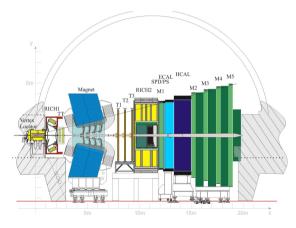
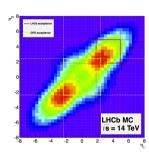
Measuring CP Violation in $B_s^0 \to J/\psi \eta(\eta')$ Decays at LHCb and 1st Year Work on Photon Reconstruction Calibration

Anthony Downes Directeur de thèse: Maximilien Chefdeville

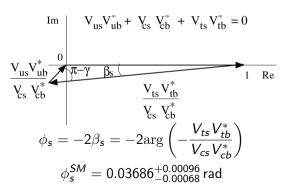


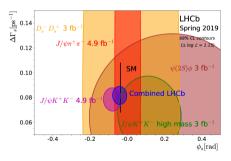
11 September 2020


- LHCb and Thesis Project
- 1st Year Work: Photon Reconstruction Calibration
- 3 Future Work: Branching Ratio and CP Violation Measurements

LHCb and Thesis Project

The LHCb Experiment

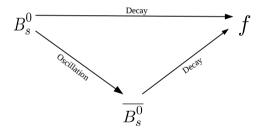




- Primarily dedicated to studying beauty and charm hadrons.
- For precision measurement of CKM parameters and *CP* violation.
- Rare processes in search of new physics.
- Hadron spectroscopy and heavy ions

The Cabbibo-Kobayashi-Maskawa matrix and CP Violation

$$V_{CKM} = \left(egin{array}{ccc} V_{ud} & V_{us} & V_{ub} \ V_{cd} & V_{cs} & V_{cb} \ V_{td} & V_{ts} & V_{tb} \end{array}
ight) pprox \left(egin{array}{ccc} |V_{ud}| & |V_{us}| & |V_{ub}|e^{-i\gamma} \ -|V_{cd}| & |V_{cs}| & |V_{cb}| \ |V_{td}|e^{-ieta} & -|V_{ts}|e^{ieta_s} & |V_{tb}| \end{array}
ight)$$



$$\phi_s^{LHCb}=$$
 0.041 \pm 0.025 rad

Motivation for measuring *CP* violation via $B_s^0 \rightarrow J/\psi \eta(\eta')$

- Neutral mesons oscillate between particle and antiparticle (\rightarrow two propagating states with different masses Δm and lifetimes $\Delta \Gamma$)
- Interference between decays w/ & w/o oscillation
 - ullet Total amplitude is different for B^0_s and $ar{B}^0_s \Rightarrow$ CP Violation!

- ullet We'll look at $B^0_s o J/\psi~\eta~(\eta')$ vs. $ar B^0_s$
- Several final states:

$$\eta\to\gamma\gamma,\pi^+\pi^-\pi^0,\pi^+\pi^-\gamma$$
 and $\eta'\to\rho^0\gamma,\pi^+\pi^-\eta$

- ullet to maximise the precision on $\phi_{m{s}}$
- The phase is measured by a fit to time-dependent asymmetry of these decays

$$A_{CP}(t) = \frac{\Gamma(B_s^0(t) \to f) - \Gamma(\bar{B}_s^0(t) \to f)}{\Gamma(B_s^0(t) \to f) + \Gamma(\bar{B}_s^0(t) \to f)} = \frac{\sin \phi_s \sin \Delta mt}{\cosh \frac{\Delta \Gamma}{2} t - \cos \phi_s \sinh \frac{\Delta \Gamma}{2} t}$$

Thesis Workflow

$$\eta_{\gamma}^{cor} = \frac{N_{B^{+} \to X \gamma}^{s}}{N_{B^{+} \to X}^{s}} \times \frac{\epsilon_{B^{+} \to X}^{MC}}{\epsilon_{B^{+} \to X \gamma}^{MC}} \times \frac{\mathcal{B}_{B^{+} \to X}}{\mathcal{B}_{B^{+} \to X \gamma}}$$

$$\mathcal{B}(B_{s}^{0} \to J/\psi \eta) = \frac{N_{B_{s}^{0}}}{N_{B^{0}}} \times \frac{\epsilon_{B_{s}^{0}}^{MC}}{\epsilon_{B^{0}}^{MC}} \times \mathcal{B}(B^{0} \to X) \times \frac{f_{s}}{f_{d}}$$

