

Introduction to GPU computing

and CUDA

Dorothea vom Bruch

GDR-InF Annual workshop

GPU Hands-on project

October 2020

2

Outline

● Why GPUs?
● Parallel programming
● What is a GPU?
● Programming GPUs with CUDA

3

Why GPUs?

4

Moore’s law today

Clock speed stopped
increasing due to heat limit Multiple core processors

emerge (Intel i7: 4 cores)

5

Evolution of peak FLOPs

Theoretical peak performance, single precision Theoretical peak FLOPs per clock cycle, single precision

● Gaming industry evolves steadily → continuous high demand for consumer GPUs
● With the trend for AI in many different areas → continuous demand for professional GPUs

Produced with https://github.com/karlrupp/cpu-gpu-mic-comparison

https://github.com/karlrupp/cpu-gpu-mic-comparison

6

Theoretical FLOPs/$: GPUs & CPUs

https://arxiv.org/pdf/2003.11491.pdf

https://arxiv.org/pdf/2003.11491.pdf

7

GPU power efficiency

Theoretical peak FLOPs per Watt, single precision

8

Why the GPU computing trend?

Best theoretical FLOPs/$

Power efficient Many FLOPs in one device
→ compact system possible

9

Parallel programming

10

Amdahl’s law

Speedup in latency = 1 / (S + P/N)
• S: sequential part of program

• P: parallel part of program

• N: number of processors

● Parallel part: identical, but independent work
● Consider how much of the problem can

actually be parallelized!

11

SISD vs. SIMD

SISD MIMD SIMD

Single Instruction Single Data Multiple Instruction Multiple
Data

Single Instruction Multiple
Data

Uniprocessor machines Multi-core, grid-, cloud-
computing

e.g. vector processors

12

SISD vs. SIMD

SISD MIMD SIMT

Single Instruction Single Data Multiple Instruction Multiple
Data

Single Instruction Multiple
Threads

Uniprocessor machines Multi-core, grid-, cloud-
computing

GPUs

13

Single Instruction Multiple Threads

SIMT
● Similar to programming a vector processor
● Use threads instead of vectors
● No need to read data into vector register
● Only one instruction decoder available

→ all threads have to execute the same instruction

● Abstraction of vectorization:
• Each element of vector is processed by an independent thread

• One instruction fills entire vector

• # of threads = vector size

14

What is a GPU?

15

What GPUs are originally designed for

● Graphics pipeline: huge amount of arithmetic on independent data:
• Transforming positions

• Generating pixel colors

• Applying material properties and light situation to every pixel

Hardware needs

● Access memory simultaneously and contiguously

● Bandwidth more important than latency

● Floating point and fixed-function logic

16

What is a GPU?

● Several processors are grouped into a “multiprocessor”
● Several multiprocessors make up a GPU

(CUDA terminology)

17

A GPU’s natural habitat

PCIe
generation

1 lane 16 lanes Year

3.0 985 MB/s 15.75 GB/s 2010

4.0 1.97 GB/s 31.5 GB/s 2017

Latest generation Nvidia &
AMD GPUs have PCIe 4.0

18

Nvidia Ampere architecture

PCIe interface

Streaming
Multiprocessor

NVLink interface

Memory
controller

Graphics
Processing
Cluster

19

Nvidia Ampere: Streaming Multiprocessor

Scheduler

FP32 cores

FP32/INT32
cores: can
process either
INT or FP

Tensor cores

Ray tracing
cores (RT)

Ampere GA 102 white paper

https://www.nvidia.com/content/dam/en-zz/Solutions/geforce/ampere/pdf/NVIDIA-ampere-GA102-GPU-Architecture-Whitepaper-V1.pdf

20

GPU Architecture: AMD RDNA

RDNA white paper

https://www.amd.com/system/files/documents/rdna-whitepaper.pdf

21

Types of GPUs

Scientific GPUs Gaming GPUs

Precision

~3 times more single precision TFLOPS than
double precision

→ suited for double precision

~40 times more single precision
TFLOPS than double precision

→ not well suited for double
precision

Error correction Error correction available Error correction not available

Bandwidth NVLink & PCIe Only PCIe

Price ~5-6 x the price of gaming GPUs Several hundred dollars
Depending on model

22

GPU vs. CPU

CPU: Minimize latency
● Large, low latency cache
● High frequencies
● Speculative executions

Optimal serial performance

GPU: Hide latency
● Small cache with higher latency
● Lower frequencies
● No speculative executions
● Thousands of threads

