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What is gravity?

o

Newton'’s theory - 1687:

A massive object attracts another massive object
by a Force acting along the line intersecting both
centers of mass.

Einstein’s theory - 1915:

Gravity is due to spacetime curvature.
Matter tells spacetime how to bend and spacetime
tells matter how to move.
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Gravitational Waves (GW)

Albert Einstein — 1916:

* Massive accelerating objects disturb spacetime creating waves of spacetime
propagating at the speed of light in the Universe.

Generation and propagation of GW Effect of GW on test mass particles
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Characteristic Strain

GW sources and detectors

10 12

Stochastic IPTA Moore 2014, Class. Quant. Grav.

background 10.1088/0264-9381/32/1/015014
10 ¢
10 7°

Massive binaries
_ Resolvable galactic
10 '® LISA binaries
Extreme mass .
10 20 ratio inspirals A+ Virgo LIGO
Compact binary
Unresolvable inspirals
galactic binaries
10 22 ET
Core collapse
o4 supernovae
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https://iopscience.iop.org/article/10.1088/0264-9381/32/1/015014
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Michelson interferometer

Y Mirror
¢ S * Converts length variations into power
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D § * GW effect: sL<10""m
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Advanced Virgo (AdV)

Control
signals
PR and BS positions also controlled WE
Suspended mirrors
- free test masses
Interferometer close to dark fringe:
— better photon signal to noise ratio WI
SenSitiVity modulation l,=5.4m
T OC_\/_ Laser v ,—i s NI NE
- - =56 [l L, = 3 km D Control
— long arm-length L A...=1064 nm PR N m N signals
- high laser powerp .. Fy, =450
SR i
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West M OMC1 gueezing system
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North N
Photode@
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Sensitivity of AdV (03)
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Principle of reconstruction of A(t)

ITF « locked » close to dark fringe = most of the GW signal is in control signals

- Need to recontruct the GW signal h=

Photodetector
signal

|

Real differential arm
length variation of the
ITF

AL

real
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Reconstruction of h(t)

Control signals [V]
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Electromagnetic
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Optical gain cavities

[W/m]

Photodetector
signal [W]
—_—

1/Optical Response of ITF
1/Photodiodes sensing

1/Optical gain ITF

‘v ... Main focus of the
.’ presentation

[m/W]

* Frequency domain computation
* All blue boxes need to be calibrated to get a correct A(t)
* Latency production of h(t) ~8s
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Calibration motivations

Many results from GW detections, one example: /i P . .
Hubble constant with CW 170817 N (IE)IGO Virgo (soon KAGRA) coincident detections/analyses:

Planck

GEO 600

o
LIGQ Livingston o
& LIGO-India

0.02 — L
ht . (t)
Abbottetal. 2017,
i ] : Nature,
o 50 elo 7|o slo glo 1cl)0 1:0 1éo 1;0 140 101038/natur€24471 gg?EVVhan 2012’
Ho (km s~ Mpc—1) 7
10.1117/12.926372

» Hubble constant requires a precise measurements > Absolute intercalibration of the detectors network

of luminosity distance of a GW source in amplitude (based on NIST)
» Parameters estimation of GW sources should not > Absolute timing (GPS) between the detectors is also

be biased by calibration errors crucial For sky-localization

Compact Binary Coalescence (CBC) analysis uses matched filtering:
»> Following the GW signal in time and in frequency
> Data of detectors network need to be calibrated from ~20 Hz to ~2 kHz
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https://www.nature.com/articles/nature24471
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/8448/1/Rapid-alerts-for-following-up-gravitational-wave-event-candidates/10.1117/12.926372.short?SSO=1

Past, present, future calibration

Electromagnetic actuator
(EM)

Photon calibrator
(PCal)

Newtonian calibrator
(NCal)

Marionette

Actuation
Cage

Mirror
Coils

Magnets

Method (up to 02):
— Move the mirror with EM force
and reconstruct the motion using fringes
onto the photodetector

Calibration reference:
— Laser wavelength of the ITF

Calibration range:
- ~10 Hz to ~1 kHz

ITF not in observing configuration

Estevez et al. 2020,
Submitted to CQG
2009.08103

Monolithic wire

(length 1) Auxiliary laser beam

/4\1
Suspended mirror
( mass m)

Reflected laser beam
( power P,,)

