SVOM CORE PROGRAM: GAMMA-RAY BURSTS

Frédéric Daigne (Institut d'Astrophysique de Paris) on behalf of the SVOM collaboration

THE EXPECTED SVOM GRB SAMPLE

SVOM CORE PROGRAM: GRB STUDIES

SVOM CORE PROGRAM: GRB STUDIES

GRM has a larger field of view than ECLAIRs

ECLAIRs sensitivity to short GRBs can be improved by combining ECLAIRs+GRM

GRM has a larger field of view than ECLAIRs

ECLAIRs sensitivity to short GRBs can be improved by combining ECLAIRs+GRM

SVOM CORE PROGRAM: GRB STUDIES

prompt visible emission in ~16% of cases

ECLAIRs+GRM can measure the prompt spectrum over 3 decades in energy

GWAC will add a constraint on the associated prompt optical emission in a good fraction of cases.

alert in near-real time: VHF

SVOM CORE PROGRAM: GRB STUDIES

MXT can detect and localize the X-ray afterglow in >90% of GRBs after a slew.

AFTERGLOW & DISTANCE

(400-1000 nm) Loc.: <1″

MXT (0.2-10 keV) Loc.: <13"

GWAC

2x4000 deg² 1.2 m m_{lim} ~ 16-17 400-950 nm

C-GFT

F-GFT/COLIBRI

1.3 m 400-**1700** nm multi-band

VT, C-GFT and F-GFT will detect, localize and characterize the V-NIR afterglows (lightcurve+photo-z).

Early observation by large telescopes are favored by SVOM's pointing strategy.

Redshift measurement is expected in ~2/3 of cases.

A major goal: GRB physics + cosmology

(Very) Large telescopes

LONG-TERM FOLLOW-UP

X-Shooter at VLT (Kueyen telescope)

Long-term afterglow

- GRB Physics (energetics, environment, ...)

Host galaxy studies

- Physics of GRB progenitors (morphology, SFR, offset, ...)
- GRBs as a tool for cosmology (e.g. sample of high-z galaxies, SFH, ...)

Rapid/long-term follow-up does not depend on the SVOM collaboration only and requires a dedicated effort. See S. Basa & S. Vergani's presentation.

A GRB SAMPLE WITH A COMPLETE DESCRIPTION

A unique sample of 30-40 GRB/yr with

- prompt emission over 3 decades
- (+ optical flux/limit: 16%)
- X-ray and V/NIR afterglow
- redshift
- long term follow-up (host galaxy, etc.)

cades	Swift	Fermi	SVOM
Prompt	Poor	Excellent 8 keV -100 GeV	Very Good 4 keV - 5 MeV
Afterglow	Excellent	> 100 MeV for LAT GRBs	Excellent
Redshift	~1/3	Low fraction	~2/3

Physical mechanisms at work in GRBs

Nature of GRB progenitors and central engines

Acceleration & composition of the relativistic ejecta

Diversity of GRBs: event continuum following the collapse of a massive star

Low-luminosity GRBs / X-ray rich GRBs / X-ray Flashes and their afterglow

GRB/SN connection

Short GRBs and the merger model

GW association - MMA context: see Cyril Lachaud's presentation.

GRBs as a tool for cosmology

Sample of high-z galaxies - star formation history - first generation of stars?

DATA POLICY

SVOM CORE PROGRAM

DATA PROCESSING:

The transient nature of GRBs and the need for a near-real time reaction requires a specific organization.

- Dedicated pipeline for VHF data
- Burst advocate
- Notices/alerts
- Etc.

See F. Piron & A. Claret's presentation.

DATA POLICY:

GRB community outside SVOM:

- **An open policy** (most SP are public) **is mandatory** to favor the best follow-up of SVOM GRBs, and thus the best scientific return.
- See Swift and Fermi's examples
- The list of public SP is defined is SR3 (*« Scientific Requirements for the Core Program »*) and can evolve after the launch (to have more public SP).

Most Science Products (SP) of the Core Program are public:

- Most of the SP produced from VHF data
- Significant fraction of the SP produced from X band data (main exception: spectra)

Diffusion:

- Alerts and notices in near real-time
- On-line « SVOM GRB table » (this table will also collect some information coming from outside SVOM: e.g. spectro-z)

Within the SVOM collaboration: co-Is have access to all data.

Any researcher outside SVOM can associate with a co-I for a specific study.

CONCLUSION

- SVOM will build a unique sample of 30-40 GRB/yr:
 - prompt emission over 3 decades
 - (+ optical: 13-27%)
 - X-ray and V afterglow
 - redshift
- This sample will include classical long GRBs but will also
 - probe poorly described classes
 - (especially low-luminosity GRBs, XRF/XRR, ...)
 - detect short-hard GRBs related to compact binary mergers
- This sample will allow to address several fundamental questions:
 - Accretion/ejection Relativistic jets
 - Particle acceleration VHE emission:
 - synergy with the new generation of VHE/v detectors
 - GRB diversity & the fate of massive stars
 - Short GRBs and the physics of BNS/NSBH: synergy with GW detectors
 - GRBs as a tool for cosmology: sample of high-z galaxies, star formation history, first generation of stars?
 - etc.

Supplementary Material

(Wei, Cordier et al. « Scientific prospects of the SVOM mission », arXiv:1610.06892)

ECLAIRS + GRM SPECTRUM

Simulations of Fermi/GRB bursts (Gruber+ 13) (burst on-axis in ECLAIRs, 30° offaxis in GRM) = 521 bursts (BAND or COMP) including 50 short

(Bernardini et al. 2017)

ECLAIRS + GRM SPECTRUM

Simulations of Fermi/GRB bursts (Gruber+ 13) (burst on-axis in ECLAIRs, 30° offaxis in GRM) = 521 bursts (BAND or COMP) including 50 short

Error on low-energy slope: SVOM vs GBM

ECLAIRs+GRM spectroscopic performances: highly competitive, at least as good as Fermi/GBM

Peak energy, low/high-energy slope

A GRB SAMPLE WITH A COMPLETE DESCRIPTION

Prompt emission:

FCI AIRS: 47-82 GRB/yr ECLAIRs+GRM: ~40-60 GRB/yr

- GRM: ~90 GRB/yr GWAC: 13-27% of alerts
- Slew requests: 36-72 GRB/yr
- X-ray afterglow (MXT): 90% of cases after a slew
- **Visible afterglow (VT):** 66% of slews followed by at least 5 min of visibility
- **Visible+NIR afterglow:** 37% of ECLAIRs triggers (F-GFT+C-GFT)

(75% with LCOGT)

- **Early observation possible with a VLT:** 85% of MXT localizations
- Redshift measurement expected in 2/3 of burst

A unique sample of 30-40 GRB/yr with

- prompt emission over 3 decades (+ optical: 13-27%)
- X-ray and V afterglow
- redshift