Classification et Segmentation de séries temporelles

Journée thématique "activités Machine Learning à l'IPHC"

Sommaire

- Données
- Méthodes
 - Machine Learning en R
 - Deep Learning en Python et Keras
- Projets
- Expertises
- Annexes
 - Bonnes pratiques
 - Documentation et liens

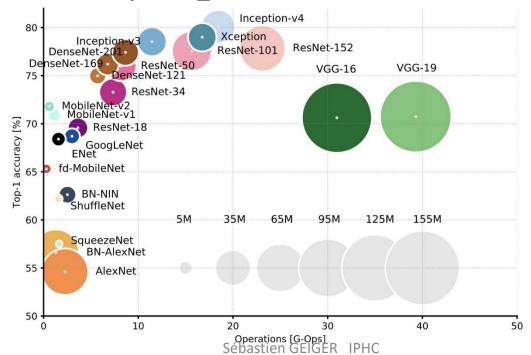
DataSet WISDM

- Smartphone and Smartwatch Activity and Biometrics Dataset https://www.cis.fordham.edu/wisdm/dataset.php#actitracker
- Type: Raw Time Series Data (Accelerometer X,Y,Z)
- Frequency: 20Hz
- Number of examples: 1,098,207
- Number of attributes: 6
- Class Distribution
 - Walking: 424,400 (38.6%) id:5
 - Jogging: 342,177 (31.2%) id:1
 - Upstairs: 122,869 (11.2%) id:4
 - Downstairs: 100,427 (9.1%) id:0
 - Sitting: 59,939 (5.5%) id:2
 - Standing: 48,395 (4.4%) id:3

Machine Learning en R

- Principe de fonctionnement :
 - Définition d'un dataset Segment * Features = Classe
 - Recherche de la taille des segments
 - Détermination de la classe par segment
 - Calcul des « Features » : magnitude, zerocross, peak2peak, rms, means, stdev, kurtosis, skewness, peak/rms, entropy, autocorelation, percentile, spectral energy, principal frequency, ...
 - Augmentation des données :
 - Ajout de voies (filtres, spectre magnitude, phase,...)
 - Overlap, cropping, flipping
- Documentation: Feature extraction for robust physical activity recognition https://link.springer.com/article/10.1186/s13673-017-0097-2

Machine Learning en R


- Taille des segments 200 obs, overlap 40 obs
- Calcul des features : 54710 Obs * 65 variables
- Réduction des dimensions PCA ou Corrélation features : 54710 Obs * 40 variables
- Création jeux d'entrainement 80% et de test 20%
 - train: 43770 Obs * 40 variables
 - test: 1090 Obs * 40 variables
- Evaluation avec différents algorithmes de classification

Machine learning en R

- Résumé :
 - Calcul effectué sur mon laptop sans GPU;)
 - randomForest :0.9661 (33.930s)
 - xgboost :0.9803 (68.937s)
 - kknn :0.9819 (14.912 s)
- Autres Algos de classification :
 - LightGBM
 - HistGradientBoostingClassifier
- Recherche optimum des Hyper-paramètres
 - Package SuperML (~ scikit-learn's fit,predict,transform)
 - RandomizedSearchCV, GridSearchCV

Deep Learning (Python et Keras)

- Utilisation des réseaux CNN et RNN
- Support 3D, 2D ou 1D (Time Séries)
- Différentes topologies

01/10/2020

Principe de fonctionnement

- Détermination des segments et des classes
- Le réseau CNN ou RNN détermine les « features »
- Augmentation des données
- Déterminer les hyper-paramètres
- Utilisation de Colab avec support du GPU (Sans GPU 10 minutes, avec GPU 16 secondes)
- Résultat :

```
• Resent 1D : 0.93 (30*6s)
```

Conv2D-MelSpectogram: 0.88 (30*16s)

• LSTM : 0.93 (30*45s)

Projet: rblt-maps

- Projet ANTIDOT de Damien CHEVALLIER et de la thèse de Lorène JEANTET
- Développement d'un outil accessible depuis un navigateur pour des scientifiques spécialisés dans le suivi des tortues marines permettant la visualisation des relations entre données des Bio-loggers et les positions GPS
- Utilisation de modèle(s) pré-entraîné(s) pour identifier automatiquement les comportements à partir des données des Bio-loggers
- Affichage des relations entre comportements et position GPS
- Reconstruction des trajectoires ou plongées en 3D
- Technologie: R, Shiny, Docker, Python, Keras

