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Why GPUs?



Moore’s law today

Clock speed stopped Multiol
increasing due to heat limit ultiple core processors

emerge (Intel i7: 4 cores)
\ 40 Years of Microprocessor Trend Data
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Evolution of peak FLOPs

* Gaming industry evolves steadily = continuous high demand for consumer GPUs
* With the trend for Al in many different areas - continuous demand for professional GPUs

Theoretical peak performance, single precision
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Theoretical peak FLOPs per clock cycle, single precision
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Theoretical FLOPs/$: GPUs & CPUs
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Release date

® Nvidia consumer GPUs

¥ AMD consumer GPUs

B Nvidia scientific GPUs

® AMD scientific GPUs

A Intel & AMD CPUs
a: RadeonHD7950 1: GTX680
b: RadeonHD&S50 2: GTXT760
c: RadeonR9285 3: GTX970
d: RadeonR9390 4: GTX9BOTI
e: RadeonRIFuryX 5: GTX1060
f: RadeonRX4604GB 6: GTX1080Ti
g: RadeonRXVegas6 7: RTX2080Ti
h: RadeonVIl

I} K20
A: FireProwgo0o II: K40
B: FireProw9100 l: K80
C: FireProw4300 V: M&0
D: RadeonProWX7100 V: P100-16GB
E: RadeonProWwx9100 VI: V100-32GB
F: RadeonProWx8200 VII: RTX&000
VI T4

aa: E5-2690

bb: E5-2697-v2
cc: E5-2630-v3
dd: E5-2630-v4
ee: Platinum-8180
ff: EPYC-7702

gg: EPYC-7452

https://arxiv.org/pdf/2003.11491.pdf


https://arxiv.org/pdf/2003.11491.pdf

GPU power efficiency

Theoretical peak FLOPs per Watt, single precision
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Why the GPU computing trend?

@

Best theoretical FLOPs/$

- -
-_ -
—
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Power efficient Many FLOPs in one device
- compact system possible




Parallel programming



Amdahl’s law

Speedup
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Speedup in latency = 1/ (S + P/N)
*  S:sequential part of program

*  P: parallel part of program

*  N: number of processors

* Parallel part: identical, but independent work

» Consider how much of the problem can
actually be parallelized!
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SISD vs. SIMD

SISD MIMD SIMD
Single Instruction Single Data Multiple Instruction Multiple Single Instruction Multiple
Data Data
Uniprocessor machines Multi-core, grid-, cloud- e.g. vector processors
computing
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SISD vs. SIMD

SISD MIMD SIMT
Single Instruction Single Data Multiple Instruction Multiple Single Instruction Multiple
Data Threads
Uniprocessor machines Multi-core, grid-, cloud- GPUs
computing
SISD Instruction Pool MIMD Instruction Pool SIMD Instruction Pool
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Single Instruction Multiple Threads

SIMT
* Similar to programming a vector processor
* Use threads instead of vectors
* No need to read data into vector register
* Only one instruction decoder available
- all threads have to execute the same instruction

* Abstraction of vectorization:
Each element of vector is processed by an independent thread

One instruction fills entire vector

# of threads = vector size

13



What is a GPU?



What GPUs are originally designed for

* Graphics pipeline: huge amount of arithmetic on independent data:
Transforming positions

Generating pixel colors

Applying material properties and light situation to every pixel

Hardware needs
* Access memory simultaneously and contiguously
* Bandwidth more important than latency

* Floating point and fixed-function logic

15



What is a GPU?

Hardware

Scalar
Processor

B i

Multiprocessor

SR

Device

(CUDA terminology)

» Several processors are grouped into a “multiprocessor”

Several multiprocessors make up a GPU

16



A GPU’s natural habitat

PCle CONMECTION

HIGH BANDWIDTH
GRAPHICS MEMORY

MEDIUM
BANDWIDTH LARGE
SYSTEM MEMORY

PCle SWITCH -+

HIGH BANDWIDTH
GRAPHICS MEMORY

HIGH BANDWIDTH
GRAPHICS MEMORY

MEDIUM
BANDWIDTH LARGE
SYSTEM MEMORY

PCle 1 lane 16 lanes Year
generation

3.0 985 MB/s 15.75 GB/s 2010

4.0 1.97 GB/s 31.5 GB/s 2017

*_ Latest generation Nvidia &
AMD GPUs have PCle 4.0
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Nvidia Ampere architecture
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PCle interface

