

Brai Human S Machine Learning

Goals of today's event

Motivations:

- Scientific event with a subject transverse to the 4 departments
- Clear trend in our fields since already many years
- Already several use of ML in our researches

Goals:

- Inform about activities done @ IPHC
- Starting point to sharing expertise?
- Network ?
- Common interests Structuration ?

Morning's session

To be discussed during the round table

ML: an expanding field

[Σ)

Machine learning is not new

- First ideas already in 50's
- History of Neural Network
 - First paper (1943)
 - First algo still in use (Perceptron): 1958
 - First annual meeting :NN for computing" (1985)
 - AlphaGo (Google DeepMind) win a professional player (2015) ...

• Expansion of the ML field

- Boost from big data
- Large increase of computing resources (massive parallelisation)
- ML implementation eased by user-friendly (open source) packages
- Variety of applications (interests in tech compagnies and industry)
- Dynamic field: many ML contests, ...

3

'Mark I Perceptron at the Cornell Aeronautical Laboratory', hardware implementation of the first Perceptron

Machine Learning: an e-crystal ball

Use data to "**predict**" (estimate/infer) a quantity / state / category /... on the studied object

IPHC – Journée Machine Learning – 1/10/2020

Machine Learning: an e-crystal ball

Children learn by experiment how to solve this problem without determining explicitly any physics law !

Machine Learning goals

ML goals:

- Learning
- Finding patterns & trends
- Improving decision making
- Generating data
- Improving/optimizing "tasks"
- •

•••

Pro(*con*)fusion of keywords ...

Artificial Intelligence

Any technique which enables computers to mimic human behaviour. It uses ML but not only. Creates applications that react, adapt,

Ex: self-drive car, chatbot, ...

Artificial Intelligence

Any technique which enables computers to mimic human behaviour. It uses ML but not only. Creates applications that react, adapt,

Ex: self-drive car, chatbot, ...

Machine Learning

Algorithms able to find patterns/features based on data using statistics with the aim to perform predictions

Artificial Intelligence

Any technique which enables computers to mimic human behaviour. It uses ML but not only. Creates applications that react, adapt,

Ex: self-drive car, chatbot, ...

Machine Learning

Algorithms able to find patterns/features based on data using statistics with the aim to perform predictions

Deep Learning

Subset of ML which make use of multi-layer neural networks (Artificial NN, Convolutional NN, Recurrent NN, ...)

- "deep" \rightarrow number of layers & neurons
 - ightarrow many parameters to be estimated
 - ightarrow need large datasets and long training period

Maths/Statistics

Programming

Biological inspired rules

Artificial Intelligence

Any technique which enables computers to mimic human behaviour. It uses ML but not only. Creates applications that react, adapt,

Ex: self-drive car, chatbot, ...

Machine Learning

Algorithms able to find patterns/features based on data using statistics with the aim to perform predictions

Deep Learning

Subset of ML which make use of multi-layer neural networks (Artificial NN, Convolutional NN, Recurrent NN, ...)

- "deep" \rightarrow number of layers & neurons
 - ightarrow many parameters to be estimated
 - ightarrow need large datasets and long training period

Maths/Statistics

Programming

Biological inspired rules

Big data

- Does not imply the use of ML
- ML complexity & performances depends on the size of the data used to learn

Artificial Intelligence

Any technique which enables computers to mimic human behaviour. It uses ML but not only. Creates applications that react, adapt,

Ex: self-drive car, chatbot, ...

Machine Learning

Algorithms able to find patterns/features based on data using statistics with the aim to perform predictions

Deep Learning

Subset of ML which make use of multi-layer neural networks (Artificial NN, Convolutional NN, Recurrent NN, ...)

- "deep" \rightarrow number of layers & neurons
 - \rightarrow many parameters to be estimated
 - ightarrow need large datasets and long training period

ML is everywhere in everyday's life

APPLICATIONS OF MACHINE LEARNING

3

IPHC – Journée Machine Learning – 1/10/2020

ML algo can improve "experimental performances" Could be a cheaper/less demanding solution than building a new "apparatus"

Example in HEP:

- Used to detector anomalies •
- Attempt to use it to search for new phenomena (*example here*)

Anomaly = unexpected experimental signature (sign of new phenomena)

DETECTION

ARNING

1- Should I need to use ML?

- Algorithm complexity, dataset size, computing resources used are not guarantees that the performances will be better than what you could achieve with more "traditional methods" !
- **ML is not the solution to all problems**: If you have an analytical model (*scientifically motivated*) describing your data, why should you spend resources to approximate it with ML ? (*discussion about GAN*)
- ightarrow Useful to go beyond current knowledge in a data-driven way
- Gain vs effort
 - \rightarrow Can I expect a large improvement compare to current method ?
 - \rightarrow How much effort is needed to implement a ML solution?
 - \rightarrow Do I have enough resources to perform the training ?

THIS IS YOUR MACHINE LEARNING SYSTEM?
YUP! YOU POUR THE DATA INTO THIS BIG PILE OF LINEAR ALGEBRA, THEN COLLECT THE ANSWERS ON THE OTHER SIDE.
WHAT IF THE ANSWERS ARE WRONG?
JUST STIR THE PILE UNTIL THEY START LOOKING RIGHT.
Xkcd.com

1- Should I need to use ML?

