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DNA supercoiling (Martis, Forquet et al. 2019)

What is DNA supercoiling ?
Deformation of DNA double-helix resulting from torsional stress

Constant regulation by topoisomerases which are essential and
highly conserved
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DNA supercoiling (Martis, Forquet et al. 2019)

A rapid physical sensor of changing environments in bacteria
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DNA supercoiling (Martis, Forquet et al. 2019)

A global, complex (and ubiquitous ?) regulator in bacteria

⇒ No quantitative nor qualitative modeling
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Regulation without regulators

Basal regulation of RNA Polymerase-DNA interaction during
transcription initiation
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Relaxation e.g. σ = -0.06 to -0.04 ⇒ much stronger repression of GC-rich
discriminators
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In vivo model validation on individual promoters

Relaxation ⇒ much stronger repression of GC-rich discriminators ?

Plasmid transformation in E. coli, monitoring of growth and expression

Gene response to novobiocin-induced relaxation consistent with predictions ?
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In vivo model validation on individual promoters

pheP hybrid strain in LB rich medium
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In vivo model validation on individual promoters

Relaxation response of promoters with mutated discriminators match
the predictions
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In vivo model validation at the genome scale

Analysis of whole-genome expression data
Transcriptome under DNA relaxation
Map of all promoters with sigma factors, discriminator and genes

Predictions and confrontation to experimental data

k(σ, seq) = k0 exp
(

∆Gop(σ,seq)+∆GRNAP

kBT

)
Expression rates before/after DNA relaxation
Normalization step to mimic transcriptomic protocol
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In vivo model validation at the genome scale

Prediction : relaxation activates AT rich discriminators and represses GC rich ones

An ubiquitous regulation mode ?

Contribution to the entire genomic response to relaxation ?
Proportion of accurately predicted promoters (sensitivity) and comparison to
a random model ⇒ up to 15% predictability gain

Limitations : promoters annotated with poor resolution, 6= drug and protocol
used, local SC levels 6= global SC level of the chromosome, gene regulation at
6= transcription steps
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In vivo model validation in stress response

heat (Δσ>0) E. coliA B
0.8

0.6

0.4

0.2

0 20 40 60 80 100

act non rep AT content (%)

A
T

 c
on

te
nt

 (
%

)

Up to 10% predictability gain
The selective activation/repression of promoters by stress conditions is
controlled by changes in DNA SC depending on discriminator sequences
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Conclusion

DNA Supercoiling, by modulating RNA Polymerase-DNA interaction,
constitutes a global, complex and ubiquitous mode of gene regulation,
based on fundamental mechanical properties of DNA

In eukaryotes ?

Open-complex formation : (1) ATP-dependent melting by TFIIH
(optional ?) (2) local negative DNA supercoiling provided by
transcription or nucleosomes
Similarities among eukaryotic and bacterial promoters in spite of
evolutionary distances

Leblanc 2000, Meyer 2014

Insulator InsulatorEnhancer Silencer Promoter Gene

CAAT box TATA box InrBREGC box

+1
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