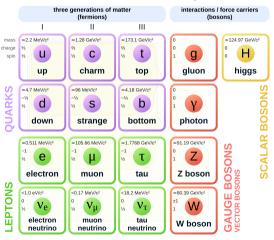


Neutrino Group

João Pedro Athayde Marcondes de André

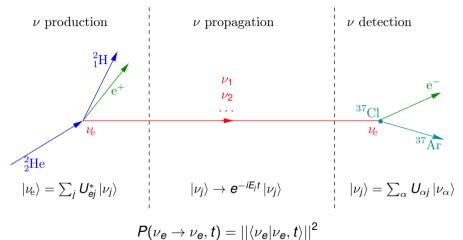
IPHC, Strasbourg

14 October 2020


Outlook

- Neutrino Oscillations
- Neutrinos @ IPHC

The Standard Model and Neutrinos ν properties:


- charge = 0
- spin = 1/2
- only interact weakly
 - in SM: ν_L , but no ν_R
- mass = 0 in SM
 - From oscillations, $m_{\nu} > 0$
 - ★ Discovered in 1998—2002
 - ★ Nobel Prize 2015
 - $m_{
 u} \ll m_{u,d,e}$
- 3 families:

flavor: ν_e, ν_μ, ν_τ mass: ν_1, ν_2, ν_3

Standard Model of Elementary Particles

Neutrino Oscillation (in vacuum) - overview

• For oscillations to happen $\{|\nu_{\alpha}\rangle\}$ and $\{|\nu_{j}\rangle\}$ different $\Rightarrow \nu$ has non zero mass

Neutrino Oscillations - simplest case

2 flavor case, vacuum

- 2 ν interaction flavours (ν_e and ν_μ)
- mass eigenstates $\{|\nu_j\rangle\} = \{|\nu_1\rangle, |\nu_2\rangle\} \neq \{|\nu_\alpha\rangle\} = \{|\nu_e\rangle, |\nu_\mu\rangle\}$ flavour eigenstates
- mixing matrix U: $|\nu_{\alpha}\rangle = \sum_{j} U_{\alpha j}^{*} |\nu_{j}\rangle$ with $UU^{\dagger} = 1$ (ie, U rotation matrix)

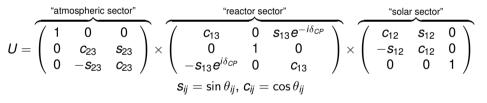
$$J = \left(egin{array}{cc} \cos heta & \sin heta \ -\sin heta & \cos heta \end{array}
ight)$$

Propagate through space time as plane waves in mass state:

$$|\nu_{e},t\rangle = \sum_{j} U_{ej}^{*} e^{-iE_{j}t} |\nu_{j}\rangle = \cos\theta e^{-iE_{1}t} |\nu_{1}\rangle + \sin\theta e^{-iE_{2}t} |\nu_{2}\rangle$$

•
$$P(\nu_e \to \nu_e, t) = ||\langle \nu_e | \nu_e, t \rangle||^2 = 1 - \sin^2(2\theta) \sin^2[(E_2 - E_1)t/2]$$

• Given m_i small: $E_i = \sqrt{m_i^2 + p^2} \approx p + \frac{1}{2} \frac{m_i^2}{p}$ and $t \approx L$, therefore $(E_2 - E_1)t \approx \frac{1}{2} \frac{m_2^2 - m_1^2}{p} L \approx \frac{\Delta m^2 L}{2E}$

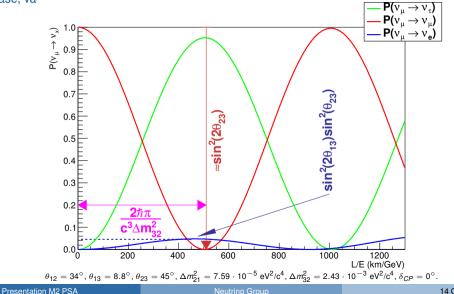

$$\Rightarrow P(\nu_e \rightarrow \nu_e, L) = 1 - \sin^2(2\theta) \sin^2\left(\Delta m^2 \frac{L}{4E}\right)$$

