KAGRA) coincident detections/analyses:

➔ Hubble constant requires a precise measurements 
of luminosity distance of a GW source

➔ Parameters estimation of GW sources should not 
be biased by calibration errors

Abbott et al. 2017,
Nature,
10.1038/nature24471

Shawhan 2012,
SPIE,
10.1117/12.926372

https://www.nature.com/articles/nature24471
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/8448/1/Rapid-alerts-for-following-up-gravitational-wave-event-candidates/10.1117/12.926372.short?SSO=1
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Electromagnetic actuator
(EM)

Photon calibrator
(PCal)

Newtonian calibrator
(NCal)

Method (up to O2):
 → Move the mirror with EM force

and reconstruct the motion using fringes 
onto the photodetector

Calibration reference:
 → Laser wavelength of the ITF

Calibration range:
 → ~10 Hz to ~1 kHz

ITF not in observing configuration

Method (O3 + future):
 → Induce a mirror motion by radiation 

pressure and compare it to an EM 
motion

Calibration reference:
 → Absolute laser power (NIST)

Calibration range:
 → ~10 Hz to ~10 kHz

 ITF in observing configuration

Method (future):
 → Induce a mirror motion by variations 

of the local gravitational field
     (Second order effect of Newton’s law in d-4)

Calibration reference:
       → Gravitational Constant G

Calibration range:
       → ~10 Hz to ~200 Hz (maybe more)

ITF in observing configuration

Past, present, future calibration
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Estevez et al. 2018,
Class. Quant. Grav.
10.1088/1361-6382/aae95f

Estevez et al. 2020,
Submitted to CQG
2009.08103

Estevez et al. 2020,
in preparation

https://iopscience.iop.org/article/10.1088/1361-6382/aae95f
https://arxiv.org/abs/2009.08103
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Several EM actuators to calibrate

13

Laser NENI

WI

WE

BS

PR

EM actuator

Photon Calibrator

Newtonian Calibrator
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Electromagnetic actuators
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F7

Actuation
Cage

Marionette

Mirror
Coils

Magnets

AEM=Amech⋅AelecActuator to be calibrated:

Amech

f−2

f−4

Mirror

Marionette

Mirror
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Principle of calibration

R
A

ref

A
new

Exc
ref

Exc
new

S

S
Excref

=Aref R

S
Excnew

=Anew R

A new=[ S
Exc new ] [

S
Excref ]

−1

Aref

Known
Unknown

R: Response of the system
A: Actuator
S: Output of the system
Exc: Excitations/Perturbations

Measured

We need A
ref

  Photon Calibrators (PCal)→ 
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Photon Calibrator (PCal)
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F=
2cos (.)
c

Pend

x=−
1

m(2π f )2
F

From laser power to force:

From force to mirror motion 
assuming a rigid body:

with f the modulation frequency 
of the laser power

θ

θ
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Experimental setup
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P
end

Geometrical parameters:
● Angle of incidence θ known with opto-

mechanical constraints and design
● Mass of the mirror m known with density 

of mirror material and volume

Need to precisely estimate Pref (~2 W):
● Using a laser pick-off sent to photodiodes 

(~3 mW)
● Photodiodes are calibrated with an 

integrating sphere (derive a conversion 
factor in V/W)

● Estimation of optical efficiency (viewports 
+ end mirror)

● Does Virgo integrating sphere measure 
the same laser power as LIGO ones?
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Worldwide intercalibration
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Calibration transfer at LIGO Hanford 
between Virgo Integrating Sphere and 

Gold Standard 0.9623

Only stat. errors 

P
VIS

 = P
GS

 x 0.9623

P
VIS

 has to be corrected by +3.92%

0.2%

0.32%



October 8, 2020 JOGLy – D. Estevez

Uncertainty on PCal simple model
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This table is only valid for a “free test mass” response, below 400 Hz,
but we need to calibrate up to ~ 2 kHz
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More realistic PCal model
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The mirror is not a rigid body:
 → Excitation of internal axisymmetric high order modes

     due to the laser beam hitting the center of the mirror

Need to precisely measure Gd and fd 
(Q

d
 > 106)



October 8, 2020 JOGLy – D. Estevez

Uncertainty on PCal
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± 1.34%

This is the limiting calibration uncertainty for the reconstructed h(t)
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Calibration of EM actuators
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Normalized EM actuator response