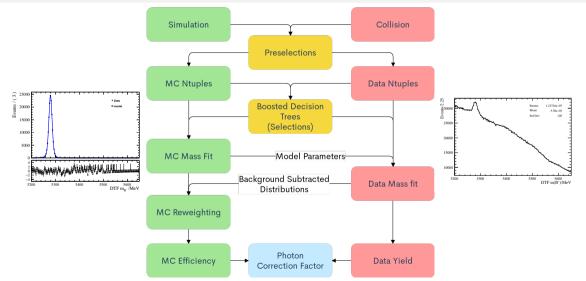
$$A_{CP}(t) = \frac{\sin \phi_{s} \sin \Delta mt}{\cosh \frac{\Delta \Gamma}{2} t - \cos \phi_{s} \sin \frac{\Delta \Gamma}{2} t}$$
Photon Reconstruction Calibration

Tool For the Collaboration

1st Year Work: Photon Reconstruction Calibration

Motivation

- Potential source of systematics in many analyses at LHCb is the imperfect simulations. Data-MC discrepancies are not very well studied for neutral particles.
- It is crucial to have precise knowledge of the reconstruction and selection efficiencies determined by MC. → dedicated studies are needed to control them.
- This will be especially useful for BR measurements of decays with neutrals normalised to decays without neutrals → the reconstruction efficiency will not be cancelled in the ratios.
- I am producing a correction factors (η_{γ}^{corr}) in bins of $p_{\rm T}$ for different regions of the ECAL. So other analyses can benefit from them

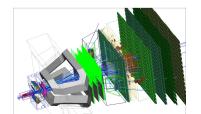

Calculation of the correction factor

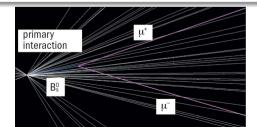
- Done by the comparison of two decay modes with similar topology
 - $B^+ \rightarrow \chi_{c1} K^+$ where $\chi_{c1} \rightarrow J/\psi \gamma$
 - $B^+ \rightarrow J/\psi K^+$ for normalisation and control of data-MC distributions
- Many systematics cancel in the ratios.

$$\eta_{\gamma}^{ ext{cor}} = rac{m{N_{B^+ o}^s}_{\chi_{c1}K^+}}{m{N_{B^+ o}^s}_{J/\psi K^+}} imes rac{\epsilon_{B^+ o J/\psi K^+}^{MC}}{\epsilon_{B^+ o \chi_{c1}K^+}^{MC}} imes rac{\mathcal{B}_{B^+ o J/\psi K^+}}{\mathcal{B}_{B^+ o \chi_{c1}K^+}\mathcal{B}_{\chi_{c1} o J/\psi \gamma}}$$

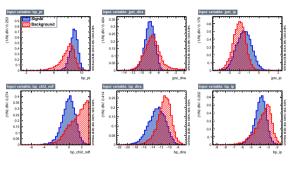
- N^s : signal yield from data mass fits \rightarrow needs background control (MVA)
- ε^{MC} : efficiencies from MC simulation \rightarrow needs accurate simulation (GBReweighting)
- $\mathcal B$ taken from Particle Data Group o large uncertainty on $\mathcal B(B o \chi_{c1} K^+) \mathcal B(\chi_{c1} o J/\psi \gamma)$

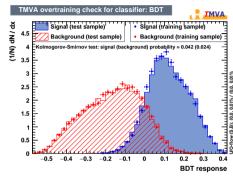
Photon reconstruction calibration analysis workflow


Data samples and selections

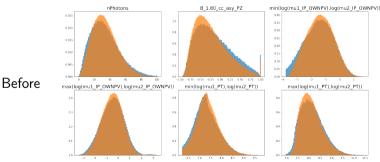

Data samples

- ullet Run-I : 2011 & 2012 $\sim 3\,\mathrm{fb}^{-1}$ at $\sqrt{s}=7\,\mathrm{TeV}$ & $\sqrt{s}=8\,\mathrm{TeV}$ respectively
- ullet Run-II: 2015-2018 $\sim 6\,\mathrm{fb}^{-1}$ at $\sqrt{s}=13\,\mathrm{TeV}$

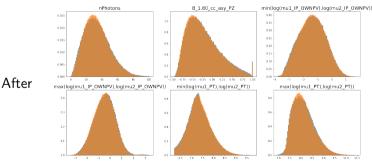

Selections


- Background reduction: mass windows and momentum cuts
- Track & vertex quality: B decay vertex is displaced wrt primary interaction point
- PID: particle probability cuts

