
Vectorised calculations with TensorFlow
GdR InF hands-on project

Anton Poluektov

Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France

12-16 October 2020

Anton Poluektov Vectorised calculations with TensorFlow GdR InF hands-on project, 12-16 October 2020 1/24

Introduction

Heavy computing tasks in flavour physics analyses (where the analyst often has
to write their own code):

Maximum likelihood fits to large datasets and/or complex models

Large-scale toy MC generation (e.g. feasibility or systematic studies)

Fast MC w/o full detector simulation

Parameter scans in combinations of measurements

???

In the cases above, we are not dealing individually with each event.

Uniform operations with bulk dataset, boils down to

Element-wise operations on vectors of data (map)

Reductions of vectors to a single value: summation, integration, maximum
etc. (reduce)

Usually easily vectorisable!

Last but not least: analysis is usually done only once, so quick prototyping of
code is essential.

Anton Poluektov Vectorised calculations with TensorFlow GdR InF hands-on project, 12-16 October 2020 2/24

Introduction: amplitude analyses at LHCb

Example: pentaquark discovery: [PRL 115 (2015) 072001]

∼ 26000 events, 6D kinematic phase space, unbinned maximum likelihood fit

 [MeV]
5500 5600 5700

E
ve

nt
s

/ (
 4

 M
eV

)

0

1000

2000

3000

4000

5000

6000

7000
LHCb

p ψ/Jm K]2[GeVKp
2m

2 3 4 5 6

]2
[G

eV
p

ψ
J/2

m

16

18

20

22

24

26 LHCb

Λ
∗

re
so

n
an

ce
s

J/ψp resonance

 [GeV]pψ/Jm
4 4.2 4.4 4.6 4.8 5

E
ve

nt
s/

(1
5

M
eV

)

0

100

200

300

400

500

600

700

800

LHCb(b)

 [GeV]pKm
1.4 1.6 1.8 2 2.2 2.4 2.6

E
ve

nt
s/

(1
5

M
eV

)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

LHCb(a)

data
total fit
background

(4450)cP
(4380)cP
(1405)Λ
(1520)Λ
(1600)Λ
(1670)Λ
(1690)Λ
(1800)Λ
(1810)Λ
(1820)Λ
(1830)Λ
(1890)Λ
(2100)Λ
(2110)Λ

Anton Poluektov Vectorised calculations with TensorFlow GdR InF hands-on project, 12-16 October 2020 3/24

http://arxiv.org/abs/1507.03414

Introduction: amplitude analyses at LHCb

Fitting function: a coherent sum of ∼ 20 helicity amplitudes

← Decay density

← Amplitudes for intermediate resonances

← Complex couplings

← Dynamical term

Angles entering the expressions are functions of 6D decay kinematics (Lorentz
boosts, rotations).

Anton Poluektov Vectorised calculations with TensorFlow GdR InF hands-on project, 12-16 October 2020 4/24

Introduction: amplitude analyses at LHCb

Something else to take into account in addition to the theory model:

Acceptance and backgrounds.

Parametrised multidim. density, ∼ easy.

Resolutions, partially reconstructed states.

Integration/convolution: expensive computations

Unbinned maximum likelihood fit.

− lnL = −
(∑

ln f (xdata)− Ndata ln
∑

f (xnorm)
)

Easily vectorised (compute PDF values for each data/normalisation point
in parallel).

Typically need hundreds/thousands of fits for a single analysis:

Model building

Nominal data fit

Systematic variations

Toy MC studies

Anton Poluektov Vectorised calculations with TensorFlow GdR InF hands-on project, 12-16 October 2020 5/24

Amplitude analysis tools in LHCb

Writing an amplitude fitting code from scratch is painful and time consuming.
Several frameworks are in use at LHCb:

Laura++

A powerful tool for traditional 2D Dalitz plot analyses (including
time-dependent)
Single-threaded, but many clever optimisations

MINT

Can do 3-body as well as 4-body final states

GooFit

GPU-based fitter

AmpGen

Amplitude analysis extension for GooFit (code generation, JIT).

Ipanema-β

GPU-based, python interface (pyCUDA)

qft++

Not a fitter itself, but a tool to operate with covariant tensors

... and a lot of private code in use (e.g. based on RooFit).

Anton Poluektov Vectorised calculations with TensorFlow GdR InF hands-on project, 12-16 October 2020 6/24

https://laura.hepforge.org/
https://twiki.cern.ch/twiki/bin/view/Main/MintTutorial
https://github.com/GooFit
https://github.com/GooFit/AmpGen
https://arxiv.org/abs/1706.01420
https://github.com/jdalseno/qft

Amplitude analysis tools in LHCb

The problem with frameworks is that they are not flexible enough.