→ always have work to do

Optimal parallel performance

23

GPU vs. FPGA

● Higher latency
● Connection via PCIe (or NVLink)
● Bandwidth limited by PCIe
● Very good floating point operation performance
● Lower engineering cost
● Backward compatibility

● Low & deterministic latency
● Connectivity to any data source
● High bandwidth
● Intermediate floating point performance
● High engineering cost
● Not so easy backward compatibility

24

CPU – GPU - FPGA

https://arxiv.org/pdf/2003.11491.pdf

https://arxiv.org/pdf/2003.11491.pdf

25

Programming GPUs

26

GPU Programming Environments

● Nvidia’s application programming interface: CUDA

• Only works with Nvidia GPUs

• Very well documented, many tutorials, low entry level

● AMD ROCm (HIP): Open source platform for GPU computing
• Supports both AMD and Nvidia GPUs

• New development → still work in progress, not that many examples / tutorials yet

● OpenCL: Framework for heterogeneous platforms
• CPUs, GPUs, FPGAs, DSPs, etc.

• Maintained by the Khronos group, based on C99 and C++11

● SYCL: Single source C++ heterogeneous programming platform, built on OpenCL
• Will be supported by Intel GPUs

Early days: Problems had to be translated to graphics language via OpenGL
Today: several programming interfaces exist

27

CUDA

● CUDA is widely used in the GPU computing community
● Underlying concepts easily translate to the other programming interfaces

● Compiles with nvcc
● Very similar to C/C++ code

28

Parallelization

● Any GPU code we write will be executed on many
“threads” at once

● These threads are organized in a “grid”, where a
fixed set of threads is grouped into one “block”

● Each thread processes the same instructions
(kernel), but on different data

● Up to three dimensions for blocks and threads
● Maximum of 1024 threads / block

Block (0,0) Block (0,1) Block (0,n)

Block (1,0) Block (1,1) Block (1,n)

Thread
(0,0)

Thread
(0,1)

Thread
(M,0)

Thread
(M,1)

Thread
(0,N)

Thread
(M,N)

Block (m,0) Block (m,1) Block (m,n)

...

...

......

...

...

...

...

...

...

...

29

Hardware implementation

● Execution order of blocks is arbitrary
● Scheduled on Streaming Multiprocessors (SMs) according to

resource usage:
• Memory

• Registers

• Thread number limit (2024 threads / block)

● Several blocks can run on the same SM

30

Hardware implementation

● After block has been assigned to one SM:

Division into units called warps = 32 threads

Device

SM 0 SM 1 SM 2 SM 3

....
.
.

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7

.
.
.

.
.
.

.
.
.

...

Thread 0

...

Thread 31

Warp 0

Thread 32

...

Thread 63

Warp 1

Thread 64

...

Thread 96

Warp 2

31

Function declarations

Called from Executed on Comment

__global__ Host Device Defines kernel,
returns void

__device__ Device Device

__host__ Host Host Optional

__device__ and __host__ can be combined, useful if same function is executed on host OR device

32

Memory layout

Thread 0

Block 0

Thread 1

Host

Registers Registers

Thread 0

Block 1

Registers Registers

Global Memory

Constant Memory

Texture Cache, L2 Cache

Thread 1

16 GB

 64 kB

fastest,
limited to 65536
registers per block

extremely fast,
highly parallel

high access latency
(400 - 800 cycles),
finite access bandwidth

read only,
short latency

... ...

 O (kB)

98 kB

Shared memory

98 kB

Shared memory

Specs from the
16 GB Tesla V100

(A100 has 40 GB
global memory)

33

Communication & Synchronization

● Within the blocks of a grid:
• Synchronization of all thread in a grid only possible

after kernel has finished

• Communication via global memory

● Within on block:
• Synchronization of threads is possible within one

block: __syncthreads()

• Communication via shared & global memory

● Between the host and the device:
• Copies between global memory and CPU RAM

Block (0,0) Block (0,1) Block (0,n)

Block (1,0) Block (1,1) Block (1,n)

Thread
(0,0)

Thread
(0,1)

Thread
(M,0)

Thread
(M,1)

Thread
(0,N)

Thread
(M,N)

Block (m,0) Block (m,1) Block (m,n)

...

...

......

...

...

...

...

...

...

...

Host

Device

DRAM

DRAM

CPU
Chip

GPU
Chip

PCIe

34

Race conditions

● Caution when modifying the same value in memory from different threads:
• Need to read, modify, write value: three operations

• Outcome depends on timing of the different threads

• Thread 1 can modify after thread 2 read a value, but before thread 2 writes a new value!