BDT selection and optimisation

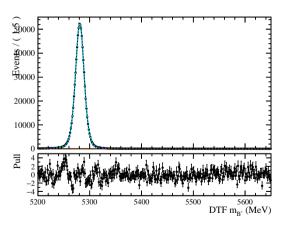


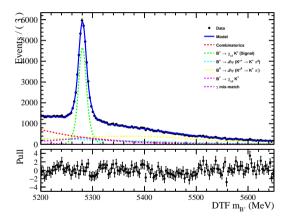
- Boosted Decision Trees for multivariate analysis.
- This uses 12 variables: signal (MC sample) vs. background (high mass data sample).
- Careful choice of inputs: Similar for $\chi_{c1}K^+$ and $J/\psi K^+$
- Outputs one variable which uses many distributions to improve signal purity.
- This is optimised by maximising $S/\sqrt{S+B}$ on $B^+ \to \chi_{c1} K^+$


Data driven MC corrections (Gradient Boosted Reweighting)

- A new approach to reweighting samples using BDTs.
- Improves agreement between $J/\psi K^+MC$ and background subtracted data distributions
- Produces weights to be applied to $\chi_{c1}K^+$ MC before training the BDT and better control the efficiencies (ϵ^{MC})

Data driven MC corrections (Gradient Boosted Reweighting)


- A new approach to reweighting samples using BDTs.
- Improves agreement between $J/\psi K^+MC$ and background subtracted data distributions
- Produces weights to be applied to $\chi_{c1}K^+$ MC before training the BDT and better control the efficiencies (ϵ^{MC})



Mass fits & data yields - 2012 (Run-I)

$$B^+ \rightarrow J/\psi K^+$$

$$B^+ \rightarrow \chi_{c1} K^+$$

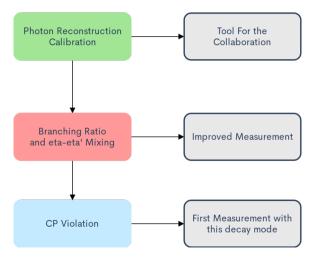
$$N_s = (7.844 \pm 0.009) \times 10^5$$

$$N_s = (3.338 \pm 0.018) \times 10^4$$

The correction factor — 2012

- $B \rightarrow J/\psi K$
 - $N_s = (7.844 \pm 0.009) \times 10^5$
 - \bullet $\epsilon^{reco+sel} = (16.78 \pm 0.01)\%$,
 - \bullet $\epsilon^{gen} = (16.280 \pm 0.018)\%$

- $B \rightarrow \chi_{c1} K$
 - $N_s = (3.338 \pm 0.018) \times 10^4$,
 - $\epsilon^{reco+sel} = (6.082 \pm 0.025)\%$,
 - \bullet $\epsilon^{gen} = (10.120 \pm 0.035)\%$

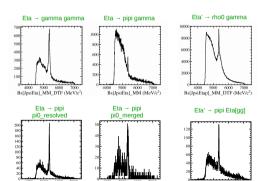

$$\eta_{\gamma}^{cor} = \frac{N_{B \to \chi_{c1}K}^{s}}{N_{B \to J/\psi K}^{s}} \times \frac{\epsilon_{B \to J/\psi K}^{MC}}{\epsilon_{B \to \chi_{c1}K}^{MC}} \times \frac{\mathcal{B}_{B \to J/\psi K}}{\mathcal{B}_{B \to \chi_{c1}K} \mathcal{B}_{\chi_{c1} \to J/\psi \gamma}} = 1.149 \pm 0.006 \pm 0.006 \pm 0.072$$

- $\mathcal{B}(B \to \chi_{c1}K) = (4.84 \pm 0.23) \times 10^{-4}$
- $\mathcal{B}(\chi_{c1} \to J/\psi \gamma) = (34.3 \pm 1.0)\%$
- $\mathcal{B}(B \to J/\psi K) = (1.010 \pm 0.029) \times 10^{-3}$

Currently working on the systematics

Future Work: Branching Ratio and CP Violation Measurements

Thesis Workflow


Branching Ratio of $B_s^0 \rightarrow J/\psi \eta(\eta')$

Very similar workflow to Photon Reconstruction Calibration

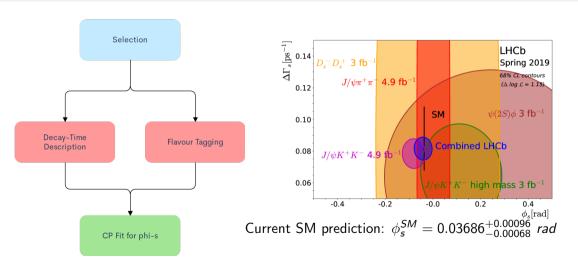
$$\mathcal{B}(B_s^0 \to J/\psi \eta) = \frac{N_{B_s^0}}{N_{B^0}} \times \frac{\epsilon_{B_s^0}^{MC}}{\epsilon_{B^0}^{MC}} \times \mathcal{B}(B^0 \to X) \times \frac{f_s}{f_d} \times \frac{1}{\eta_{\gamma}^{cor}}$$

$$= (3.79 \pm 0.31(\text{stat})^{+0.20}_{-0.41}(\text{syst})^{+0.29}_{-0.27} \pm 0.56(\mathcal{B}(B \to J/\psi \rho^0))) \times 10^{-4}$$