R
A

pcal

A
mir

P
ref

Cal
new

S
● A

pcal
 has been calibrated

● A
mir

 has to be calibrated

Amir=[ S
Calnew ][ SPref ]

−1

A pcal

Amir=Amech⋅Aelec Amech∝ f
−2

with

Normalize A
mir

 by the simple pendulum response:
➔ Better see the fine effects of the electronics
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Check h(t) reconstruction
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EM actuators are calibrated  → h(t) can be reconstructed
 → Need to assess how well we reconstruct h(t)

Sinewave
excitations

Real ΔLL
mir

 and
ITF response

Hrec process h
rec

(f)

Calibrated
actuator response

Injected ΔLL
mir

 1/L
0

h
inj

(f)
EM actuators
Photon calibrators
Newtonian calibrators

Transfer function from h
inj

 to h
rec

● Perfect case  amplitude 1, phase 0 rad→ 
● Real case  frequency dependent bias→ 
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Uncertainty on the reconstructed h(t)
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Max. amplitude 3.5%

Max. phase 30 mrad

Adding uncertainty from calibration:

Amplitude uncertainty  → δA = ±5%

Phase uncertainty  → δΦ = ±35 mrad

Timing uncertainty  → δτ = ±10 μs

EM actuators and PCal measurements:
➔ Same bias in h(t)
➔ Something is not accurate in the reconstruction 

Uncertainty provided with online h(t) 

A hrec / A
hinj

φ hrec – φ
hinj [rad] Frequency[Hz]

Timing 3 μs 
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Absolute calibration issue
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Reference: Gold Standard calibrated 
by NIST at the level of 0.32%

Need another calibration method to 
check the absolute calibration

 → Newtonian Calibrator (NCal)
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Newtonian Calibrator (NCal)
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The rotor geometry is not just point masses:
     → We developed and used a finite element analysis model 
to analyse the O3 NCal data

Mirror motion amplitude:

f
h
 = 2f

rotor

For frequency well above pendulum resonance (0.6 Hz):
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Tests with the NCal
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Verification of h(t) reconstruction

NCal independent method:
      → Same frequency dependent shape as with 

PCal and EM actuators
      → Offset on amplitude (~3%)
      → Nice agreement on the phase

Not incompatible with the PCal systematic uncertainty

(Uncertainty on G is ~0.002%)
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Takeaway
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● Calibration of the gravitational-wave detectors is (will be) of prime importance not to bias the 
scientific results
➔ Current level of uncertainty is between 2% and 5% in amplitude and ~2° in phase
➔ “Good enough” for the current sensitivity of the detectors
➔ Expect to go below 1% in amplitude in the future

● Method: compare an injected known signal to the output of the interferometer

● Photon Calibrators are the reference calibration tools for the detectors network
➔ Possibility to intercalibrate the integrating spheres on a common “Gold Standard” calibrated by NIST
➔ Fastest way to validate the reconstructed h(t) from 10 Hz to 2 kHz (and beyond)
➔ Measurement of laser power is not that simple, dependence on temperature, humidity etc...

● Relative calibration between the detectors has been tackled but is the calibration absolute?
➔ Development of Newtonian Calibrators with “simpler” parameters to control (distance and geometry)
➔ Difficult to check the reconstructed h(t) at high frequency
➔ Possibility to calibrate the PCals at low frequency and extend the calibration with the PCals at high frequency
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EXTRA SLIDES
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Uncertainty on online h(t)
A hrec / A hinj

φ hrec – φ hinj 

[rad] Frequency[Hz]
Uncertainty on 

online h(t) for Virgo

Uncertainty on 
online h(t) for LIGOLivingston Hanford
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Advanced Virgo sensitivity O3

Technical noise
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Noise budget O3
Not only “fundamental noise”
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Advanced Virgo super-attenuator
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NCal geometry
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Holes

Tungsten cylinders
LIGO:Virgo:

Expected forces at 2f, 3f, 4f and 6f
(but forces > 2f are very small in practice…)
Spins up to f ~10 Hz

Two aluminum 90° cylindrical sectors
Expected force at 2f
Spins up to f ~100 Hz
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