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Outline

▶ Leptonic CC and FCNC decays

▶ Semileptonic CC decays

▶ Form factor determination

▶ z-Expansion & unitarity bounds

▶ Heavy-to-heavy form factors in HQET
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Main motivation: Determination of ∣Vcb ∣ and ∣Vub ∣

b

ū

W− ℓ−

ν̄ℓVqb

Leptonic ∣Vub ∣

B ∝ ∣Vub ∣2 f 2
B

m2
`

m2
B

▶ fB = B-meson decay constant

▶ helicity-suppression → difficult experimentally

b

ū

ū

q

W−

ℓ−

ν̄ℓ

Vqb

Exclusive ∣Vub ∣

B → π`ν`, Λb → p`ν`
future Bs → K`ν`

Exclusive ∣Vcb ∣

B → (D,D∗)`ν`, Λb → Λc`ν`
future Bs → (Ds,D∗s )`ν`

dB
dq2

∝ ∣Vqb ∣2 f 2(q2)⊗ dΠ(q2)

▶ f 2(q2)⊗ dΠ(q2) = form factors ⊗ phase space

▶ exclusive = low background in experiment
3 / 31



EFT for b → q `ν`
. . . from previous results of µ→ eνe νµ and b → s cc follows in SM analogously:

EFT for b → q `ν`

with q = u, c and ` = e, µ, τ b νℓ

q ℓ−

W±

q

Vqb

LEFT = LQCD×QED −
4GF√

2
Vqb CVL QVL

QVL
≡ [qγµPLb][`γµPLν`]

!!! in principle each CVL QVL
→ Cq`ν

VL
Qq`ν

VL
should carry indices for q, `, ν`′

▶ show here also gauge interactions LQCD×QED of quarks and leptons

▶ in SM only a single operator QVL

▶ in SM the result CSM
VL

(µW ) = 1 is lepton-flavor-universal

▶ no RG running under QCD ⇒ CSM
VL

(µb) = CSM
VL

(µW ) +O (αe)

▶ EW matching corrections and QED RG evolution from µW → µb

“Sirlin correction”: CSM
VL

(µb) = 1 + αe

π
ln

mZ

µb
≈ 1.007 [Sirlin NPBB 196 (1982) 83]
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Leptonic CC and FCNC

∆B = 1 decays
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Leptonic decays and Bq-decay constant

Matrix element at leading order in EW interactions:

iAEFT ≡ ⟨`ν`∣ iLEFT ∣Bu⟩ → ⟨`ν` ∣ − i
4GF√

2
Vqb CVL QVL

∣Bu⟩

⇒ the notation ⟨...∣LQCD×QED +∑i Ci Qi ∣. . .⟩ denotes a Green function /S-matrix element,

where the path integral do not show explicitely LQCD×QED

▶ is meant to be fully evaluated w.r.t. QCD → requires nonperturbative methods
▶ usually QED treated perturbatively, restricted to lowest order

(real radiation treatement left to experimentalists via generators/simulation)

▶ only single insertion of dim-6 operators: Ci Qi ⇒ lowest order in EW interactions

For leptonic decay Bu → `ν`

iAEFT ∝ ⟨`ν`∣QVL
∣Bu⟩ ∝ ⟨`ν`∣`γµPLν`∣0⟩ × ⟨0∣qγµPLb∣Bu(pB)⟩ ← only LO QED

∝ [u(p`)γµPLv(pν)] × fBu pµB ← decay constant

∝ fBu m` [u(p`)γ5v(pν)] ← use pB = p` + pν & EOM

Bq meson decay constant ⟨0∣q γµγ5 b ∣Bq(pB)⟩ ≡ i fBq pµB
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Leptonic CC decays Bu → `ν`

Can calculate Branching Ratio (B) with hadronic matrix element ⟨`ν`∣QVL
∣Bu⟩→ fBq m` [` γ5 ν`]

B`SM = τBu Γ[Bu → `ν`] =
τBu mBu

8π
m2
`β

2
` (fBu )

2 ∣GF Vub CVL
∣2

▶ short-distance Vub ← we like to determine (GF known from muon decay)

▶ long-distance fBu ← nowadays from lattice = (189.4± 1.4) MeV [FNAL/MILC 1712.09262]

▶ helicity-suppression m` ← makes it difficult for experiments β` ≡
√

1 −m2
`
/m2

Bu

▶ Bu lifetime τBu = (1638 ± 4) ⋅ 10−15 s

SM predictions (neglecting uncertainties from m`, mBu , GF ): for ∣Vub ∣ = 3.615 ⋅ 10−3

B`SM = 2.551 (1 ± 0.002∣τB ± 0.015∣fB) × ∣Vub ∣2 ×m2
`β

2
` =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

8.71 ⋅ 10−12 ` = e

3.72 ⋅ 10−7 ` = µ
9.34 ⋅ 10−5 ` = τ

⇒ current hadronic uncertainty allow for δ∣Vub ∣ ∼ 1%, provided experimental uncertainty < 1%