Memory
controller

Graphics
Processing
Cluster

Streaming
Multiprocessor

NVLink interface
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Nvidia Ampere: Streaming Multiprocessor

sSM
LD i-Cache + Warp Scheduler + Dispatch (32 threadicik)

Register File (16,384 x 32-bit)

TENSOR
CORE

FP32 FP32
i 3rd Gen

INT32

Lo i-Cache + Warp Scheduler + Dispatch (32 thread/elk)

Register File (16,384 x 32-bit)

I L o || O O OO O IO T
TENSOR

CORE

FP32 FP32
i 3rd Gen

INT32

LO -Cache + Warp Scheduler + Dispatch (32 thread/cik)

Register File (16,384 x 32-bit)

TENSuUnR
CORE
3rd Gen

FP32 FP32

/
INT32

LD i-Cache + Warp Scheduler + Dispatch (32 thread/elk)

Register File (16,384 x 32-bit)

TENSOR
CORE

FP32 FP32
| 3rd Gen

INT32

RT CORE
2nd Generation

Ampere GA 102 white paper

Scheduler

FP32 cores

FP32/INT32
cores: can

process either
INT or FP

Tensor cores

Ray tracing
cores (RT)
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https://www.nvidia.com/content/dam/en-zz/Solutions/geforce/ampere/pdf/NVIDIA-ampere-GA102-GPU-Architecture-Whitepaper-V1.pdf
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Architecture: AMD RDNA

B4-bit Mermory Controller

B4-bit Memory Controller

Dual Compute Unit
Dual Compute Unit
Dual Compute Unit
Dual Compute Unit

Dual Compute Unit

Geometry Processor

RB + RB
RB - RB

Dual EL}ITI[.'ILil'.E Unit

Dual Compute Unit
Dual Compute Unit
Dual Compute Unit

Dual Compute Unit

Shader Engine

Graphics Command
Processor

Dual Compute Unit
Dual Compute Unit
Dual Compute Unit
Dual Compute Unit
Dual Compute Unit
RB RB -
I-?'.B R.E

ALCE

RB RB

RB RE
Dual [ui‘npule.Urlit

Dual Compute Unit
Dual Compute Unit
Dual Compute Unit

Dual Compute Unit

HWS
oMA

Prim
Unit

Ja(joaw I Asowiap 1g-+3
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Scalar Data Cache
hader Instruction Cache
Schedulers

Compute Unit 0

Compute Unit1

Scalar Units

Scalar Registers
Local Data Share

Texture Filter Units
Texture Mapping Units

Vector LO Cache

Shader Engine
RDNA white paper

[timedia Engine Display Engine

Infinity Fabric 20



https://www.amd.com/system/files/documents/rdna-whitepaper.pdf

Types of GPUs

Scientific GPUs Gaming GPUs
~3 times more single precision TFLOPS than ~40 times more single precision
double precision TFLOPS than double precision
Precision
- suited for double precision - not well suited for double
precision
Error correction Error correction available Error correction not available
Bandwidth NVLink & PCle Only PCle
Price ~5-6 x the price of gaming GPUs Several hundred dollars
Depending on model

21



GPU vs. CPU

CPU: Minimize latency
* Large, low latency cache
* High frequencies
* Speculative executions

Optimal serial performance

GPU: Hide latency

Small cache with higher latency
Lower frequencies

No speculative executions
Thousands of threads

- always have work to do

Optimal parallel performance

22



GPU vs. FPGA

* Higher latency * Low & deterministic latency

* Connection via PCle (or NVLink) * Connectivity to any data source

« Bandwidth limited by PCle * High bandwidth

« Very good floating point operation performance * Intermediate floating point performance
* Lower engineering cost * High engineering cost

« Backward compatibility * Not so easy backward compatibility

23



CPU - GPU - FPGA

CPU GPU FPGA
Deterministic,
Latency 0 (10) ps 0 (100) ps eO e(rllgggli ;c

I/0 with processor

Ethernet, USB, PCle

PCle, Nvlink

Connectivity to any
data source via
printed circuit board
(PCB)

Engineering cost

Low entry level
(programmable with
c++, python, etc.)