Neutrino Oscillations

3 flavor case, vacuum

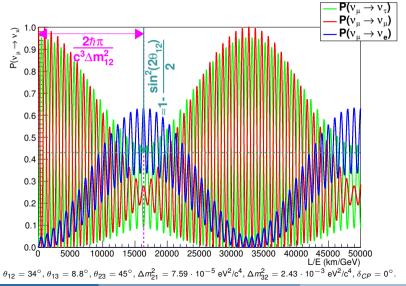
$$P(
u_{lpha}
ightarrow
u_{eta}) = \sum_{j,k} U_{eta j} U^*_{lpha j} U^*_{eta k} U_{lpha k} e^{-i\Delta m^2_{jk} rac{L}{2p}}, \qquad \Delta m^2_{jk} = m^2_j - m^2_k$$

• 3 known ν interaction flavours : ν_e , ν_μ and $\nu_\tau \Rightarrow$ matrix U is 3 \times 3



- $\theta_{23}, \theta_{13}, \theta_{12}$: ν mixing angles
- δ_{CP} : leptonic CP violation phase
- Δm_{32}^2 , Δm_{21}^2 : ν mass splitting

• Note:
$$\Delta m_{31}^2 = m_3^2 - m_1^2 = \Delta m_{32}^2 + \Delta m_2^2$$


Neutrino Oscillations

3 flavor case, vacuum

Neutrino Oscillations

3 flavor case, vacuum

Presentation M2 PSA

Studying Neutrino Oscillations: Neutrino Sources

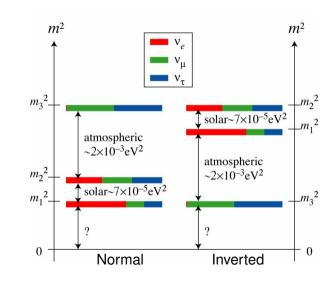
- Sun & atmosphere: two main natural sources
 - Good: "free" abundant ν sources
 - Bad: can't adjust L, E or composition
 - Tricky: understanding ϕ emmitted essential
- Reactors
 - Good: Reactors exist independently of v research (ie, we're not paying the bill!)
 - ► Good: can control *L* (within a certain range...)
 - Bad: We cannot control it's 'burning' power
 - ▶ Good/Bad: $\bar{\nu}_e$ energy spectra fixed, and hard to predict. Adding detectors → expensive

Accelerator *v*

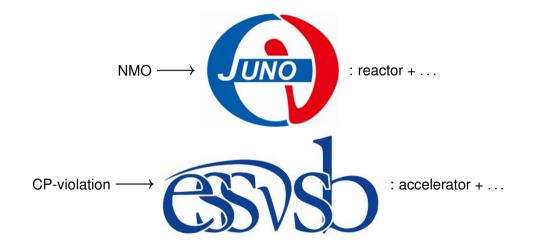
Studying Neutrino Oscillations: Neutrino Sources

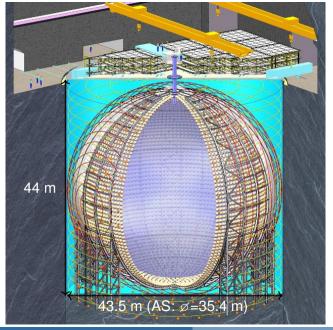
- Sun & atmosphere: two main natural sources
 - Good: "free" abundant ν sources
 - Bad: can't adjust L, E or composition
 - Tricky: understanding ϕ emmitted essential
- Reactors
- Accelerator ν
 - Good: Control *L*, *E* and if ν_{μ} or $\bar{\nu}_{\mu}$ produced (for a traditional beam)
 - Bad: "Expensive" ν
 - Good and Bad: extra detectors useful to understand ϕ emmitted, but also expensive

Open questions in neutrino physics...


- Absolute Scale of Neutrino Masses
- Neutrino Mass Ordering ⇒ JUNO

•
$$P(
u_{lpha}
ightarrow
u_{eta}) \stackrel{?}{=} P(ar{
u}_{lpha}
ightarrow ar{
u}_{eta})$$


Tied to Universe Matter/AntiMatter asymmetrie?