● Use atomic operations:
• Read-modify-write cannot be interrupted: appears to be one operation

• atomicAdd(), atomicSub(), atomicInc(), atomicDec(), …

● Needed for both shared and global memory

35

Grid sizes

● Block size:
• Multiple of the warp size (32 threads)

• Consider registers used within one kernel: # registers / block is limited

● Grid size: ideally multiple of the number of streaming multiprocessors
● Most efficient grid dimensions can vary with the GPU device

Block (0,0) Block (0,1) Block (0,n)

Block (1,0) Block (1,1) Block (1,n)

Thread
(0,0)

Thread
(0,1)

Thread
(M,0)

Thread
(M,1)

Thread
(0,N)

Thread
(M,N)

Block (m,0) Block (m,1) Block (m,n)

...

...

......

...

...

...

...

...

...

...

36

Asynchronous execution

● Independent tasks can be executed concurrently:

• Computation on host

• Computation on device

• Memory transfers

● “Async” function calls → pipeline of tasks only synchronized within one stream
● cudaDeviceSynchronize(): waits for all streams to finish

copy

execute

copy

execute

stream 1

stream 1

stream 1

stream 1

stream 1

stream 1

stream 2

stream 2

37

How to call a CUDA function

__global__ void hello_world() {

 int BlockIdx = blockIdx.x;

 int ThreadIdx = threadIdx.x;

 // Do Stuff with BlockIdx and ThreadIdx

}

int main() {

dim3 n_blocks(1);

dim3 n_threads(1);

hello_wold<<<n_blocks, n_threads>>>();

return 0;

}

Indicates that function runs on device,
is called from host;
compiled with nvcc

Structure designed to store size of
grid and block

<<< >>>: options for grid launch:
of blocks,
of threads / block
(): arguments can be passed to kernel
function

Built-in variable to access index of
current block

Built-in variable to access index of
current thread within block

38

int a_host = 8;

int *a_dev;

cudaMalloc((void**)&a_dev, sizeof(int));

cudaMemcpy(a_dev, &a_host, sizeof(int), cudaMemcpyHostToDevice);

DoStuff<<<1,1>>>(a_dev);

cudaDeviceSynchronize();

cudaFree(a_dev);

How to allocate and free memory

Pointer to allocated memory on
device is returned

Size of memory to be allocated

Pointer to destination

Pointer to source

39

Index calculation

0

blockdIdx.x = 1 blockdIdx.x = 2

1 2 3 0 1 2 3 0 1 2 3

● Unique index = x + y * size
● int index = threadIdx.x + blockIdx.x * blockDim.x;
● blockDim.x: number of threads in a block (in x direction), accessible from the kernel
● gridDim.x: number of blocks in the grid (in x direction), accessible from the kernel

40

Cuda tools: nvidia-smi

Nvidia-smi is available with every CUDA installation

41

Cuda tools: DeviceQuery

42

Summary

● GPUs are well suited for inherently parallel problems:

run the same instructions on independent data
● Offer most theoretical TFLOPs/$
● Power efficient
● Several programming environments available
● CUDA is well documented, tested and widely used in the community
● CUDA concepts easily translate to other programming environments

43

Backup

44

Talk to a GPU: NVLink, GPUDirect

GPUDirect:
● Direct memory access (DMA) transfer directly over

PCIe switch
● Only available for scientific Nvidia GPUs

Device

DRAM GPU
Chip

FPGA card

PCIe

NVLink:
● Communications protocol developed by

Nvidia
● Can be used between among multiple GPUs
● 160 / 300 / 600 GB/s data rate (1st / 2nd / 3rd

generation)

Device

DRAM GPU
Chip

Device

DRAM GPU
Chip

NVLink

45

Some Nvidia GPUs

Feature GeForce
GTX 2080 Ti

GeForce
GTX 3080

Tesla
V100

Tesla
A100

cores 4352 8704 5120 6912

Max. frequrency 1.35 GHz 1.44 1.37 GHz 1.44 GHz

Cache (L2) 6 MB 5 MB 6 MB 40 MB

DRAM 11 GB
GDDR6

10 GB
GDDR6X

32 GB
HBM2

40 GB
HBM2

Max TFLOPs 13.4 30 15.7 19.5

TDP 250 W 320 W 250 W 250 W

Gaming GPUs Scientific GPUs

46

GPU Architecture: Nvidia Pascal

Nvidia Tesla P100
white paper

https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf

47

Nvidia: Pascal Streaming Multiprocessor

Nvidia Tesla P100
white paper

64 single
precision cores
(FP32)

Scheduler

32 double
precision
cores (FP64)

Load / store
units

Special
function units

Dispatch units

https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