Low entry level
(programmable with
CUDA, OpenCL,

Some high-level
syntax available,
traditionally VHDL,
Verilog (specialized

etc.) )
engineer)
Single precision
Optimized for fixed
floating point O (10) TFLOPs O (10) TELOPs p.lmlze or fixe
point performance
performance

Serial / parallel

Optimized for serial
performance,
increasingly using
vector processing

Optimized for
parallel performance

Optimized for
parallel performance

O (10) MB (on the

Memory O (100) GB RAM O (10) GB FPGA itself, not the
PCB)
. Compatible, except
C tible, t
Backward ompatt . € exce.p for specific features Not easily backward
. for vector instruction . .
compatibility only available on compatible

sets

modern GPUs

https://arxiv.org/pdf/2003.11491.pdf
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Programming GPUs



GPU Programming Environments

Early days: Problems had to be translated to graphics language via OpenGL
Today: several programming interfaces exist

Nvidia’s application programming interface: CUDA

Only works with Nvidia GPUs

Very well documented, many tutorials, low entry level

AMD ROCm (HIP): Open source platform for GPU computing
Supports both AMD and Nvidia GPUs

New development - still work in progress, not that many examples / tutorials yet

OpenCL: Framework for heterogeneous platforms
CPUs, GPUs, FPGAs, DSPs, etc. s /‘

Maintained by the Khronos group, based on C99 and C++11 OpencCL

SYCL: Single source C++ heterogeneous programming platform, built on OpenCL SYCL
Will be supported by Intel GPUs

26



CUDA

* CUDA is widely used in the GPU computing community
* Underlying concepts easily translate to the other programming interfaces

* Compiles with nvcc
* Very similar to C/C++ code

<A NVIDIA.

CUDA.

27



Parallelization

|| Block (0,n)

|| Block (1,n)

R A
| |Block (0,00 | [ ]Block (0,1) |
I I I | I I |
[T T[] [T T
R R
| | Block (1,0) | | | Block (1,1) |
I I I | I I I |
[T T[] [ T[]
LT L]
T T
Block (m,0) | || Block(tn,1)

|| Block (m,n)

Thread Thread
(0,0) (0,1)
Thread Thread
(M,0) (M,1)

Thread
(O,N)

Thread
(M,N)

Any GPU code we write will be executed on many
“threads” at once

These threads are organized in a “grid”, where a
fixed set of threads is grouped into one “block”

Each thread processes the same instructions
(kernel), but on different data

Up to three dimensions for blocks and threads
Maximum of 1024 threads / block
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Hardware implementation

Software Hardware
(I
Scalar
Thread Processor
[ |
[ |
[ |
S|
Thread I:I
Block Multiprocessor
22222 22222 22222 == ERIE=EE EE] =
| o |

Grid Device

Execution order of blocks is arbitrary

Scheduled on Streaming Multiprocessors (SMs) according to
resource usage:

Memory
Registers
Thread number limit (2024 threads / block)

Several blocks can run on the same SM

29



Hardware implementation

Device
S| e | « After block has been assigned to one SM:
Block 0 ||| Block 1 [l [Block 2 111 Block 3 Division into units called warps = 32 threads

Block 4 | ||| Block 5 ||| | Block 6 "’B_‘Iock 7|

Thread 31 Thread 63 Thread 96

Warp 0 Warp 1 Warp 2
Thread 0 Thread 32 Thread 64




Function declarations

Called from

Executed on

Comment

__global__ Host Device Defines kernel,
returns void

__device Device Device

__host__ Host Host Optional

__device__and __host__can be combined, useful if same function is executed on host OR device

31



Memory layout

Specs from the
16 GB Tesla V100

(A100 has 40 GB
global memory)

Block O

98 kB
Shared memory

Block 1

98 kB
Shared memory

Registers Registers

Registers Registers

Thread O

Thread 0 Thread 1

extremely fast,
_~" highly parallel

__— fastest,
limited to 65536
registers per block

high access latency

Host

(400 - 800 cycles),
finite access bandwic

read only,
short latency

32



Communication & Synchronization

Within the blocks of a grid: -

Synchronization of all thread in a grid only possible
after kernel has finished

Communication via global memory

( [T [T
\\\\\\\\\\
Block (0,0) _| Block (0,1)
\\\\\\\\\\
[T [T
[T [TTTT
\\\\\ UL
Block (1,0) _| Block (1,1) _|
\\\\\\\\\\
[TTTT [T
[T 1T [T
\\\\\\\\\\
Block (m,0) | Block (m,1)_|
\\\\\\\\\\

\ [t RN

|| Block (0,n) |

Within on block: s [l s
. .

