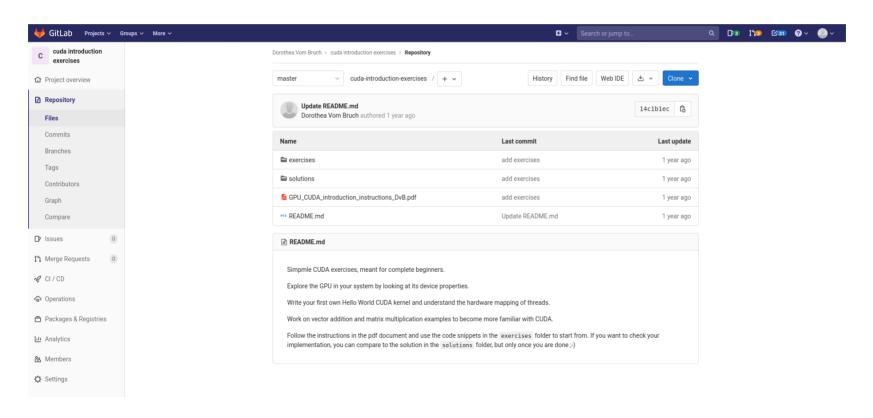
CUDA exercises

Dorothea vom Bruch

GDR-InF Annual workshop
GPU Hands-on project
October 2020



Where to find them

https://gitlab.cern.ch/dovombru/cuda-introduction-exercises

How to compile and run a CUDA program

```
(base) [dvombruc@lpnlhcbgpu:exercises]# nvcc device properties.cu -o device properties
(base) [dvombruc@lpnlhcbgpu:exercises]# ll
total 684
-rwxr-xr-x. 1 dvombruc lhcb 656936 9 oct. 14:54 device properties*
-rw-r--r. 1 dvombruc lhcb 2330 11 mai 11:24 device properties.cu
-rw-r--r. 1 dvombruc lhcb 821 11 mai 11:24 hello world start.cu
-rw-r---. 1 dvombruc lhcb 453 11 mai 11:24 helpers.h
-rw-r--r. 1 dvombruc lhcb 3082 11 mai 11:24 matrix multiply.cu
-rw-r--r. 1 dvombruc lhcb 4402 11 mai 11:24 matrix multiply shared memory start.cu
-rw-r--r. 1 dvombruc lhcb 1141 11 mai 11:24 matrix utils.h
-rw-r--r. 1 dvombruc lhcb 3017 11 mai 11:24 vector addition start.cu
-rw-r--r. 1 dvombruc lhcb 3013 11 mai 11:24 vector addition start.cu~
(base) [dvombruc@lpnlhcbgpu:exercises]# ./device properties
----- General information ------
                      Tesla V100-PCIE-16GB
Name:
Compute capability: 7.0
Max clock rate: 1380000 kHz
Device can concurrently copy memory and execute a kernel
Device can execute multiple kernels concurrently
Maximum grid dimensions: 2147483647, 65535, 65535
----- Multiprocessor information ------
                      80
Multiprocessors:
Max size of a block in x: 1024, in y: 1024, in z: 64
Max # of threads / block:
                              1024
Warp size in threads:
                              32
Shared memory per block:
                              98 kB
----- Memory information -----
Device shares a unified address space with host
Total global memory: 16945512 kB
Total constant memory: 65 kB
```

Exercises

- Run nvidia-smi on your machine: What GPUs are available?
- Run device query on your machine: What are the specs of your GPUs?
 - You can use the device properties script within the exercises gitlab repo, if you don't want to compile the CUDA samples

Follow the instructions in the PDF of the gitlab repo:

- The "exercises" directory contains code snippets with commented instructions to follow
- Your first Hello World CUDA program → get a feeling for parallelization
- Vector addition → do actual work in parallel
- Matrix multiplication → slightly more advanced
 - Suggest to try the single thread version, multiple threads & multiple threads and blocks
 - The shared memory option is more advanced
- Note: when measuring the speed of your program:
 - Make sure you are the only one using the GPU
 - You can check with nvidia-smi
 - If you know there are multiple users on the same GPU, talk to each other :)