Trying to do something not foreseen in the framework design becomes a pain.

Non-scalars in the initial/final states

Complicated relations between fit parameters

Fitting projections of the full phase space/partially-rec decays

At some point, it becomes easier to write an own framework (that’s why there
are so many?)

For the analyses that go beyond a readily available frameworks, need a more
flexible solution:

Efficient from the computational point of view

Tradeoff between person×hours to implement the code vs. CPU×hours to
do the actual fits.

Anton Poluektov Vectorised calculations with TensorFlow GdR InF hands-on project, 12-16 October 2020 7/24

Machine learning tools for HEP calculations?

Amplitude analyses

Large amounts of data

Complex models

... which depend on
optimisable parameters

Optimise by minimising neg.
log. likelihood (NLL)

Need tools which allow

Convenient description of
models
Efficient computations

and don’t require deep
low-level hardware knowledge.

Machine learning

Large amounts of data

Complex models

... which depend on
optimisable parameters

Optimise by minimising cost
function

Need tools which allow

Convenient description of
models
Efficient computations

and don’t require deep
low-level hardware knowledge.

We can reuse the tools developed by a much broader ML community for our
needs.

Anton Poluektov Vectorised calculations with TensorFlow GdR InF hands-on project, 12-16 October 2020 8/24

TensorFlow framework

[Tensorflow webpage]

[White Paper]

“TensorFlow is an open source software library for
numerical computation using data flow graphs.”
Released by Google in October 2015.

Uses declarative programming paradigm: instead of
actually running calculations, you describe what you
want to calculate (computational graph)

TF can then do various operations with your graph,
such as:

Optimisation (e.g. caching data, common subgraph
elimination to avoid calculating same thing many
times).
Compilation for various architectures (multicore,
multithreaded CPU, GPU, distributed clusters, mobile
platforms).
Analytic derivatives to speed up gradient descent.

Front-ends for several languages. Python is the most
natural. Faster development cycle, more compact and
readable code.

Anton Poluektov Vectorised calculations with TensorFlow GdR InF hands-on project, 12-16 October 2020 9/24

https://www.tensorflow.org/
http://download.tensorflow.org/paper/whitepaper2015.pdf

TensorFlow v1 vs. v2

What is said below is applied to TensorFlow v2.

TF v2 is significantly different from v1:

The distinction between declaration and execution is less expressed (“Eager
mode”)
Easier to debug (e.g. can print out intermediate results), but more difficult
to figure out what happens under the hood.

Earlier I have presented the usage of TF v1 in several LHCb meetings. Now
moving to v2.

TensorFlowAnalysis library based on v1 is used in a few analyses.

New libraries to be used with v2 we will try in this project: AmpliTF and
TFA2.

Anton Poluektov Vectorised calculations with TensorFlow GdR InF hands-on project, 12-16 October 2020 10/24

This tutorial

I will demonstrate how one can use TensorFlow in a few typical cases of flavour
physics analyses.

[Homepage of the project in GitHub]

I propose to install TensorFlow and all dependencies via Conda package
manager. [Installation instructions]

After installing (and after this presentation), you can go through the examples
one-by-one. Run them yourself and read the explanations on the documentation
page.

The examples will gradually introduce the features of TensorFlow and HEP
extensions (AmpliTF and TFA2).

Disclaimer: This is the first time I’m giving this tutorial! Expect typos, errors
in the code, missing details, bad structure, ... Feedback is very welcome!

Anton Poluektov Vectorised calculations with TensorFlow GdR InF hands-on project, 12-16 October 2020 11/24

https://github.com/apoluekt/TFA2/blob/master/doc/README.md
https://github.com/apoluekt/TFA2/blob/master/doc/01_installation.md

TensorFlow: basic structures

TF represents calculations in the form of directional data
flow graph.

Nodes: operations

Edges: data flow

f = a*tf.sin(w*x + p)

Data are represented by TF tensors (rectangular arrays of arbitrary
dimensionality)

Most of TF operations are vectorised, e.g. tf.sin(x) will calculate
element-wise sin xi for each element xi of multidimensional tensor x.

Useful for ML fits, need to calculate same function for each point of large
dataset.

Data can be placed in RAM or VRAM (on GPU)

Tensors: constant (e.g. training data) or variable (trainable parameters).

