EDM calculations

Mark D. Goodsell

EDM experiments

Can measure:

EDM of neutron,

$$|d_n/e| \lesssim 3.0 \times 10^{-26}$$
 cm.

- \rightarrow Famously implies $|\theta_{QCD}| < 10^{-10}$.
- EDMs of heavy <u>atoms</u> Hg (diamagnetic) and TI (paramagnetic). EDMs of most atoms ~ vanish due to Schiff screening theorem, these violate the assumptions.
- EDM of electron (ACME expt):

$$d_e < 1.1 \times 10^{-29} e \text{ cm} = 0.6 \times 10^{-15} e \text{ GeV}^{-1}.$$

EDM operators are CP violating. In the SM the CPV is small \rightarrow very sensitive to new physics! Fits very nicely with EFT approach, too!

EDM calculations

We'll hear about the theory of EDM calculations from Ramsey-Musolf's talk. In BSM, need to calculate the operators:

$$\mathcal{L}_{d=4,5} \supset \theta_s \frac{g_s^2}{32\pi^2} G^a_{\mu\nu} \tilde{G}^{a\,\mu\nu} + \frac{1}{4} \sum_f \overline{\psi}_i [\gamma^{\mu}, \gamma^{\nu}] \gamma_5 \left(d_i F_{\mu\nu} + g_s \tilde{d}_i G_{\mu\nu} \right) \psi_i$$

and also

$$\mathcal{L}_{d=6} \supset \frac{1}{3} d_W f^{abc} G^a_{\mu\nu} \tilde{G}^{b\,\nu\beta} G^{c\,\mu}_{\beta} + \sum_{ij} C_{ij} (\overline{\psi}_i \psi_i) (\overline{\psi}_j i \gamma_5 \psi_j) + \dots$$

These can then be matched to electron/neutron/atom EDMs at low energies, e.g.

$$|d_n/e| \sim 4 \times 10^{-26} \text{ cm} \times [d_W \times 10^{10} \times (\text{GeV})^2].$$

Clearly, the cleanest is the electron EDM.

Status of EDM calculations

Operators can be calculated at one loop:

In SARAH, can compute all the operators at the BSM scale at one loop automatically, for any theory.

But for specific models, we know we need <u>two-loop</u> contributions, e.g. (in particular) Barr-Zee diagrams:

Until recently, only partial sets of these were known for specific theories.

Example: SUSY theories

- In SUSY theories, have lots of extra sources of CPV, and an extended Higgs sector
- At one loop, for electron EDM only have fields that couple to the electron, e.g. selectrons/Higgs/electroweakinos.
- Strongly constrains phases in Higgs sector (B_{μ}) , electroweakino mass phases.
- Gluino phase, stop mixing phase do not enter at one loop → naively relatively unconstrained (neutron EDM/atomic EDMs less constraining than electron EDM).
- Also: if first two generations of squarks heavy, third generation appears unconstrained at one loop.

Non-SUSY extended Higgs sectors

- In non-SUSY theories, good motivation for extended Higgs sectors is to allow EW baryogenesis → and also lamppost principle!
- Similar situation though: quartic CPV couplings in e.g. THDM appear really at two loops in EDMs.

Recently though [2009.01258] performed a complete calculation in the THDM for the electron EDM, with easily-implementable formulas. Idea of one of the projects was to implement these and apply for THDM extensions ... such as the MSSM.

Pipeline for generic theories

- The missing two-loop effects might also partially reappear through operator mixing after RG running.
- Can calculate all the operators at one-loop in SARAH at the BSM scale, export in WXCF format.
- Other tools can then handle the running in the SMEFT/WET \rightarrow calculate the EDMs at low energy, constrain with Flavio.

In principle all the pieces exist already for this, but I do not know if it has been applied to examples.

Making the pipeline "automatic" and trying it out was the other idea for a simple hands-on project.

Clearly in an ideal world we'd really have the genuine two-loop matching too ...

Future collaboration/directions

- In an ideal world, would have fully-automatic calculation/approximation of leading two-loop contributions ... I suspect even the one-loop matching can still be improved.
- Would be interesting if there are still things to improve in the low-energy/running part.
- My own interest started with interplay between constraints on phases and their contribution to other observables, e.g. Higgs mass. Maybe identifying other correlations in favourite benchmark theories?