F

Method (O3 + future):
- Induce a mirror motion by radiation
pressure and compare it to an EM
motion

Calibration reference:
— Absolute laser power (NIST)

Calibration range:
- ~10 Hz to ~10 kHz

ITF in observing configuration

Estevezetal. 2018,
Class. Quant. Grav.
10.1088/1361-6382/aae95f

Estevez et al. 2020,
in preparation

Mirror

Method (Future):
— Induce a mirror motion by variations
of the local gravitational field
(Second order effect of Newton'’s law in d*)

Calibration reference:
— Gravitational Constant G

Calibration range:
— ~10 Hz to ~200 Hz (maybe more)

ITF in observing configuration

October 8, 2020
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https://iopscience.iop.org/article/10.1088/1361-6382/aae95f
https://arxiv.org/abs/2009.08103

Several EM actuators to calibrate

A WE

- Wi
Laser - /\ B BS NI NE
I s ]

PR

) EM actuator

A\ Photon Calibrator %
‘ Newtonian Calibrator
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Electromagnetic actuators

Marionette
Actuation
Cage
‘: Mirror
Coils . '
Magnets

Actuator to be calibrated: Ary =A ccn Actec

October 8, 2020
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Principle of calibration

R Ba e )
~ NnKNOoOwnN
Exc A >—>

new e Measured

R: Response of the system

A: Actuator

S: Output of the system

Exc: Excitations/Perturbations

E > = Aref R 1
XC o S S
A, .= A
. m— A, ! Fre l Fxe | Awr
— Anew R
Exc

new

We need A . - Photon Calibrators (PCal)
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Photon Calibrator (PCal)

From laser power to force:

_ 2cos (9) p

F

end

From force to mirror motion
assuming a rigid body:

1
m(27tf)2
with fF the modulation frequency
of the laser power

October 8, 2020

L

Monolithic wire

(length 1) Auxiliary laser beam

T

(8] ITF beam

Suspended mirror
( mass m )

Reflected laser beam
( power P _.)
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Experimental setup

Reflection
Bench

(in air) (in vacuum)

End mirror

Main interferometer beam ........................... - .

Mass m

PCal beam
Injection
Bench
(in air)

1 2cos(0)
T m@2rf)? o«

zl(f) = Pena(f)
Geometrical parameters:

* Angle of incidence 8 known with opto-
mechanical constraints and design

* Mass of the mirror m known with density
of mirror material and volume

Need to precisely estimate P_, (~2 W):

* Using a laser pick-off sent to photodiodes
(~3 mW)

* Photodiodes are calibrated with an
integrating sphere (derive a conversion
factorin V/W)

» Estimation of optical efficiency (viewports
+ end mirror)

* Does Virgo integrating sphere measure
the same laser power as LIGO ones?

October 8, 2020 JOGLy - D. Estevez 17



Worldwide intercalibration

KAGRA
o

0.2%

0.32% LIGO I;anford G%O ==
z Virgo
LIGQ Livingston o
LIGO-Indi
Interferometer Beam o
@ Hanford bended
LIGO Mirror
India Virgo
KAGRA Italy
Japan Transfer VIS/GS
0.9635
- P, =P x0.9623
Calibration transfer at LIGO Hanford 0.9630 s
between Virgo Integrating Sphere and - }
Gold Standard 23 1 s S e B S
> 0.9620 i
P, has to be corrected by +3.92% 0.9615 f
1 2 3 4
Measurements
October 8, 2020 JOGLy —D. Estevez Only stat. errors
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Uncertainty on PCal simple model

This table is only valid for a “free test mass” response, below 400 Hz,

October 8, 2020

Variable lo Uncertainty
GS responsivity (2018) 0.32%
VIS linearity 0.4%
VIS /GS responsivity ratio 0.1%
VIS/WSV responsivity ratio 0.5%
Voltage calibrator 0.007%
Conversion factor [V/W]| 1%
Angle cosine 0.12%
Rotation of ETM 0.001%
Mass of ETM 0.05%
PD stability w.r.t temperature (O3a) 0.1%
PD stability in time (O3a) 0.5%
Total 1.34%

but we need to calibrate up to ~ 2 kHz

JOGLy —D. Estevez
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More realistic PCal model

The mirror is not a rigid body:
— Excitation of internal axisymmetric high order modes
due to the laser beam hitting the center of the mirror

