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c CAPP Detection of gravitational waves (GWs)

* Gravitational waves are 'ripples' in the fabric of
space-time caused by some of the most violent
and energetic processes in the Universe.

( ) 5 small perturbation
J‘”’y ],u,y _I_ of the metric tensor

Detection principle: Michelson interferometer
measures the difference in phase associated to
the passing gravitational wave (GW)
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< CAPP

Quantum noise in GW detectors

* Introduction:
v Quantum noise (QN) limits the sensitivity of GW detectors
v' QN are vacuum fluctuations entering interferometer’s output
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< LAPP Quantum noise reduction

* First step:
v Injecting squeezed vacuum states from the
output port to improve sensitivity, run O3
Implemented in AdVirgo and aLIGO Interferometer
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< CAPP

Quantum noise reduction

* Next step:

v" Vacuum squeezed state angle become
frequency dependent when reflected
by a detuned Fabry-Perot filter cavity

v" Implementation in GW detectors in O4

Chua et al. (2014)]
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< CAPP Frequency dependent squeezing (FDS) demonstration

R&D experiment at NAOJ, Tokyo, Japan, was the first demonstration (2020) = WSt em e Squeemd e -%‘
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< LAPP Decoherence and degradation of FDS

Decoherence (optical losses + mode mismatch) and degradation (phase noise due to phase lock
errors + stray light + cavity length fluctuations) mechanisms limit the experimentally achievable QN

reduction.
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FDS implementation in AdV+

Pre-installed and
aligned @LAPP

=
. B
Microtower
““Ws‘o‘;"; for cavity end
(mml tot ) mirror

Filter cavity (FC):

- Parallel to the North arm of Virgo ITF
- Length 285m

- Finesse 11000 @ 1064nm

- Nominal round trip losses 20ppm
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FDS implementation in AdV+

ar_Cam,

ssssss
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Cavity tube
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(not to scale)
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< CAPP Stray light and Ghost beams study on FDS system

Ghost beams: secondary beams generated by not perfect mirror coatings:

1) we want to dump these beams to avoid scattered light on squeezing benches (it has been proved
that the squeezing sensitivity enhancement is affected by stray light: Virgo Logbook #48337, #44990);

Ghost beam tracing using Optocad: beam transmitted by the first mirror
surface and reflected by the second one.
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c CAPP Diaphragms on SQB1 and SQB2

Dumping diaphragms on SQB1: Dumping diaphragms on SQB2:
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<CAPP

Ghost beams propagation inside the tubes
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distance from cavity axis [m]

c CAPP Baffles inside FC and linking tubes

Baffle Baffles inside linking tube SQB2-FC:

Main beam (MB) and ghost beams (GB1 from M1 and GB2 from M2) inside TUBE SQB2 to FC; wedges M1&M2=0.5

0.4
=== wyp axis | ’ ‘
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i Baffle positions proposition (+ few cms ‘ 5
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—— *WeB2, *2.5WGs2, £3.0WGez, +3.5W6E2
—— Tube SQB2 to FC
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2
8 01
v
E
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Wop( axis Baffle positions proposition (+ 0.5 m) | o
—— twep(m). £2.5WGa(m. £3.0Wes(m), £3.5WGs(M) —
034 ==~ wesem axis b / i |
—— Wea(em), £2.5WapEm), £3.0Wes(em), £3.5WasEm
—— Filter Cavity Tube
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< CAPP

Stray light and Ghost beams study on FDS system

2) we need to chose an optimal size of diaphragm/baffle apertures to limit losses on the main beam.

Power losses Ee s

center of circular aperture

Since the HR coating has

ian Beam shifted
distance, d, relative to
center of circular aperture

3ppm power losses, we / N /
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Mode mismatch losses

The total MM requirement for FDS is 1%.
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to diffraction is negligible.
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c UAPP Detection (DET) system

B6PR, BopPR,

West End Benches

Beams & optical benches
for Advanced Virgo

Transmission

G Under-vacuum benches

External benches

North End Benches ReﬂeCthn
_____ [ Telescope Characterized @ LAPP
i OMCs
Injection Benches & |spB1 gﬁ A r’“-“y"l

= z N » Two Output Mode Cleaners

g [l ¢ il ; (OMCs) will be replaced by 1

3 NPT High Finesse OMC in AdV+

8 = ‘””‘ Bl 1‘3151

B6DB, B6pDB,

@ ' — BODB, BOpDB, BS Blp BIlt
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< CAPP High Finesse OMC characterization

We are characterizing the OMC at LAPP:

