

Stage M2

Contribution to the GW detectors calibration

Benoit Mours

IPHC-Strasbourg

October 16, 2020

Gravitational Waves (GW): A Blooming Field

- 2015: First observation of GW: collision of two black holes (BH)
- 2017: First observation of GW from two Neutron Stars + electromagnetic counterparts

2017: Nobel prize for the observation of GW

- 2018: First LIGO-Virgo catalogue: 11 events (O1+O2)
- 2019-2020: LIGO-Virgo O3 data taking: 56 new candidates released online

Coming up:AdV+ and then the Einstein Telescope

- 2022+: New data takings of Advanced Virgo+ and aLigo 'A+':
 - Volume of space searched increases by up to a factor 50
- 2030+: 3rd Generation: the Einstein Telescope: A new larger facility in Europe
 - Volume of space searched: $\times 1000 \rightarrow$ enable a large science program, like:
 - Sense all stellar-mass BH mergers in the visible Universe: the seed for massive BH at center of galaxies?
 - Precision tests of General Relativity in extreme condition (BH): is GR right or do we need new physics?
 - Insight into how the Universe is expanding and evolving: is dark energy just a cosmological constant?
 - Explore the ultra dense matter: how neutron stars tear each other apart before smashing together?

IPHC astroparticules team: Virgo specific activities

- Search for Compact Binary Coalescence
 - Online search to produce low latency alerts
 - Offline analysis to produce catalogue of event
 - People involved:
 - One Phd student + "half" a postdoc + B.M. + other Virgo groups
- Calibration: Newtonian calibrator
 - For an accurate detector calibration
 - People involved:
 - "half" a postdoc + T.P., B.M. and technical staff

Why an accurate calibration for GW? Sky maps

50% area: 5 deg² 90% area: 23 deg²

60°

Sky maps built using times of flight and relative amplitudes

- Need a reconstructed h(t) accurately calibrated in:
 - Time/phase over the full frequency spectrum
 - \rightarrow Need to target less than 10 us (i.e. 0.3 mrad @ 50 Hz)
 - Amplitude
 - Current SNR up to 20-30
 - Could expect SNR close to 100 within few years and much more with ET
 - ▶ \rightarrow Require sub-percent accuracy
 - + Cross calibration between detectors
- A better calibration will be needed to find weak optical counterparts

Why an accurate GW calibration? Hubble constant

- GW170817 AT2017gfo
 - ▶ GW only; d =40⁺⁸-14 Mpc (90% CL)
 - Using sky position of AT2017gfo: d = 43.8^{+2.9}-6.9 (68% CL)
 - \rightarrow H_O = 70.0 +12.0 -8.0 km/s/Mpc
 - Could be improved with radio counterpart info:
 - \square H_O = 72.4 +7.9 -7.3 km/s/Mpc
- Statistical measurement with BBH possible
- Error on h(t) calibration translate to H_0 error
 - Will become dominant with the coming up runs
 - More events, at larger distances
 - ightarrow ightarrow Systematic take over statistical errors
 - Need to target sub-percent accuracy

Virgo Newtonian Calibrator (NCal)

- Principle: inject a know mirror displacement and validate/correct h(t).
- Basic NCal model: rotor made of two masses
 - The non linear Newtonian force creates the signal; signal at twice the rotor frequency; 1/d⁴ effect
- Expected benefits
 - Signal depends mostly on the rotor geometry and position
 - No aging effect of the signal
 - Simple interface with the interferometer: could be moved to LIGO or KAGRA
- Challenges
 - Well known geometry and mass
 - Able to rotate at few hundred Hz (10k-20k RPM), for years "Without" extra noise

The internship: Contribution to the GW detectors calibration

Proposed work for this internship

- Study the effect of the NCal metrology on the detector calibration
 - > What's the impact of position and NCal geometry errors?
 - How could we measure the NCal positions?
 - \Box (will depend on the technical progress made)
- Relative calibration of LIGO Virgo using Binary Black Hole events
 - Either already observed and with the upcoming observation
- A good start to continue with a PhD