Bτexp = (10.9 ± 2.4) ⋅ 10−5, Bµexp ∈ [2.9,1.1] ⋅ 10−7 @ 90% CL, Be
exp < 9.8 ⋅ 10−7 @ 90% CL
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Leptonic FCNC decays Bq → `` (q = d,s)

In SM one-loop Matching [Inami/Lim Prog.Theor.Phys. 65 (1981) 297]

GF
αe

s2
W

LO

b sW

l +

u,c,t

l −

u,c,t

b s

W

l − l +

u,c,t

W
!
=

b s


l
 l

▶ at LO EW & all orders in QCD, only one operator has non-zero hadronic matrix element

LEFT = LQCD×QED +
4GF√

2

αe

4π
VtbV∗

tq C10Q10, Q10 = [qγµPLb][`γµγ5`]

similar to b → q`ν`: ⟨`+`−∣Q10∣Bq⟩ → fBq (2m`) [` γ5 `]

▶ other semileptonic operator Q9 = [qγµPLb][`γµ`]

⟨`+`−∣Q9∣Bq(pB)⟩ ∝ fBq pµB × [u(p`)γµv(p
`
)] ∝ fBq [u(p`)(/p` + /p`)v(p

`
)] EOM= 0

▶ C10 = C10(mt/mW ) +O (αs, α2
s , αe) higher orders are known + no RG under QCD
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Bs,d → `` – theory status
Branching ratio

Bq` ∝ τBq G 2
F α

2
e ×

⎛
⎝

2m`
mBq

⎞
⎠

2

× ∣VtbV∗

tq ∣
2 (f (0)

Bq
)

2
×

RRRRRRRRRRR
C10 + αe

4π
ANLO

RRRRRRRRRRR

2

▶ helicity suppression

▶ CKM to be determined

▶ Bq decay constant in pure QCD from lattice fBd
= (189.4 ± 1.4) MeV fBs = (230.7 ± 1.2) MeV

[FNAL/MILC 1712.09262]

▶ LO amplitude ∝ C10 at NNLO QCD & NLO EW
[Hermann/Misiak/Steinhauser 1311.1347, CB/Gorbahn/Stamou 1311.1348]

▶ NLO QED amplitude ∝ Ceff
7,9 !!! restricted to ` = µ, assuming mµ ∼ ΛQCD

⇒ power-enhanced mb/ΛQCD from spectator-quark dynamics [Beneke/CB/Szafron 1708.09157]

⇒ factorization in SCET1+2 and resummation between µ ∼ mb → µ ∼ mµ,ΛQCD

+ f(0)Bq
sufficient for power-enhancedANLO, beyond new f(n)Bq

required

+ combination with soft real-radiation for ∆E ≪ mµ, ΛQCD [Beneke/CB/Szafron 1908.07011]
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Bs → µµ̄ – uncertainty budget

Non-radiative rate time-integrated, use ∣Vcb ∣incl [Beneke/CB/Szafron 1908.07011]

Nf = 2 + 1 + 1 [FLAG 1902.08191]

B(0)
sµ = 3.660 (1 ± 1.1% ∣

fBs

± 3.1%∣
CKM

± 1.1%∣
mt
± 0.6%∣

pmr
± 1.2%∣

non-pmr
+0.3
−0.5%∣

LCDA
) ⋅ 10−9

▶ main parametric long-distance (fBs ) and short-distance (CKM and mt )

▶ non-QED: parametric (τBs , αs) and non-parametric (µW , µb and higher order)

▶ B-meson LCDA: λB and σ1,2 entering power-enhanced QED crr’n

World average: Br
(0)
sµ ∣exp = (2.69+0.37

−0.35) ⋅ 10−9 [LHCb+CMS+ATLAS, Run 1+2, LHCb-CONF-2020-002 + therein]

Sensitivity to ∣VtbV∗

ts ∣ with Nf = 2 + 1 + 1 & assuming LHCb: 4% uncertainty with 300/fb
[A. Puig @ LHCb Upgrade WS, LAPP, Annecy, 03/2018, LHCb 1208.3355]

δBr
(0)
sµ ∣

theory
≈ 2.1% + δBr

(0)
sµ ∣

LHCb 300/fb
≈ 4.0% ⇒ δ ∣VtbV∗

ts ∣ ≈ 2.5%

for comparison from b → c`ν̄`: δ∣Vcb ∣incl = 1.5% [Gambino/Healey/Turczyk 1606.06174]

δ∣Vcb ∣excl = 2.2% [Bordone/Jung/van Dyk 1908.09398]

10 / 31



Bs → µµ̄ – uncertainty budget

Non-radiative rate time-integrated, use ∣Vcb ∣incl [Beneke/CB/Szafron 1908.07011]

