

# The PandaX-III experiment

Damien Neyret
CEA Saclay IRFU/DPhN
Journée Double-bêta France
16/10/2020

# **Motivations and constraints**



# Search for neutrinoless double-beta decays

Neutrino = antineutrino → Majorana neutrino Violation of the leptonic number Physics beyond standard model



# **PandaX-III experiment**

Double-beta decay in **Xenon 136 Gaseous TPC** at 10 bar, 200kg ( $\rightarrow$ 1t) of <sup>136</sup>Xe **Charge readout** with gaseous detectors

# **Experimental constraints**

Excellent **energy resolution** (goal 1% at  $Q_{\beta\beta}$ =2.458 MeV)

**Excellent radiopurity** 

Background rejection by factor 100 using **event topology** 



# The PandaX-III collaboration

# Irfu caclay

#### **International collaboration**

China → 7 institutes (lead by SJTU)

France → CEA Saclay

Espagne → Zaragoza

USA → BNL + Maryland University

Thailand → Nakhon Ratchasima

# Yalong river



## Laboratory

Jinping CJPL underground laboratory (Sichuan, China) One of the worldwide lowest muon flux Large caverns, easy access to trucks





# The PandaX-III experiment



# **Detection principle**

10 bar <sup>136</sup>Xe (90% enriched) time projection chamber (TPC) Ionization electron readout by Microbulk Micromegas Double-beta vs gamma discrimination using event topology

## **Experimental setup**

5 TPC modules with Xenon + 1% TMA at 10 bar foreseen in total 200kg in each module, but 1<sup>st</sup> module 145kg only

1<sup>st</sup> module: stainless steel vessel + internal copper shielding + external shielding

A lot of efforts to reduce U and Th contamination







Readout plane

SS vessel

Copper substrate

Pb shielding

**HPDE** shielding

Cathode



X-III experiment

# Read-out with Micromegas Microbulk detectors



#### **Principle and advantages**

Micromegas based on a copper clad 50µm-thick kapton foil

40μm diameter holes

Top face → mesh

Bottom face → read-out plane

Studied by Zaragoza, IRFU and SJTU

Built at CERN, used at CAST, n\_TOF

Constant kapton foil thickness

- → very good gain homogeneity
- → best energy resolution for MPGDs

Excellent radiopurity ~0.1 μBq/cm² for <sup>214</sup>Bi and <sup>208</sup>Tl

#### **Characteristics**

SR2M design from Zaragoza (v1 → v2) 52 large Microbulks (20x20cm), 3mm pitch X and Y readout on same board, 64 channels each But not 3D, XZ and YZ read independently

#### **Status**

2 productions of prototypes Study still ongoing



Read-out plane and mesh ALL IN ONE





Kapton 50 um

Read-out plane



# Read-out electronics of 1<sup>st</sup> module



#### **AGET read-out ASIC**

Charge sensitive preamplifier 120fC to 10pC dynamic range

Analog filter 50ns to 1µs peaking time 64 channels sampled at 1 to 100MHz Multiplicity signal available



#### **Read-out electronics**

Front-end cards (USTC) close to detectors, 1 card for 2 Microbulks (4 AGET chips), special radio-pure design with polyimide PCB material (<990 mBq/card)
Back-end TDCM cards (Saclay) out of the TPC, optical fiber connection
Specific trigger and clock card







# **Calibration system**



CEA DRF Irfu

## **External system**

Non-linearity of the detector energy response Absolute calibration at  $Q_{gg}$  value Calibration sources outside the vessel (232Th, 60Co)



## **Internal system**

Event generation inside the gas volume Calibration at  $Q_{BB}$  using <sup>220</sup>Rn Micromegas uniformity and geometrical correction using 83mKr generated from 83Rb







# Studies on a TPC prototype

# Irfu saclay

### First results from TPC prototype in 2018-19

7 mounted v1 Microbulks

Tested at SJTU with different pressures and gas mixtures (Ar, Xe)