1. Losses = 3.5% * 0.3 % (during O3 Losses = 5%)
Losses = Input power — Transmitted power — Reflected power

2. Radius of Curvature (p) of the spherical surface: p ~ 1700 mm

3. High reflective coating residual transmission: few ppm

Transmission

Reflection

integrating sphere

’v‘ & y X 500 - n 3 —
L& = F, 30'00 4 é 0‘2 Distance OMOC‘{ camera (m) 0‘6 0‘5 :
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< CAPP Conclusions and future plans

Conclusions:

v Ghost beams study on Frequency Dependent Squeezing system
v Design of diaphragms and baffles

12 Construction of diaphragms and baffles

1+ Mechanical installation of FDS system at Virgo

£+ Characterization of OMC at LAPP

Next steps:

X Pre-installation of SQB1 and SQB2 at
LAPP (December 2020)

X Commissioning of the whole FDS
system on site (beginning 2021)

X Commissioning of OMC on site
(November 2020)

X Observing run O4 starts in 2022

{{@}}Annecy Eleonora Polini 17
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<UAPP
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< CAPP Detection (DET) system

Thickness = 10

All dimensions in mm spherical surface [R=1700)
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c CAPP FDS benches on Optocad

IM

. | took into account only the path of
4 (Input Mirror SQB2 (Suspended SQZ
’ Filter Cavity) Bench 2, in vacuum) the IR beam, not the green one.

Installation and pre-

. ! . alignment at LAPP
[ o ESQB1 (External SQZ Bench 1, in
airy-
EM =
(EndMimor = | BN | EBAR O m=
FilterCavity) = | M - 1Namx = 2 O 2

AAAAAA

ssssssssssss

Viewport Viewport | Viewport

fear_Cam, he148 mm

oL
SQB1_M11

i%,BLQDZ
ESQB2 (External SQB1 (Suspended SQZ Bench 1, in vacuum)

SQZ Bench 2) i Installation and pre-alignment at LAPP
{m}Annecy
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c CAPP FDS benches on Optocad

IM
(Input Mirror SQB2 (Suspended SQZ
Filter Cavity) Bench 2, in vacuum)

Installation and pre-
. alignment at LAPP

saB2_GM21

ESQB1 (External SQZ Bench 1, in

EM
(End Mirror
Filter Cavity)

zzzzzz

LLLLL

o |

Not studied yet.
Less critical: IN AIR

fear_Cam, he148 mm

oL
SQB1_M11

i%,BLQDZ
ESQB2 (External SQB1 (Suspended SQZ Bench 1, in vacuum)

SQZ Bench 2) i Installation and pre-alignment at LAPP
{m}Annecy
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c CAPP Ghost beams propagation inside the tubes

| studied the ghost beams propagation inside different tubes (VIR-0585A-20): Filter Cavity (both Input
and End Mirrors), Tube between SQB2 and FC, Tube between SQB2 and SQBL. We are designing the
baffles to install inside these three tubes.

Filter Cavity (VIR-0473A-20, VIR-0584A-20):
- These ghost beams are way more powerful than the others, so we need to dump them properly;

- Ghost beams ‘a’ & ‘b’ are dumped on diaphragms on SQB1,
- Ghost beams ‘c’ & ‘d’ are symmetrical and dumped on baffles inside FC.

Ghostbeam b  3.93yw IM EC - Ghost beam ¢ EM FC
- 44n —

10mw 63.47W
Ghost beam a/ oW
1uWw
wedge=220urad Ghost beam d wedge=220urad
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< CAPP Propagation inside the tubes : FC from IM and EM

Microtower
Cavity tube for cavity end
mirror
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< CAPP Propagation inside the tubes : FC from IM and EM

Discussion with FLT to install baffles at different locations inside the tube: IN PROGRESS.
Constraints: available mechanical positions inside FC, do not cut the Ghost Beam in two with the baffle, minimize stray light etc.

Main beam (MB) and ghost beams (GB(IM) from Input Mirror, GB(EM) from End Mirror) propagating inside the Filter Cavity

——- Wpmg axis
0.4 1 —— *wwmp, +2.5Wnp, +3.0Wma, +3.5WpMp

=== WgB(M) axis

Baffle positions proposition (+x 0.5 m)

—— Wesum). *£2.5Wesgm). £3.0Wes(m). £3.5Wsa(m)

e a"i525 \o . We will use AR-coated
—_ W, , £2.0W, , £3.0w , £3.0W, .
oae OBEM) CRIE cotEm) stainless steel baffle

—— Filter Cavity Tube

0.2

0.1 1

00 fmmmm e e e e e e = —

distance from cavity axis [m]

e e

Power (from IM) = 10° W
I
Power (from EM) = 10 W
|

50 100 150 200 250

-0.3 ;3
Filter cavity length [m]
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< LAPP Mechanical contrains to place baffles

