Réseaux de neurones embarqués: Capteurs CMOS Intégrant un RÉseau NEuronal

Auguste Besson

Projet CIRENE (mission interdisciplinaire 2016 CNRS) Groupe PICSEL & plateforme C4PI Christine Hu, Mathieu Goffe & Kimmo Jaaskelainen Doctorant: Rui Guang Zhao (2015-2019) Post-doctorant: Alejandro Perez (2014-2017)

Les futures usines à Higgs (ILC)

- Le boson de Higgs a été découvert au LHC (2012)
 ✓ Est-ce la fin de l'histoire ? NON !
- Il faut tester le Modèle Standard pour savoir ce qu'il y a « au-delà ». On peut:
 - ✓ Mesurer avec précisions certains paramètres
 - Par exemple la façon dont le boson de Higgs « se couple » avec les particules et leur conférer une masse.

Mise à jour de la stratégie européenne:

- \checkmark Un collisionneur e^+e^- (ILC, FCCee, CLIC, CEPC)
- ✓ «Higgs factory as the highest priority next collider»

Le détecteur de vertex en physique des particules

Machine learning, IPHC, octobre 2020

Machine learning, IPHC, octobre 2020

Capteur à pixels CMOS (PICSEL & C4PI)

- Capteurs pixelisés
 - ✓ Passage d'une particule chargée
 - ionise la zone sensible
 - Diffusion des électrons
 - ✓ Charge collectée par plusieurs pixels
 - Ensemble des pixels collectant de la charge au dessus d'un seuil
 - = un amas (cluster)
 - Centre de gravité = position du passage de la trace

Machine learning, IPHC, octobre 2020

Quand les impacts s'accumulent

Cahier des charges

➡ Utiliser un algorithme embarqué pour éliminer le bruit de fond sur la puce ?

	Hors du détecteur	Sur une carte (FPGA)	Sur la puce
Précision	++	-	-
Filtrage / Extraction des données	-	+	++
Encombrement dans le détecteur	-		+
Puissance dans le détecteur	+		-
Stockage des données	-	+	++
configurabilité	+ +	+	-
coût	-	-	+

- L'algorithme doit reconstruire:
 - ✓ l'angle d'incidence θ et l'azymuth ϕ
 - ✓ Surtout pour les angles θ >~ 60°
- Algorithme suffisamment simple pour être potentiellement intégré sur une puce
 - ✓ Nombre réduit de paramètres d'entrée
 - ✓ Nombre réduit d'opérations
 - ➡ Encombrement et Puissance limités
 - \Rightarrow Compromis sur les performances
- L'entrainement peut néanmoins se faire hors-ligne.

Les réseaux de neurones

- But: construire une fonction qui peut trier ou estimer une grandeur à partir d'un grand nombre de paramètres
- Structure de base: le perceptron

- détermination des poids w_i à l'aide de données pour lesquelles on connaît la « bonne » réponse
- Utilisation:

Une fois les poids connus, appliquer la fonction à n'importe quelle donnée

Choix de la structure du réseau de neurones

Données d'entrée

- \checkmark Charge du pixel siège
 - Ou charge de tous les pixels
- ✓ Écart type de l'axe principal pondéré par les charges
- ✓ Écart type du 2° axe
- Structure simple
 - ✓ 1 seule couche cachée (15 nœuds)
 - Si pas de couche cachée ⇒ uniquement des problèmes linéaires
 - ✓ 1 biais en entrée
- Sortie
 - ✓ Type régression
 - (≠ classification)
 - ✓ Une seule sortie continue
 - Estimation de heta

Fonction de transfert

- Peut être n'importe quoi en principe
 - ✓ Sigmoides ,tanh, heaviside, etc.
 - ✓ Efficacité en général des fonctions bornées « à seuil »
 - ✓ Difficultés d'implémentation sur une puce
 - ⇔ fonctions approchées
 - « look up table » (tables de données)

Rôle du biais

permet de décaler la fonction d'activation vers la gauche ou la droite

✓ critique pour un apprentissage réussi.