Anton Poluektov Vectorised calculations with TensorFlow GdR InF hands-on project, 12-16 October 2020 12/24

TensorFlow: graph building and execution

[hello world.py in TFA2]

The graph is built from Python function with @tf.function decorator:

import tensorflow as tf

a = tf.Variable(1., trainable = True)
w = tf.Variable(1., trainable = True)
p = tf.Variable(0., trainable = True)

@tf.function
def f(x):
return a*tf.sin(w*x + p)

(note that calculation graph is described using TF building blocks. Can’t use
existing libraries directly)

Nothing is executed at this stage. The actual calculation runs once the function
f(x) is called with TF tensor as an input:

x = tf.constant([0., 1., 2., 3., 4.])
print(f(x)) # tf.Tensor([...], shape=(5,), dtype=float32)

Tensors can be created fron numpy arrays, and converted back to numpy array
with a t.numpy() call.

Anton Poluektov Vectorised calculations with TensorFlow GdR InF hands-on project, 12-16 October 2020 13/24

https://github.com/apoluekt/TFA2/blob/master/demos/00_hello_world.py

TensorFlow: minimisation algorithms

TensorFlow has its own minimisation algorithms:

Training data
y = tf.constant([1., 2., 3., 4., 5.])

@tf.function
def chi2() :

return tf.reduce_sum((f(x)-y)**2)

Create optimiser
from tensorflow.python.training import gradient_descent
opt = gradient_descent.GradientDescentOptimizer(0.001)

Run 1000 steps of gradient descent
for _ in range(1000) :

print(a.numpy(), w.numpy(), p.numpy(), chi2().numpy())
opt.minimize(chi2)

Built-in minimisation functions seem to be OK for ANN training, but not
for physics (no uncertainties, likelihood scans, check for global minimum)

MINUIT seems more suitable. Use it instead, and run TF only for likelihood
calculation (custom FCN in python, run Minuit using PyROOT).

Anton Poluektov Vectorised calculations with TensorFlow GdR InF hands-on project, 12-16 October 2020 14/24

TensorFlow: useful features for HEP analyses

Analytic gradient

Extremely useful feature of TF is automatic building of the graph for analytic
gradient of any function (speed up convergence!)

In the example above, we can obtain the vector of derivatives for the function
chi2() over the fit parameters [a,w,p] as follows:

with tf.GradientTape() as gt:
grad = gt.gradient(chi2(), [a,w,p])

print(grad)

Analytic gradient is calculated internally in the built-in optimizers, but can be
called explicitly and passed to MINUIT.

Anton Poluektov Vectorised calculations with TensorFlow GdR InF hands-on project, 12-16 October 2020 15/24

TensorFlow: useful features for HEP analyses

Interface with sympy

sympy is a symbolic algebra system for python. Consider it as mathematica

with python interface. Free and open-source.

sympy has many extensions for physics calculations
See. e.g. sympy.physics module.

Recent versions of sympy can generate code for TensorFlow. Avoid
re-implementing functions missing in TF. E.g. create TF tree for Wigner d
function:
def wigner_d(theta, j, m1, m2) :

"""
Calculate Wigner small-d function. Needs sympy.
theta : angle
j : spin
m1 and m2 : spin projections

"""
from sympy.abc import x
from sympy.utilities.lambdify import lambdify
from sympy.physics.quantum.spin import Rotation as Wigner
d = Wigner.d(j, m1, m2, x).doit().evalf()
return lambdify(x, d, "tensorflow")(theta)

Anton Poluektov Vectorised calculations with TensorFlow GdR InF hands-on project, 12-16 October 2020 16/24

http://www.sympy.org/en/index.html
http://docs.sympy.org/latest/modules/physics/index.html

AmpliTF package

Project in github: [AmpliTF].

TF can serve as a framework for complex calculations in flavour physics.
AmpliTF implements a library of HEP-related functions.
Trying to be as much functional as possible: pure functions, stateless objects.

def relativistic_breit_wigner(m2, mres, wres) :
return 1./complex(mres**2-m2, -mres*wres)

def unbinned_log_likelihood(pdf, data_sample, integ_sample) :
norm = tf.reduce_sum(pdf(integ_sample))
return -tf.reduce_sum(tf.log(pdf(data_sample)/norm))

Avoid complicated structure of classes:

Primitives are standalone and can be reused in e.g. other libraries

Easier for external developers to contribute

Primitives are glued together in TF itself.

Anton Poluektov Vectorised calculations with TensorFlow GdR InF hands-on project, 12-16 October 2020 17/24

https://github.com/apoluekt/AmpliTF

AmpliTF: structure

Components of the library:

Phase space classes (Dalitz plot, four-body, baryonic 3-body, angular etc.):
provide functions to check if variable is inside the phase space, to generate
uniform distributions etc.