- Algorithm complexity, dataset size, computing resources used are not guarantees that the performances will be better than what you could achieve with more "traditional methods" !
- ML is not the solution to all problems:
- Gain vs effort

ML CANNOT be "blindly used":

ML does not replace the human knowledge / judgment

- Needs human guidance in the process of applying ML techniques
 - <u>Ex</u>: "spurious correlation in large datasets" (p-score)
- For interpretation:
 - correlation does imply not causal relation
 - Remark: hard to interpret the "ML model"

MORE IPHONES MEANS MORE PEOPLE DIE FROM FALLING DOWN STAIRS

7

2- Which category of ML algorithms should I use ?

- We have presented 5 class of algorithms
- Subcategories for some of the classes
- Many algorithms are devoted to a given class of problem

3- What is the "nature" of the data to analyze ?

4 types of data:

- Numerical data
- Categorical data
- Time series (video, sound, ...)
- Text

Fig. Types of Data Structure

4- How large is our sample ?

- Choose an algorithm adapted to our sample
- Deep learning requires very large datasets

You should now have a list of algorithms that may suit our needs.

Answer: finding a (free / open source /maintained) implementation !

- (Google) Tensorflow (2015)/Keras
 - Fast-growing easy-to-use python lib (but also in C++, ...)
 - Allows applications of deep-learning models
 - Interface to Tensorflow, Theano backends \rightarrow GPU support
- <u>Scikit-learn</u> (2007)
 - Python lib that implements many (non-deep) techniques
 - A lot of data preprocessing & statistics tools
- **TMVA** (used in subatomic physics ROOT based)

But also:

- <u>Torch</u> / <u>PyTorch</u>
- <u>Caffee</u> (C++/python)
- <u>Accord.net</u> (C++)
- <u>R</u>

...

•

6

Hardware

Answer: where to run the ML training ?

• Use our laptop:

several ML-analyses can be done on (from few min to few hours)

- Multi-threading
- Use dedicated GPU(s)

reasonable dataset - large computing time

- Several algorithms profit a lot from GPU parallelization
- From few 100's to few 1000's euros
- Use server/computing center large data / complex models
 - Tier2
 - Mesocentre
 - CC-in2p3
 - CERN
 -

What's next ?

ML workflow

IPHC – Journée Machine Learning – 1/10/2020

- N "samples".
- M "features" per sample [dimension]
- (predicator variables)

N "observations"

- Predictive function: y = f(x)
- Depends on the choice of the algo
- Configuration (ex: NN: #layers, #nodes, ...)
- Have **many** parameters to be determined

IPHC – Journée Machine Learning – 1/10/2020

- One (or few) response (*target*) variable
- Can be discrete or continuous

Requirements:

Step 1: Define the objective
→ choice of algo/implementation
→ choice of hardware chosen
Step 2: Data gathering

Step 3: Data preparation

data cleaning, filtering, binning, transformation ...

Step 4: Exploratory Data Analysis (EDA)

Understand patterns, trends, correlations, ...

<u>Goal</u>: Selection input variables (features) & "samples" Advices:

- \rightarrow Avoid variables too sensitive to noise, uncertainties, ...
- ightarrow Avoid variable badly described by our simulation if the dataset is simulation based
- \rightarrow Use a representative "samples"

Step 5: Building a Machine Learning Model == Model training

- Define a (large) subset of data == training sample
- Most CPU/GPU demanding task
- **Goal**: determining the parameters of the model
- <u>Advices</u>:
- \rightarrow sample should be large enough (depends on model complexity)
- → Computation time can be speed-up depending on both the hardware architecture chosen & the model
 - \rightarrow <u>Remark</u>: processing does not necessarily linearly scale with #threads !
- \rightarrow Check that there is no **overtraining**

Step 6: Model Evaluation

- Define a (small / independent) subset of data == test sample
- Evaluate the performances
 - True vs False Positive Rage
 - ROC: Receiver Operating Characteristic
 - AUC: Area under the curve
- Cross-validation
 - \rightarrow Avoid overtraining

IPHC – Journée Machine Learning – 1/10/2020

Step 7: Model optimization (refinement)

- (Hyper-)parameter tuning (ex with NN: #layers, #nodes, ..)
- Test/Optimize feature selection (ex: change/add input var)
- Imply retraining (CPU/GPU demanding)

 \rightarrow This **loop** can be done several times ...

Step 8: Predictions ... !

 \rightarrow algo deployment/integration/maintenance

<u>Remark</u>: Retraining can be needed (even if inputs/parameters are fixed)

if the model is applied on data collected in new conditions (new sensors/calibration/alignment etc ...)

IPHC – Journée Machine Learning – 1/10/2020

Machine Learning Development Lifecycle

jeremyjordan.me

Networks & training

<u>Networks</u>

- ML collaborations @ IN2P3
- IML (LHC ML working group)
- ...

Training

- Master "Big data and ML" @ unistra
- IN2P3 school of statistics
- Ecole doctorale (ED 182)
- MOOC
- ...

GAN: Generative Adversarial Network

Technique used to generate "realistic human face"

Can have application in HEP to **speed-up simulation**

Source A: gender, age, hair length, glasses, pose

- Simulation of proton-proton collision @ LHC
- Simulation of detector response

Source B:

everything else

Dominated by : calorimeter simulation and tracking

Result of combining A and B

Beyond activities presented this morning, additional are done

Non exhaustive list:

- Clustering in CMOS pixels with NN (DRHIM, Finck & al)
- Use of AI to improve detector performances in the context of PET (tomography) (*DRHIM*, *Brasse & aI*)
- Automatic ML-based localisation of radioactive contamination zone with an autonomous drone (learning based on MC) (*DRS, Arbor & al*)

Machine Learning – 1/10/2020