Quelques résultats

Performances en fonction de la numérisation

Machine le

15

- □ A dark chamber (box)
- \square β^- source ⁹⁰Sr
- A CMOS pixel sensor (MIMOSA 18)
- □ A 2 rotations support

Performances Offline ~ FPGA

Confirme les données simulées

Apprentissage et extrapolation

-ന

art

U ١Ē

Le domaine de validité ne peut pas en principe être étendu en dehors du domaine où réside la population qui a servi à l'apprentissage

Difficulté d'obtenir des données avec

 $\checkmark \theta \rightarrow 90^{\circ}$

(taille des amas infinie)

Peu de sensibilité à petit angle

Machine learning, IPHC, octobre 2020

Perspectives

Algorithmes complémentaires: 5X5 filter(1) filter(2) ✓ Mise en amas, Composantes principales sur le chip ! Problèmes en soi Pre-Filtrage 3x3 filter(3) filter(4) ✓ Reconstruction des amas « 1 pass » Faisabilité ? ✓ Limites techniques aujourd'hui Puissance dissipée et complexité ✓ Percée technologique ? Pistes à suivre Laver 2 ✓ Combiner l'information de 2 couches Angles plus précis Layer 1 ✓ Mixage classification/régression ? Déclencher le calcul que pour amas allongés Reconstructed **\$** ✓ 65 nm réduction de taille de grille Plus de transistors ! ✓ Capteurs double feuille Optimiser une couche pour la partie numérique top Tout système embarqué à terme ✓ Le machine learning embarqué se généralise En général dans des cartes dédiées (FPGAs) bottom Problématique spécifique: algos simples

Machine learning, IPHC, octobre 2020

A.Besson, Université de Strasbourg

Level 1

Dos haut

□ Angles reconstructed by two methods basically have the same mean value

- Incident angle not well known (β source, collimation and multiple scattering issues)
 CMOS Prototype used not optimized for this application
- Incident angle < 35 degrees, cluster is composed by one pixel. It is not sensitive to cluster shape
- Smaller pitch, larger thickness epitaxial
 layer (by factory) ⇒ Minimum θ decrease

Decorrelation: Principal Component Analysis

- PCA is typically used to:
 - reduce the dimensionality of a problem
 - find the most dominant features in your distribution by transforming
- The <u>eigenvectors</u> of the covariance matrix with the largest <u>eigenvalues</u> correspond to the dimensions that have the strongest <u>correlation</u> in the data set. Along these axis the variance is largest
 - sort the eigenvectors according to their eigenvalues
- Dataset is transformed in variable space along these <u>eigenvectors</u>

→ Along the "first" dimension the data show the largest "features", the smallest features are found in the "last" dimension.

Performances vs pitch

23

64-column implementation synthesiz	zed
using Cadence EDA TowerJazz 0.18	μm

Window	Multiplexer	proce ADC (bits)	ESS * Clock (MHz)	Column height (µm)	Column power (mW)
		8	100	200	0.85
7~7	process * Coumn height (µm) MDC Clock (MHz) Cloumn height (µm) 16-1 8 100 200 16-1 8 200 200 4 100 102 4 200 103 8 100 197 32-1 8 100 197 4 100 101 4 200 102 32-1 8 200 197 4 100 101 4 200 102 8 200 197 102 32-1 8 100 159 102 <td>1.83</td>	1.83			
1~1		4	100	102	0.46
		4	200	103	0.88
7×7	32-1	8	100	197	0.86
		8	200	197	1.77
		4	100	101	0.43
		4	200	102	0.88
		$\begin{array}{c cccccccc} \operatorname{Process} & \operatorname{Column} \\ \operatorname{ADC} & \operatorname{Clock} \\ (\operatorname{bits}) & (\operatorname{MHz}) & \operatorname{height} \\ (\mu m) \end{array}$	100	159	0.68
5×5	32.1		159	1.45	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.37				
		4	200	82	0.71
		8	100	196	0.87
7×7	64-1	8	200	196	1.76
1×1	07-1	4	100	101	0.43
		4	200	101	0.9