Collection of functions for amplitude description:

Lorentz vectors: boosting, rotation
Kinematics: two-body breakup momentum, helicity angles
Helicity amplitudes, Zemach tensors
Dynamics: Breit-Wigner, Flatte, LASS etc. functions, form factors,
non-resonant shapes

Anton Poluektov Vectorised calculations with TensorFlow GdR InF hands-on project, 12-16 October 2020 18/24

zfit

TFA is a low-level library of functions

LEGO bricks to build your own programs to do fits/toy MC etc.

More high-level package: zfit [github].

The project to use TensorFlow for generic fitting (a-la RooFit).

Hide TensorFlow technicalities from the user

Choice of fitters, integration techniques

No ROOT dependencies (iminuit for fitting, uproot for tuples)

Can use AmpliTF functions to create custom PDFs

Anton Poluektov Vectorised calculations with TensorFlow GdR InF hands-on project, 12-16 October 2020 19/24

https://github.com/zfit

ComPWA/tensorwaves

ComPWA is a common amplitude analysis framework develped for PANDA.
[paper], [github] (Mainz and Bochum groups).

High-level framework (hides low-level math from the user, based on isobar
description in xml files).

Originally written in C++/boost, with python interface (pycompwa).

Consider moving to TF. Prototype is called tensorwaves: [github]

tensorwaves is using AmpliTF for kinematic/dynamical functions.

Anton Poluektov Vectorised calculations with TensorFlow GdR InF hands-on project, 12-16 October 2020 20/24

https://iopscience.iop.org/article/10.1088/1742-6596/513/2/022025
https://github.com/ComPWA/ComPWA
https://github.com/ComPWA/tensorwaves

TensorFlow: issues

TF is heavy (distribution size, loading time)

E.g. impacts performance if the large number of quick and simple fits has to
be done.

Memory usage: can easily exceed a few Gb of RAM for large datasets
(charm) or complicated models.

Especially with analytic gradient
Limiting factor with consumer-level GPU.
Tesla V100 works great, but $8000...

Double precision performance is essential

Single precision not sufficient except for simplest models, poor convergence.
Again, look for high-end GPU cards for performance.

Results are not 100% reproducible between different GPUs and CPU

Subtle differences in FP implementation?
Minimisation can go different ways and even converge to different minima

Less efficient than dedicated code developed with e.g. CUDA/Thrust, but
way more flexible and easy to hack.

Anton Poluektov Vectorised calculations with TensorFlow GdR InF hands-on project, 12-16 October 2020 21/24

Beyond TensorFlow

The following is my personal vision:

It’s important not to be locked-in with TensorFlow

Possible bugs in TF: cross-checks needed.
Newer frameworks appearing.
Eventual end of support by Google?

Design the code such that TensorFlow is only one of computational
backends. Possible candidates for other backends:

pyTorch: probably not the best option (maths not as well developed, no
complex maths).
Pure numpy (of course, w/o automatic differentiation)
JAX: more recent ML tool by Google

numpy replacement with GPU/TPU support and autograd.
Much lighter than TF: ideal fit for us?

numpy and TF interfaces are similar enough that this should be easy.

Approach already used in pyhf (pure Python implementation of
HistFactory).

Anton Poluektov Vectorised calculations with TensorFlow GdR InF hands-on project, 12-16 October 2020 22/24

https://github.com/google/jax
https://github.com/scikit-hep/pyhf

TFA2 package

[GitHub repository for TFA2]

While AmpliTF is a package that tries to be as simple as possible and maximally
decoupled from TensorFlow, TFA2 is more tightly bound to TensorFlow:

Interface between TF functions and imimuit for minimisation

Routines for toy MC generation with rejection sampling

Plotting using matplotlib, LHCb publication style

Simple ROOT I/O helper functions using uproot

Multidim. density estimation using ANNs (once we are already in ML
ecosystem!)

[Demo scripts] and [their documentation] are also included in TFA2 repository.

Anton Poluektov Vectorised calculations with TensorFlow GdR InF hands-on project, 12-16 October 2020 23/24

https://github.com/apoluekt/TFA2
https://github.com/apoluekt/TFA2/tree/master/demos
https://github.com/apoluekt/TFA2/tree/master/doc

Summary

TensorFlow is gaining popularity as a general-purpose compute engine in
HEP

Can utilise modern computing architectures (mutithreaded,
massively-parallel, distributed) without deep knowledge of their structure.
Interesting optimisation options, e.g. analytic derivatives help a lot for fits
to converge faster.
Transparent structure of code. Only essence of things, no low-level stuff.
Fast development cycle with Python backend.
Training value for students who will leave HEP for industry.

As any generic solution, possibly not as optimal as specially designed tool.
But taking development time into account, very competitive.

Anton Poluektov Vectorised calculations with TensorFlow GdR InF hands-on project, 12-16 October 2020 24/24