Projet : Détection d'anomalies dans les métriques de métrologie

- Aide à l'exploitation des métriques de la plate-forme SCIGNE pour déterminer l'état des ressources
- Stockage ElastiqueSearch (base NoSQL)
- Dashboard Grafana, Kibana
- Collecteur Logstash, Prometheus, syslogs, ...
- Méthode: détermination des situations exceptionnelles ou des comportements déviants
 - LDOF (Local Distance Outlier Factor), LOF (Local Outlier Factor)
 - Quartiles-based : calcul des quartiles et seuil sur les valeurs min et max
 - SARIMA: stands for Seasonal Auto Regressive Integrated Moving Average
 - Isolation Forest

Expertises

- Outils: Jupyter, Python, Numpy, Pandas, Keras,
 Scikit-Learn, R, RStudio, Shiny, Colab, C++
- Gestion des données : Alignement des données, filtrages numériques, gestion des formats, TSDB, NoSQL, Segmentations, exploration des Datas
- Infrastructure : Cloud, Docker, Stockage (kubernetes, stockage S3, Ferme GPU du cc)
- Classification / segmentation 2D, la théorie
 - Déterminer un chiffre, chien ou chat ?;)

Annexes

- Informations complémentaires
- Bonnes pratiques
- Exploration de données

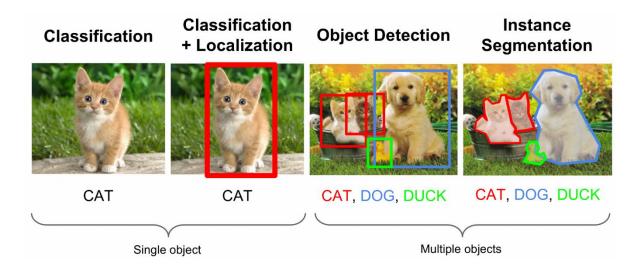
Liens

- Ecole informatique https://gitlab.in2p3.fr/ri3/ecole-info/2020/anf-machine-learning
- scikit-learn https://scikit-learn.org/stable/
- WEKA The workbench for machine learning : https://www.cs.waikato.ac.nz/ml/weka/
- DATA MINING https://www.cs.waikato.ac.nz/ml/weka/book.html
- DataSet public pour l'entraînement :
 - WISDM Smartphone and Smartwatch Activity and Biometrics Dataset Data Set
 - DaLiAc Daily Life Activities https://www.mad.tf.fau.de/research/activitynet/daliac-daily-life-activities/
 - FORTH-TRACE Dataset https://github.com/spl-icsforth/FORTH_TRACE_DATASET
 - UC Irvine Machine Learning Repository https://archive.ics.uci.edu/ml/index.php

Evolution des besoins

- Fourniture de ressources via SCIGNE
- Demande de support
 - R, RStudio, Configuration environnement, Shiny
 - Lecture et visualisation des données
 - Alignement des données bio-loggers, carte GPS
- Nouveaux profils: Data scientist, Data architect
- Gestion des données pour le Big Data
- Outils adaptés à la gestion des Logs ?

Formations

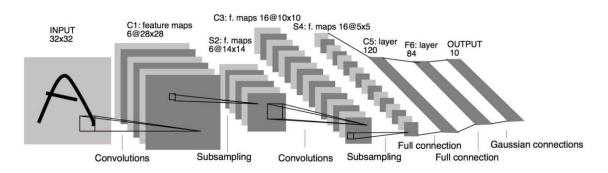

- Ecole informatique: "Concepts et utilisation du Machine Learning pour les informaticiens"
- Fouille de données Master2 Unistra
- Mooc : statistique avec R, Deep Learning,
 Fondamentaux pour le Big Data, ...
- Livre: L'apprentissage profond avec Python,
 François Chollet

Bonnes pratiques

- Connaissance des données
- Filtrages et traitements numériques
- Déterminer les relations entre les variables et les classes
- Correction de l'équilibre des classes
- Matrice de confusion
- Recherche des hyper-paramètres
- Classification / Segmentation
- Transfert Learning