Synchronization of threads is possible within one
block: _ syncthreads ()

Communication via shared & global memory
Between the host and the device:
Copies between global memory and CPU RAM \

Thread Thread
(M,0) M,1)
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Race conditions

« Caution when modifying the same value in memory from different threads:
Need to read, modify, write value: three operations

Outcome depends on timing of the different threads
Thread 1 can modify after thread 2 read a value, but before thread 2 writes a new value!

* Use atomic operations:
Read-modify-write cannot be interrupted: appears to be one operation

atomicAdd(), atomicSub(), atomicinc(), atomicDec(), ...

* Needed for both shared and global memory

34



Grid sizes

Block size:
Multiple of the warp size (32 threads)

Consider registers used within one kernel: # registers / block is limited

Grid size: ideally multiple of the number of streaming multiprocessors
Most efficient grid dimensions can vary with the GPU device

[TTTT [TTTT TTTTT
T T T LA
Block (0,0) _| Block (0,1) _| . [ | Block (0,n) _|
I [ S D I S A
[T [TTT1 [T 11
[TTTT [TTTT [TTTT
L LA LA
Block (1,0) _|  [7]Block (1,1) _| Block (1,n) _|
\\\\\\\\\\\\\\\
[TTT] [TTLT [T
[TTTT [TTTT [TTTT
L T Tt
[ | Block (m,0) | || Block (m,1)_] || Block (m,n)_|
\\\\\ Il |
[T 1T [T [TTT1

Thread Thread e Thread
(0,0) 0,1) (0,N)
Thread Thread e Thread
(M,0) (M.1) (MN)
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Asynchronous execution

* Independent tasks can be executed concurrently:

Computation on host
Computation on device
Memory transfers

* “Async” function calls = pipeline of tasks only synchronized within one stream
* cudaDeviceSynchronize (): waits for all streams to finish

(@f0) py stream 1 stream 1

execute ST stream1
Copy stream 1 stream 2

execute  pEEERE WS

36



How to call a CUDA function

Indicates that function runs on device,
global__ woid hello_world( ) { is called from host;

compiled with nvcc

int BlockIdx
‘nt Th Idx = dId= . %3 . . .
int Threadldx Built-in variable to access index of

current block

// Do Stuff with BlockIdx and ThreadIdx

} Built-in variable to access index of
intgmain{——{

current thread within block

Jim3 n threads (1) Structure designed to store size of
grid and block
@ld<<<n_blocks, n_threads>>> () ;

return O3

} <<< >>>: options for grid launch:

# of blocks,

# of threads / block

(): arguments can be passed to kernel
function 37




How to allocate and free memory

Pointer to allocated memory on

int a_host device is returned

int *a_dev;

cudaMalloc ( ' _ -f Size of memory to be allocated

Pointer to source

cudaDeviceSynchronizée

cudaFree ( a_dev); Pointer to destination

38



Index calculation

threadldx.x threadldx.x threadldx.x

blockdldx.x = 0  Dblockdldx.x =1 blockdldx.x = 2

* Unique index = x + y * size

* int index = threadldx.x + blockldx.x * blockDim.x;

* blockDim.x: number of threads in a block (in x direction), accessible from the kernel
« gridDim.x: number of blocks in the grid (in x direction), accessible from the kernel

39



Cuda tools: nvidia-smi

Nvidia-smi is available with every CUDA installation

(base) [dvombruc@ :cuda-introduction-solution]# nvidia-smi

Sun May 10 18B:42:52 2020

+ _____________________________________________________________________________
| NVIDIA-SMI 440.64.00 Driver Version: 440.64.00 CUDA Version: 10.2
B R R L e e e
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M.
| ® Tesla V100-PCIE... Off | 00000000:D8:00.0 Off | off
| NJA  28C PO 34W [/ 250W | OMiB / 16166MiB | 0% Default
e e m e s e m oo e e
+ _____________________________________________________________________________
| Processes: GPU Memory
| GPU PID Type Process name Usage

| B —— e — e —
| No running processes found

+ _____________________________________________________________________________

40



Cuda tools: DeviceQuery

(base) [dvombruc@ :deviceQuery]# pwd

{

/home /dvombruc/cuda-samples/NVIDIA CUDA-16.1 Samples/1 Utilities/deviceQuery |

(base) [dvombruc@
. /deviceQuery Starting...