Starting point
of the tubes

Eleonora Polini 26



<UCAPP

Propagation inside the tubes : SQB2 to FC

Cavity tube
about 300 m
(not to scale)
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< CAPP Propagation inside the tubes : SQB2 to FC

Main beam (MB) and ghost beams (GB1 from M1 and GB2 from M2) inside TUBE SQB2 to FC; wedges M1&M2=0.5

0.4
=== Wpyg axis
— *+Wug, +2.5Wnme, =3.0wnmg, £3.5Wns - g
. Baffle positions proposition (* few cms }
—== Weg1 axis P prop ( ) Power (from M1) = 10*° W
0.3 4 —— =+wgp1, +2.5wsp1, +3.0wep1, +£3.5wes:1
— == Wga2 axis
—— *Wgg2, +2.5Wga2, £3.0Wgg2, +£3.5Wge2 /
—— Tube SQB2 to FC /
0.2 4 —— Baffle aperture=86mm /
5 ]
5 014
3
2
£
S
Y 0.0
| =
g
v
N
-0.1
021 Baffle radius >> 4w(z)to | | eSS [ ——T7roe- T
make ghost beams ‘a’&'b’
from IM_FC reaching SQB1 Power (from M2) = 10 W
[

1 2 3 4 5 6

-0.3 ; : | .
0
Tube SQB2 to FC length [m]
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<UCAPP

Propagation inside the tubes : SQB1 - SQB2

Cavity tube
about 300 m
(not to scale)
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c CAPP Propagation inside the tubes : SQB2 to SQB1

Main beam (MB) and ghost beams (GB1 from M1 and GB2 from M2) inside TUBE SQB2 to SQB1; wedges M1&M2=0.5

0.4
=== Wug axXis
— +wpmp, £2.5wyp, £3.0wnms, £3.5wms
—-=—=- Wgp1 axis e e
+
033~ BB 32 B Baffle positions proposition (* few cms)
- == Wggz axis
— *+Wgg2, +2.5WgE2, +3.0wge2, £3.5wWeaE2 POWEF (from MZ) - 10-11 W
— Tube SQB2 - SQB1
0.2 4 —— Baffle aperture = 64mm
E
I% 0.1 4
a
E
o
g 0.0
c
i
0
[m]
_01 4
- Baffle radius >> 4w(z) to | | @ o —m—m—— 0 T TTTm==-—.
' make ghost beams ‘a’&'b’
from IM_FC reaching SQB1 ‘ Power (from M1) = 10 W ‘

1 2 3 4 5

-0.3 | . ‘ ‘
0
Tube SQB2 to SQB1 length [m]
{{@}} Annecy Eleonora Polini 30




c CAPP Propagation inside the tubes : SQB1 to SQB2

Main beam (MB) and ghost beams (GB22 from M22, wed = -0.5, and GB23 from M23, wed = 0.5) inside TUBE SQB1 to SQB2

0.25
——- Wwumg axis
—_— twyp, £2.5wWnB, £3.0wys, £3.5w, iy oy
I = = Baffle position proposition (* few cms)
=== WGg22 axXIs
—— *wgp22, £2.5wWgE22, £3.0wggz2, £3.5WgE22
g - == Wgg23 axis
— +WgsB23, +2.5Wgg23, £3.0WgE23, +3.5WgE23
—— Tube SQB1 to SQB2
—— Baffle aperture = 64mm
. g
E
0
o 2
2 Power (from M22) = 10*° W
£ 0.101
5]
& Power (from M23) = 10*° W
&
=
A
2 0.051
0.00 1
VIR-0584A-20
—0.05 T T T T T T

w
~
| ]
[=)]

0 | ' | I | | ' 2 ' | ' | | ' ' | | ' |
Tube SQB1 to SQB2 length [m]
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c UAPP Are ghost beams dumped properly?

To understand if the ghost beams are stopped by diaphragms and baffles properly, we
introduce a quantity Y defined as:

Y = (distance ghost and main beams - aperture radius)/ghost beam radius.

The fraction of ghost beam power passing through the aperture can be computed using
the corrected error function Erfc(Y) = 1 - Erf(Y).

8]6 SQB2lris
v | Y
--------- Normali-z“e-o-lm
with ghost
beam waist

{{@}}Annecy Eleonora Polini 32



< CAPP Standard apertures

| took ‘standard apertures’ in order to ease the production and installation processes.

With a = 4, 5.5, 6.5 mm we don’t change the performances of diaphragms on benches.
Concerning baffles, we need to consider stray light effect at the aperture edges.

| We want a/w(z) = 3.5 for
- diaphragms.

4mm | | report this quantity using

. - standard aperture radius.

-« >

2.5mm

I I
- >
- 6.5mm
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