Several problems: cut channels, high current between mesh and some channels, unstable behaviors

Gain and energy resolution measurements with different sources













# Microbulk studies at Saclay

# Irfu callow saclay

# **Tests with v1 prototype**

Ar+5%isobutane gas mixture, 1 bar <sup>59</sup>Fe 5.9keV photon source

Also a few deactivated channels due to leak current

Gain measured on whole surface using AGET data → important inhomogeneity due to production problems

Better situation with v2 prototypes (15% variation)



Correlation between gain and the diameter of the bottom of the holes



Plots from Benjamin Manier (Saclay)



# R&D on charge detection for next modules



#### Microbulk detectors

MPGD best energy resolution so far, mainly due to homogeneous amplification gap Possible improvement: segmented mesh

- 2 parallel energy read-out
- Promising tests on a small old n\_TOF segmented mesh prototype
- 10x10cm<sup>2</sup> prototype ready to be tested

#### **Bulk detectors**

More robust than Microbulks, easier to produce in large surface

But energy resolutions not as good as

But energy resolutions not as good as Microbulk ones (~18% at 6 keV)

Radioactive contamination (stainless steel mesh)

Can be a backup for 1<sup>st</sup> module if too many problems with Microbulks

# No amplification: NoAmpTPC

Direct readout of ionization electron Very low noise electronics: IDeF-X chips Tests ongoing on a prototype







# PandaX-III event reconstruction



# **Event topologies**

Db-beta: 2 electrons → 2 Bragg peaks Background gamma events: 1 electron → 1 Bragg peak But very scattered tracks, recognition not obvious Also need to reconstruct precisely the deposited energy 1% tri-methyl amine in gas mixture helps a lot:

- Lower diffusion
- Suppress scintillation
- Better energy resolution
- Quencher for the amplification

#### **Reconstruction software**

Based on REST package initiated by Zaragoza for T-REX Under development to refine reconstruction of deposited energy and background rejection







# PandaX-III event reconstruction

# r f u saclay

# Studies on background rejection

Based on track topology

MC studies, include electron diffusion and raw signal formation, 2 x 2D readout (XZ and YZ) Main criterion: two energy blobs (2 Bragg peaks) Other criterions: secondary tracks, track length, blob energies, twist at end of track, also study on Fisher discriminant on energy along the track Performance to be improved (~43% efficiency with ~1% background surviving cuts in ROI)











# PandaX-III event reconstruction

# Irfu cea

#### **Selection with neural networks**

Recent studies in China and at Saclay

Based on pictures built from XY and YZ projections, given to image recognition neural network tools

Network training with MC double-beta decay and gamma background events Looks promising with ~80% efficiency, 2% background surviving



# How to repair data with missing channels



# **Background budget and expected sensitivity**



## **Background rate**

Study with two different Geant 4 MC Analytical and NN topological analysis Expected rate 10<sup>-4</sup> hit/keV/kg/year in the ROI

# Sensitivity with 3 years data taking

1<sup>st</sup> module: 8.5x10<sup>25</sup> years half-life limit 5 modules (1t): 10<sup>27</sup> years half-life limit





# **Conclusions**



#### **Summary**

High pressure gas TPC with charge readout based on Micromegas detectors  $1^{\rm st}$  module using 145kg of  $^{136}$ Xe

Final goal: 5 modules of 200kg

Unique background suppression based on tracking capability

Large effort to reduce U and Th contamination

# **Perspectives**

Construction of the experimental setup in progress

- Underground cave ready
- Clean room and support structures designed, production launched
- Stainless steel TPC vessel built, leak tests ongoing, procurement of radiopure copper for internal shielding in progress
- New design of field cage ongoing, successful tests done on prototype TPC
- Front-end cards in production, back-end cards built
- Tests on Microbulk prototypes still ongoing, tests on Micromegas (bulk, thermal bonded) also done in parallel, decision to be taken early 2021

Expected to begin commissioning end of 2021