Occupied surface and power consumption can be reduced with

Small cluster window

(High resistivity material of epitaxial layer)

- □ Low-frequency clock
- Low-resolution ADC

No significant reduction on surface and power consumption for different multiplexer (Not taken MCA and ANN into account)

Optimization

Power gating technology can be used to reduce power consumption

1, Column height is calculated according to the surface (pitch = $50 \ \mu m$)

2, Multiplexer means the implementation of level 2

*

Algorithm with 5×5 cluster window, can be extended to 7×7 cluster window

Compared with 8 neighbor pixels, find seed pixels in a 3×3 cluster window

Replace fired pixels, repeat comparison, find seed pixel in a 5×5 cluster window

□ Four operators are flowed on a cluster (5 × 5) at a step of 1 pixel and make convolution, respectively

□ Four 3 × 3 submatrices are generated, then convolution processes are repeated on these submatrices

□ The maximum and minimum value can be picked out from 16 values to present features of a cluster

Machine learning, IPHC, octobre 2020

ILC physics goals

- Very rich and wide program:
 - ✓ Top physics
 - ✓ EW precision physics
 - \checkmark Direct/indirect searches BSM
 - DM search, exotic searches, etc.
- Higgs physics

⇒Higgs parameters precise measurements

- Mass, couplings, spin, etc.
- Up to the % level
- ✓ Model independent
- \succ Access to σ AND σ xBr
- Probe to new physics, model identification
- Vertex detector role:
 - b,c,τ tagging everywhere
 - Low momentum tracking
 - Jet charge determination

Energy	Reaction	Physics Goal
$91 \mathrm{GeV}$	$e^+e^- \rightarrow Z$	ultra-precision electroweak
160 GeV	$e^+e^- \rightarrow WW$	ultra-precision W mass
250 GeV	$e^+e^- \rightarrow Zh$	precision Higgs couplings
$350{-}400 { m ~GeV}$	$e^+e^- \rightarrow t\overline{t}$	top quark mass and couplings
	$e^+e^- \rightarrow WW$	precision W couplings
	$e^+e^- \rightarrow \nu \overline{\nu} h$	precision Higgs couplings
$500 { m GeV}$	$e^+e^- \rightarrow f\overline{f}$	precision search for Z'
	$e^+e^- \rightarrow t\overline{t}h$	Higgs coupling to top
	$e^+e^- \rightarrow Zhh$	Higgs self-coupling
	$e^+e^- \rightarrow \tilde{\chi}\tilde{\chi}$	search for supersymmetry
	$e^+e^- \to AH, H^+H^-$	search for extended Higgs states
700–1000 GeV	$e^+e^- \rightarrow \nu \overline{\nu} hh$	Higgs self-coupling
	$e^+e^- \rightarrow \nu \overline{\nu} VV$	composite Higgs sector
	$e^+e^- \rightarrow \nu \overline{\nu} t \overline{t}$	composite Higgs and top
	$e^+e^- \rightarrow \tilde{t}\tilde{t}^*$	search for supersymmetry

A.Besso

Higgs boson couplings shifts in BSM (examples)

Is the % level on the coupling precision enough ?

= 1 σ expected uncertainties from the full ILC data set (model-independent fit)

Model discrimination with ILC full data set

Graphical representation of the χ^2 separation of the Standard Model

Machine learning, IPHC, octobre 2020

Why do we need vertexing ?