Classification / Segmentation

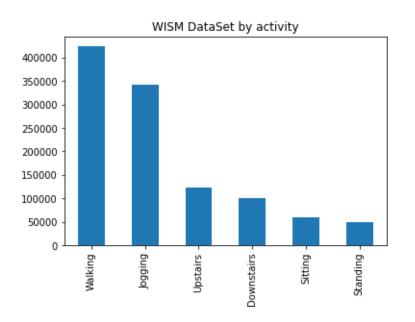
Des modèles pour chaque usage

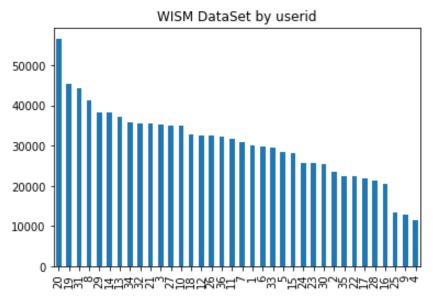


https://medium.com/datadriveninvestor/deep-learning-for-image-segmentationd10d19131113

Segmentation: FCN32, Segnet, U-Net, V-Net

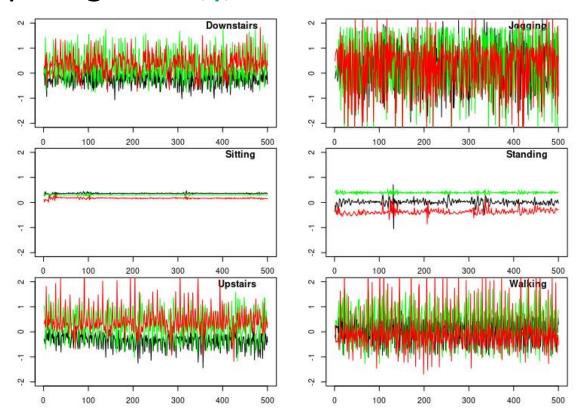
Deep Learning (Python et Keras)


LeNet5: Yann LeCun en 1988;)

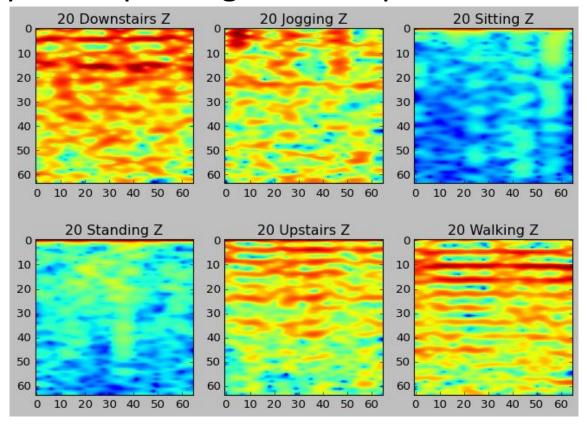

- https://towardsdatascience.com/neural-network-architectures-156e5bad51ba
- Utilisation des réseaux CNN en Deep Learning https://medium.com/@RaghavPrabhu/understanding-ofconvolutional-neural-network-cnn-deep-learning-99760835f148

DataSet WISDM

Par activités



Par utilisateur


DataSet WISDM x,y,z / activity

Exemple signaux x,y,z

DataSet WISDM x,y,z / activity

• Exemple de spectrogramme Z par activités

ML- RandomForest

```
nbcore
fit
   : 33.930 s
predict: 0.152
Confusion Matrix and Statistics
        Reference
Prediction
                   1 2 3
                                    5
              893
                   12
                            1 59 37
                4 3385 2
                                10 20
                    0 558 12
                 2 26
                          435
           4
               48
                   21
                            1 1129
                                    26
                   40
                                27 4169
Overall Statistics Accuracy: 0.9661
```

ML-xgboost

```
nbcore : 6 (support du multicore par défaut)
fit : 68.937 s
predict : 0.258 s
```

Confusion Matrix and Statistics

Reference

```
Prediction 0 1 2 3 4 5
0 946 2 1 5 38 12
1 5 3393 4 1 6 12
2 1 0 557 14 2 0
3 1 0 8 456 1 3
4 50 7 2 0 1164 5
5 8 13 0 0 15 4208
```