 $\Rightarrow \mathsf{ESS}\nu\mathsf{SB}$

- Mixing Matrix *U* is Unitary?
 ⇒ both via precision measurements
- Are there Sterile ν ?
- ν Majorana or Dirac Particle
 ⇒ JUNO phase 2 (maybe)

Neutrinos @ IPHC

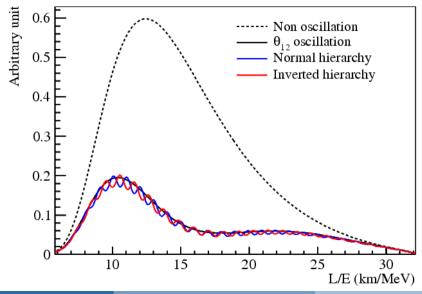
- Located in China
- 20 kton ν target mass



- built to detect v
 e from nuclear reactors
 - Can only measure $\bar{\nu}_e$ survival: $\bar{\nu}_e \rightarrow \bar{\nu}_e$
- excellent energy resolution
- observe fast oscillations
 - first time to observe Δm_{32}^2 and Δm_{21}^2 together
- main goal: NMO
- Start data taking: 2022
 - construction on-going

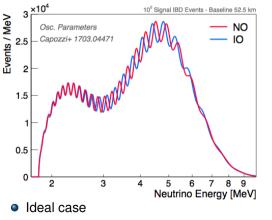
Presentation M2 PSA

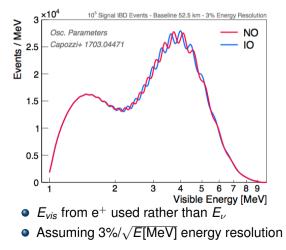
Veutrino Group


JUNO site

Presentation M2 PSA

Neutrino Group


Neutrino Oscillations in JUNO


Neutrino Oscillations in JUNO: what we really will measure

$\bar{\nu}_e$ oscillated spectrum

+ energy resolution

• Exposure: 20 kt · 6 years

JUNO schedule

2014

- International collaboration established
- Conceptual design

production line • setup

- CD parts R&D
- Civil • construction

start

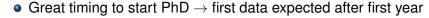
- •
- 2016 PMT production • start •
 - CD parts production start Yellow book
 - published

2017

- PMT testing start
- TT arrived

2018

- PMT potting
- Start delivery of surface building
- Start production of • acrylic sphere


- 2022
 - Detector ready for data taking

2019-2021

- **Electronics production** starts
- . Civil construction and lab preparation

completed

Detector construction

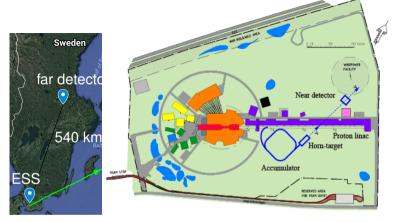
Presentation M2 PSA

14 October 2020 16/20

JUNO @ IPHC

- Top Tracker modules originally built at IPHC
 - TT part of JUNO veto strategy
 - IPHC group leading TT efforts
- Now developping new electronics cards for TT
- Prototype detector @IPHC
 - Let us know if you want a tour!
 - VR visit of JUNO also possible!
- Thesis not restricted to TT either

JUNO @ IPHC



- Top Tracker modules originally built at IPHC
 - TT part of JUNO veto strategy
 - IPHC group leading TT efforts
- Now developping new electronics cards for TT
- Prototype detector @IPHC
 - Let us know if you want a tour!
 - VR visit of JUNO also possible!
- Thesis not restricted to TT either

M2 Internships & Ph.D. thesis

- Large focus on JUNO, as data taking starting soon
- Student project/TIPP:
 - study sensitivity to neutrino mass ordering with JUNO
- M2 internship:
 - TT prototype data taking & tuning of JUNO MC
- Ph.D. thesis: JUNO
 - Will participate in the end of building JUNO and the beginning of the data taking

- Located in Sweden
- Upgrade ESS facility to produce ν beam
- $\mathcal{O}(1 \text{ Mton})$ far detector
- Started design recently

- Main goal: measure CP violation
- Optimally placed at 2nd oscillation maxima
 - better for CPV, worse for NMO
- IPHC responsible for "horn" design

Neutrino Group

M2 Internships & Ph.D. thesis

- Large focus on JUNO, as data taking starting soon
- Student project/TIPP:
 - study sensitivity to neutrino mass ordering with JUNO
 - ESSvSB horn design optimization with genetic algorithm (to be confirmed)
- M2 internship:
 - TT prototype data taking & tuning of JUNO MC
- Ph.D. thesis: JUNO
 - Will participate in the end of building JUNO and the beginning of the data taking
- Contact me for more info (jpandre@iphc.cnrs.fr).
- Also feel free to talk to our current Ph.D. students (Bat 22, room 220):
 - Luis Felipe PIÑERES RICO 3rd year [JUNO]
 - ► Julie THOMAS 2nd year [ESS*v*SB]