T
T
N,

1 2 cos(6
Tpeat(f) = { T ) + Hd(f)] 7()Pend(f)
Gd %10-16 Free mass response USRI ST SR
Hd(f) — . f i 2 ?; 1017 Drumhead mode coupling response |
L_ — G Pcal response
1 + Qd fd (fd) E 10-13 — p
107

W

Need to precisely measure G, and f, TEN //
(Q, > 109) 107 ~N— ’ o

1022 \ 7—<___‘___ E
—_—
10% :

PCal | AG, A,
WE | £0.35% | +0.014% e
NE | £0.37% | +0.006% o

1 - | | | | | | | ‘ | | Il | 1 | | Il 1| | | ‘ | Il Il | | 1 L 1| Il L L1 L 1 L |
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Frequency [Hz]
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Uncertainty on PCal

Variable lo Uncertainty

GS responsivity (2018) 0.32%
VIS linearity 0.4%
VIS/GS responsivity ratio 0.1%
VIS/WSV responsivity ratio 0.5%

Voltage calibrator 0.007%
Conversion factor [V/W]| 1%

Angle cosine 0.12%

Rotation of ETM 0.001%

Mass of ETM 0.05%

PD stability w.r.t temperature (O3a) 0.1%
PD stability in time (O3a) 0.5%

Total 1.34%

Uncertainty budget of the PCals in %

— WE

AL

+1.34%

Frequency [Hz]

i

This is the limiting calibration uncertainty for the reconstructed h(t)

October 8, 2020

JOGLy —D. Estevez

21

a



Calibration of EM actuators

P Apcal }—» « A, hasbeen calibrated

g R — S -+ A, hastobe calibrated
Calnew AIT\II' ,>_>

Normalized EM actuator response

Modulus residuals
0.406F “;’\E
1 0.404f g 04
_ l ] ! ] A (}A4n2§ il i‘;w% 0.2 I
- pcal 0.4f E T T
Cal,,, P 0.398?_'7’1*“*4*%\ A H {U I H”HMM : {
0.396f Iy 7 £ 02
—2 0.394f E}HLFP ‘g 0.4
: mech Aelec With Amech oC f 10 10? 10° = 10 107 Frequency [llgll
Phase resi
Lér k=)
1.4f £ 0.008
. ) 1.2 ,gj :‘5 0.006
Normalize A by the simple pendulum response: ok S ool
. . of 4 E ) T 113 T 11 i1 3
> Better see the fine effects of the electronics ol i P
0‘2; e ff 0:0(}4
10 107 10° 10 10*

10°
Frequency [Hz]
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Check h(t) reconstruction

EM actuators are calibrated — A(t) can be reconstructed
— Need to assess how well we reconstruct h(t)

. RealAL  and » Hrec process > h_(F)
| ITF response
Sinewave
excitations
| »  Calibrated _|ectedAl =1L = h (F)
EM actuators actuator response mir 0 "

Photon calibrators
Newtonian calibrators

Transfer function from h, .to h_

* Perfect case —» amplitude 1, phase 0 rad
* Real case — frequency dependent bias
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Uncertainty on the reconstructed h(t)

—»—NE, EM

WE, EM

—+NE, PCal
- WE, PCal

. . -
<
=)

ENRRRNRRRNAN]

< 104 Max. amplitude 3.5%
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;
10°

Adding uncertainty from calibration:
Amplitude uncertainty - 6A = 5%
Phase uncertainty - 6® = +35 mrad

Timing uncertainty - ét =110 ps

Uncertainty provided with online A(t)

EM actuators and PCal measurements:
» Same biasin h(t)
»> Something is not accurate in the reconstruction
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Absolute calibration issue
2009 EUROMET Comparison Project no. 156

Ophir, Nd:YAG,1W

3%

e [ | | Reference: Gold Standard calibrated
T T T by NIST at the level of 0.32%
1% =
w o : ! T
a : l Il Need another calibration method to
1% check the absolute calibration
- l + It L — Newtonian Calibrator (NCal)
-3% T T P— T T T T

DE SE US FR ZA JP GB RO AU
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Newtonian Calibrator (NCal)

Mirror e e

P ———

2 d4
For frequency well above pendulum resonance (0.6 Hz):

F(6
Aiﬁncal(ea fh) - M(Qgr}h)Q h— 2Frotor

Mirror motion amplitude:

The rotor geometry is not just point masses:
an(fr) = RP Gmr? 9 — We developed and used a finite element analysis model
it i R = 3772 P = A to analyse the O3 NCal data
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Tests with the NCal

Verification of h(t) reconstruction
Amplitude ratio

o 1042 - NCal independent method:
£ 1.03E * i .
8 s L — Same frequency dependent shape as with
g@l 1.01E . . PCal and EM actuators
e 1E . i .
2 oge L . ! — Offset on amplitude (~3%)
joul= A — Nice agreement on the phase
0'97§ i i ak e PCalNE
0.98 E R ra A Near NCal pos. corr.
0.95 = e R Parameter hpee/ hing near [%] | hypeefhin; far [%]
0847 ' (‘,]gmn“enm o NCal to mirror distance d 2.02 1.31
ficalerrors | Phase difference NCal to mirror angle ® 0.23 0.23
B 004 NCal vertical position z 1.6 e-4 0.7 e-4
% 0.03 A boa 'i Rotor geometry 0.53 0.53
< 0.02; T LY : Modeling method 0.018 0.017
§| 001E ™ O Mirror torque from NCal 0.05 0.03
=t " * Total 2.1 1.4
R R (Uncertainty on G is ~0.002%)
-0.02 ; : :S:: :Ea\ pes. corr.
003 4 _Far Nl poscon Not incompatible with the PCal systematic uncertainty
10

102
frequency (Hz)
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Takeaway

Calibration of the gravitational-wave detectors is (will be) of prime importance not to bias the
scientific results

> Current level of uncertainty is between 2% and 5% in amplitude and ~2° in phase

> "“Good enough” for the current sensitivity of the detectors

> Expect to go below 1% in amplitude in the future

Method: compare an injected known signal to the output of the interferometer

Photon Calibrators are the reference calibration tools for the detectors network

> Possibility to intercalibrate the integrating spheres on a common “Gold Standard” calibrated by NIST
> Fastest way to validate the reconstructed h(t) from 10 Hz to 2 kHz (and beyond)

»> Measurement of laser power is not that simple, dependence on temperature, humidity etc...

Relative calibration between the detectors has been tackled but is the calibration absolute?

> Development of Newtonian Calibrators with “simpler” parameters to control (distance and geometry)

> Difficult to check the reconstructed h(t) at high frequency

> Possibility to calibrate the PCals at low frequency and extend the calibration with the PCals at high frequency
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Uncertainty on online h(t)
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Advanced Virgo sensitivity O3

Sensnwlty for best BNS range of the day (59 Mpc)

—— Virgo sensitivity best of the day {(at GPS=1265154010) 59 Mpc
—— 03a Reference Sensitivity (GPS=1248825000) BNS range=48 Mpc
O3 Observing Scenarip (60-85 Mpc)

eloq43891 sensnmty 6 Mpc}

10° 10°
Start=Feb 7 23:39:52 2020 duration=300 sec Freq (Hz)
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Noise budget O3

10—20

10—21 L

1/rt(Hz)

10722

1077 |

Not only “fundamental noise”

STRAIN NoiseBudget; gps = 1261526389 (2019-12-27 23:59:31 UTC)

10°1° F T
VA

l
\ 1

j‘w

‘\

\ ';\

l

\

10—24

October 8, 2020

10t

T
Measured raw; BNS 45Mpc, BBH 5.2e+02Mpc
O3 goal, BNS 85 Mpc, LIGO-P1200087
mmmssss Sum; BNS 62Mpc, BBH 7.4e+02Mpc
—flat noise" estimate
ASC 4

Calibration 3
DAC

e Dark
l| — Demodulation

ENV
5C
C antumVaLlu
SSFS
SEeismic-Therma

easured clea BNS 50 bc, IBBH 5 Pd+ 02 Mpd®

"1

Frequency [Hz]
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Advanced Virgo super-attenuator

—  Model
—  Measurement

o1 1 10 160
Frequency (Hz)
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NCal geometry

Virgo: LIGO:
Tungsten cylinders

Holes
Two aluminum 90° cylindrical sectors Expected forces at 2f, 3, 4f and 6f
Expected force at 2f (but forces > 2F are very small in practice...)
Spins up to F~100 Hz Spins up to F~10 Hz

October 8, 2020 JOGLy - D. Estevez 34
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