Overall Statistics: Accuracy: 0.9803

ML- kknn

```
nbcore
fit : 14.912
predict : 0.0
Confusion Matrix and Statistics
       Reference
Prediction
        964 6 0
                    1 38
          5 3394
                          1 18
              2 552 25
           4
              0 20 441
         4
          22 5
       4
                1
                      0 1181
          5
                    2
                          4 4210
Overall Statistics Accuracy: 0.9819
```

DL - Resent 1D

Total params : 512,038

Temps d'apprentissage : 30*6s = 180s

Temps prédiction : 1s

Accuracy : 0.93

	precision	recall	f1-score	support
0	0.83	0.76	0.80	324
1	1.00	0.96	0.98	992
2	0.94	0.92	0.93	225
3	0.90	0.91	0.91	186
4	0.84	0.80	0.82	365
5	0.92	0.98	0.95	1200
accuracy			0.93	3292

DL - Conv2D MelSpectogram

Total params : 67,240,262

Temps d'apprentissage : 30*16s

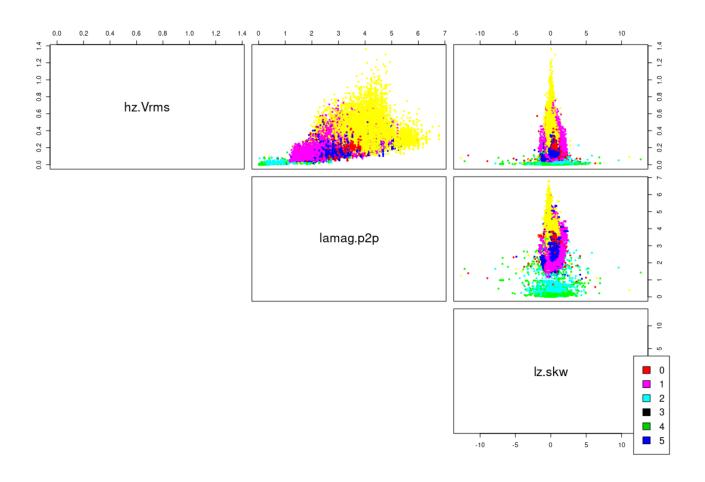
Temps prédiction : 1s

Accuracy : 0.88

	precision	recall	f1-score	support
0	0.67	0.81	0.73	206
1	0.98	0.91	0.94	620
2	0.95	0.86	0.90	141
3	0.85	0.92	0.89	117
4	0.72	0.59	0.65	223
5	0.91	0.96	0.94	749
accuracy			0.88	2056

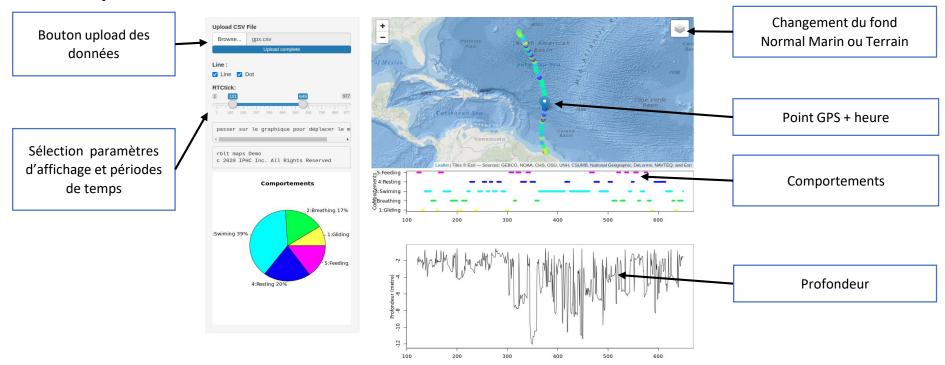
DL - LSTM

Total params : 563,078


Temps d'apprentissage : 30*45s

Temps de prédiction : 1s

Accuracy on test data: 0.93


	precision	recall	f1-score	support
0	0.76	0.87	0.81	446
1	1.00	0.92	0.96	1669
2	0.88	0.97	0.92	354
3	0.97	0.80	0.88	252
4	0.79	0.85	0.82	500
5	0.95	0.98	0.97	1771
accuracy			0.93	4992

graphes de corrélations de variables

rblt-maps

Développement « Shiny app » et support via SCIGNE la plateforme de CLOUD à l'IPHC