:deviceQuery]# ./deviceQuery

CUDA Device Query (Runtime API) version (CUDART static linking)

Detected 1 CUDA Capable device(s)

Device 0: "Tesla V100-PCIE-16GB"
CUDA Driver Version / Runtime Version
CUDA Capability Major/Minor version number:
Total amount of global memory:
(80) Multiprocessors, ( 64) CUDA Cores/MP:
GPU Max Clock rate:
Memory Clock rate:
Memory Bus Width:
L2 Cache size:
Maximum Texture Dimension Size (x,y,z)
Maximum Layered 1D Texture Size, (num) layers
Maximum Layered 2D Texture Size, (num) layers
Total amount of constant memory:
Total amount of shared memory per block:

Total number of registers available per block:

Warp size:
Maximum number of threads per multiprocessor:
Maximum number of threads per block:

10.2 / 10.1

7.0

16160 MBytes (16945512448 bytes)
5120 CUDA Cores

1380 MHz (1.38 GHz)

877 Mhz

4096-bit

6291456 bytes

10=(131072), 2D=(131072, 65536), 3D=(16384, 16384, 16384)

1D=(32768), 2048 layers
2D=(32768, 32768), 2048 layers
65536 bytes

49152 bytes

65536

32

2048

1024

Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)

Maximum memory pitch:

Texture alignment:

Concurrent copy and kernel execution:

Run time limit on kernels:

Integrated GPU sharing Host Memory:
Support host page-locked memory mapping:
Alignment requirement for Surfaces:
Device has ECC support:

Device supports Unified Addressing (UVA):
Device supports Compute Preemption:
Supports Cooperative Kernel Launch:
Supports MultiDevice Co-op Kernel Launch:
Device PCI Domain ID / Bus ID / location ID:
Compute Mode:

2147483647 bytes
512 bytes

Yes with 7 copy engine(s)
No

No

Yes

Yes

Disabled

Yes

Yes

Yes

Yes

® /216 / ©

< Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) =

deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 10.2, CUDA Runtime Version = 10.1, NumDevs

Result = PASS

1
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Summary

* GPUs are well suited for inherently parallel problems:
run the same instructions on independent data
e Offer most theoretical TFLOPs/$
* Power efficient
* Several programming environments available
« CUDA is well documented, tested and widely used in the community
* CUDA concepts easily translate to other programming environments

42
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Talk to a GPU: NVLink, GPUDirect

GPUDirect: NVLink:
« Direct memory access (DMA) transfer directly over * Communications protocol developed by
PCle switch Nvidia
« Only available for scientific Nvidia GPUs * Can be used between among multiple GPUs
« 160/ 300/ 600 GB/s data rate (1st/ 2nd / 3rd
FPGA card generation)
Device
¢ PCle DRAM -~ . . BGPU
Chip
Device $ NVLink
Device
DRAM GPU
<« > : DRAM
Chlp < p GPU
Chip




Some Nvidia GPUs

Feature GeForce GeForce Tesla Tesla
GTX 2080 Ti GTX 3080 V100 A100

# cores 4352 8704 5120 6912

Max. frequrency 1.35 GHz 1.44 1.37 GHz 1.44 GHz

Cache (L2) 6 MB 5 MB 6 MB 40 MB
DRAM 11 GB 10 GB 32 GB 40 GB
GDDR6 GDDR6X HBM?2 HBM2

Max TFLOPs 13.4 30 15.7 19.5
TDP 250 W 320 W 250 W 250 W

A Y
v
Gaming GPUs Scientific GPUs 45



Pascal
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https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf

Nvidia: Pascal Streaming Multiprocessor

Scheduler
— — Dispatch units
Dispatch Unit Dlspat‘at! Unit Disga‘t;h Unit nispa::‘ Unit
Register File (32,768 x 32-bit) Register File (32,768 x 32-bit)
- Core Core - - Core Cou. = 64 Single
- - B B - - precision cores
B - B - - B (FP32)
it | o | [ om
= i | i | i 32 double
| o | L o | precision
A o | e | [ cores (FP64)
i | i i
Load / store
units
Special
Nvidia Tesla P100 functlon unlts

white paper
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