Bs[JpsiEta] MM (MeV/c2

Bs[JpsiEtal_MM (MeV/c2)

Bs[JpsiEta] MM (MeV/c2)


[Nucl. Phys. B867 (2013) 547]

Channel	$\mathrm{R}_{\eta'}$	R_{η}	$R_{\rm s}$	R	$\mathrm{R}_{\psi(2S)}$
Photon reconstruction	_	_	2.1	2.1	_
Fit model	2.9	2.9	0.8	2.6	1.2
Data-simulation agreement	2.9	3.7	3.7	3.7	2.9
Trigger	1.1	1.1	1.1	1.1	1.1
Simulation conditions	1.4	1.5	0.8	1.1	0.9
Total	4.5	5.1	4.5	5.2	3.4

Table 5. Systematic uncertainties (in %) of the ratios of the branching fractions

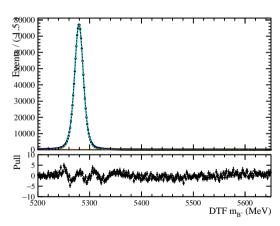
[JHEP 01 (2015) 024]

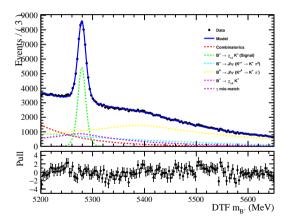
ϕ_s Measurement

Overview

- I am completing the work on Photon Reco. Calibration
 - This will be published as a public note and a tool for the collaboration.
 - Given two talks around the subject (to Run-1&2 Performance WG and to LHCb's 77th Analysis & Software & Computing Week).
 - Will get involved in Run-III early measurements campaign.
- Branching Ratio measurement is a very similar process, but will have its own challenges
 - The analysis is starting now.
 - Target: publication in a physics journal in Summer 2021.
- In the beginning of next year I will move on to the work that is the namesake of my thesis: Measuring the CP violation in the decay of $B_s^0 \to J/\psi \eta(\eta')$.

Back Up Slides


Selections


Category	Particle	Cut
Background	B^+	DIRA > 0.99755, IP < 0.2,
reduction		5200 <i>MeV</i> < <i>DTF M</i> < 5650 <i>MeV</i>
	J/ψ	$ M-M_{J/\psi} <$ 38 MeV
	χ_{c1}	$ M - M_{\chi_{c1}} < 72 \; MeV$
	γ	$ ho^T > 200 \; MeV$
Track & vertex	B^+	$\chi^{2}(IP) < 20, \ \chi(vtx)^{2}/ndf < 3$
quality	μ	$\chi^2(IP) > 4$
PID	K^+	ProbNNk > 0.1
	γ	CL > 0.05

Mass fits & data yields - 2016 (Run-II)

$$B^+ \rightarrow J/\psi K^+$$

$$B^+\! \to \chi_{c1} K^+$$

$$N_{\rm s} = (1.17 \pm 0.12) \times 10^6$$

$$N_s = (3.665 \pm 0.016) \times 10^4$$

The correction factor — 2016 (WIP!)

- $B \rightarrow \chi_{c1} K$
 - $N_s = (3.665 \pm 0.016) \times 10^4$,
 - \bullet $\epsilon^{reco+sel} = (10.139 \pm 0.007)\%$,
 - \bullet $\epsilon^{gen} = (10.682 \pm 0.027)\%$

- $B \rightarrow J/\psi K$
 - $N_s = (1.17 \pm 0.12) \times 10^6$
 - \bullet $\epsilon^{reco+sel} = (20.27 \pm 0.05)\%$,
 - \bullet $\epsilon^{gen} = (17.36 \pm 0.04)\%$

$$\eta_{\gamma}^{cor} = \frac{N_{B \to \chi_{c1}K}^{s}}{N_{B \to J/\psi K}^{s}} \times \frac{\epsilon_{B \to J/\psi K}^{MC}}{\epsilon_{B \to \chi_{c1}K}^{MC}} \times \frac{BR_{B \to J/\psi K}}{BR_{B \to \chi_{c1}K}BR_{\chi_{c1} \to J/\psi \gamma}} = 0.62 \pm 0.04$$

- $BR(B \to \chi_{c1}K) = (4.84 \pm 0.23) \times 10^{-4}$
- $BR(\chi_{c1} \to J/\psi \gamma) = (34.3 \pm 1.0)\%$
- $BR(B \to J/\psi K) = (1.010 \pm 0.029) \times 10^{-3}$