Reconstruct vertex to reconstruct the decay chain

- Heavy flavour particles (b/c/τ)
 - Need to tag them in many physics analysis
 - Unstable but flying particles

$$\frac{\langle d \rangle = \beta . \gamma . c . \tau}{E.g. B \rightarrow J/\Psi K_{s}^{0}}$$

Stable particles

$$\tau > 10^{-6}$$
 s
 cτ

 n
 2.66km

 μ
 658m

 Very long lived particles
 $\tau > 10^{-10}$ s

 π , K[±], K_L⁰
 2.6 x 10⁻⁸
 7.8m

 K_S⁰, E[±], Δ^0
 2.6 x 10⁻¹⁰
 7.9cm

 Long lived particles
 $\tau > 10^{-13}$ s
 τ^{\pm}

 0.3 x 10⁻¹²
 91µm
 + charm (D)

 B_d⁰, B_s⁰, Δ_{b}
 1.2 x 10⁻¹²
 350µm

 Short lived particles
 π^{0} , η^{0}
 8.4 x 10⁻¹⁷
 0.025µm

 ρ, ω
 4 x 10⁻²³
 10⁻⁹µm!!
 10⁻⁹µm!!

Jets containing b and c quarks Tau leptons :

 \Rightarrow Typical <d> ~ O(10-100s μ m)

 \Rightarrow Necessary resolution on these vertex position (impact parameter): ~ O(10 μ m)

= v/c

1

 $1 - \beta^{\overline{2}}$

Machine learning, IPHC, octobre 2020

Primary vertex

Time resolution in the context of e^+e^- colliders

Machine learning, IPHC, octobre 2020

VXD-ILD: Data flux

Layer	DBD occupancy (hits/cm ² /BX)	Detector surface (mm²)	#hits/BX	#hits/read out	#hits/train	# hits/s	Data rate (Mbits/train)	Data rate (Mbits/s)	Data rate (Mbits/train) With safety factor of 3	Data rate (Mbits/s) With safety factor of 3
	@ √s = 500 GeV	Length x width x # ladders		assuming 4 μs i.e. 8 BX	Assuming 1312 bunches per train	Assuming 5 trains / s	Assuming 16 bits/pixel & 5 pixels/hit & 10 bits header = 100 bits/hit	Assuming 16 bits/pixel & 5 pixels/hit & 10 bits header = 100 bits/hit	Assuming 16 bits/pixel & 5 pixels/hit & 10 bits header = 100 bits/hit	Assuming 16 bits/pixel & 5 pixels/hit & 10 bits header = 100 bits/hit
0	6.32 ± 1.76	125 x 11 x 10 = 13 750	870	7000	1140 K	5700 K	114	570	342	1710
1	4.00 ± 1.18	125 x 11 x 10 = 13 750	550	4400	720 K	3600 K	72	360	216	1080
2	$\textbf{0.25} \pm \textbf{0.11}$	125 x 2 x 22 x 11 =60 500	150	1200	197 К	985 K	19.7	98.5	59.1	295.5
3	$\textbf{0.21}\pm\textbf{0.09}$	125 x 2 x 22 x 11 =60 500	130	1040	171 K	855 K	17.1	85.5	51.3	256.5
4	$\textbf{0.04}\pm\textbf{0.03}$	125 x 2 x 22 x 17 =93 500	40	320	52 K	260 K	5.2	26	15.6	78
5	$\textbf{0.04}\pm\textbf{0.03}$	125 x 2 x 22 x 17 =93 500	40	320	52 К	260 K	5.2	26	15.6	78
TOTAL		335 500 mm ² ~ 0.35 m ²	1780	14280	2332 К	11660 K	233.2	1166	700	3500

average raw data size (without or with safety factor on beam background included)
 Average size per BX : ~0.18 Mbits / BX ⇒ 0.54 Mbits / BX (with safety factor of 3) ~375 Gbits/s (instantaneous)
 Average size per event (~8 BX) : ~1.4 Mbits/ readout ⇒ 4.3 Mbits / readout (with safety factor of 3)
 Average size per train : ~233 Mbits / train ⇒ 700 Mbits / train (with safety factor of 3)
 Average size per second : ~1166Mbits / s ⇒ 3500 Mbits / s (with safety factor of 3)

ILC beam background

Figure 2: Distributions in azimuthal angle ϕ and z of early (upper plots) and late (lower plots) hits in the first two VXD layers.

Μ

Number of crossed pixels: pitch / epitaxial layer thickness

Μ

36

ALICE ITS Material budget