Nf = 2 + 1 + 1 [FLAG 1902.08191]

B(0)
sµ = 3.660 (1 ± 1.1% ∣

fBs

± 3.1%∣
CKM

± 1.1%∣
mt
± 0.6%∣

pmr
± 1.2%∣

non-pmr
+0.3
−0.5%∣

LCDA
) ⋅ 10−9

▶ main parametric long-distance (fBs ) and short-distance (CKM and mt )

▶ non-QED: parametric (τBs , αs) and non-parametric (µW , µb and higher order)

▶ B-meson LCDA: λB and σ1,2 entering power-enhanced QED crr’n

World average: Br
(0)
sµ ∣exp = (2.69+0.37

−0.35) ⋅ 10−9 [LHCb+CMS+ATLAS, Run 1+2, LHCb-CONF-2020-002 + therein]

Sensitivity to ∣VtbV∗

ts ∣ with Nf = 2 + 1 + 1 & assuming LHCb: 4% uncertainty with 300/fb
[A. Puig @ LHCb Upgrade WS, LAPP, Annecy, 03/2018, LHCb 1208.3355]

δBr
(0)
sµ ∣

theory
≈ 2.1% + δBr

(0)
sµ ∣

LHCb 300/fb
≈ 4.0% ⇒ δ ∣VtbV∗

ts ∣ ≈ 2.5%

for comparison from b → c`ν̄`: δ∣Vcb ∣incl = 1.5% [Gambino/Healey/Turczyk 1606.06174]

δ∣Vcb ∣excl = 2.2% [Bordone/Jung/van Dyk 1908.09398]

10 / 31



Semileptonic CC decays

11 / 31



∣Vqb ∣ from exclusive B → (P,V ) `ν`
Exclusive processes

b → u b → c

B → π B → D

Bs → K Bs → Ds

B → ρ,ω B → D∗

Bs → K∗ Bs → D∗

s

Λb → p Λb → Λ
(∗)

c

▶ experiment + theory: nonproblematic

▶ theory finite-width approximation

▶ b → u decays in SM suppressed by ∣Vub

Vcb
∣
2

∼ 1 ⋅ 10−2

▶ ν-reconstruction favors B-factories over LHC

▶ Bs decays at LHC suppressed by fs/fd (similar for Λb)

Observables

B → P `ν` B → V(→ P1P2) `ν` Λb → Λc(→ Λπ) `ν`

dB
dq2

d4Γ

dq2 dcos θ` dcos θV dχ
d4Γ

dq2 dcos θ` dcos θΛ dχ

⇒ angular distributions provide further observables FL(q2), AFB(q2), . . .

LFU ratios R``
′(M) ≡ B(B → M ` ν` )

B(B → M `′ ν`′)
hadronic uncertainties cancel (especially in SM)
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Form Factors (FF)

Matrix element at leading order in EW interactions:

iAEFT ≡ ⟨`ν`M ∣ iLEFT ∣B⟩ → ⟨`ν`M ∣ − i
4GF√

2
Vqb CVL QVL

∣B⟩

For semileptonic decay B → M `ν`

iAEFT ∝ ⟨`ν`M ∣QVL
∣B⟩ ∝ ⟨`ν`∣`γµPLν`∣0⟩ × ⟨M ∣qγµPLb∣B⟩ ← only LO QED

∝ [u(p`)γµPLv(pν)] × FF(q2) ← form factor

B → P seudoscalar FF’s → depend on momentum transfer q ≡ p − k = p` + pν

⟨P(k)∣q γµ b ∣B(p)⟩ = f+ (p + k)µ + [f0 − f+]
m2

B −m2
P

q2
qµ, ⟨P∣q γµγ5 b ∣B⟩ = 0

q2-differential branching ratio

dB
dq2

∝ τB ∣Vqb ∣2 β2
` ∣p⃗∣

⎡⎢⎢⎢⎢⎢⎣
m2

B ∣p⃗∣
2 ⎛
⎝

1 −
m2
`

2 q2

⎞
⎠

2

(f+)2 +
3m2

`

8 q2
(m2

B +m2
P)

2(f0)2
⎤⎥⎥⎥⎥⎥⎦

⇒ only f+(q2) relevant if m` ≪ q2 (` = e, µ), f0 important for ` = τ β` ≡
√

1 −m2
`
/q2
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Form Factor definitions
B → P seudoscalar FF’s

⟨P(k)∣q γµ b ∣B(p)⟩ = f+(p + k)µ + [f0 − f+]
m2

B −m2
P

q2
qµ

⟨P(k)∣q σµνqν b ∣B(p)⟩ = i fT
mB +mP

[q2(p + k)µ − (m2
B −m2

P)qµ]

▶ 3 B → P form factors f+ = vector FF f0 = scalar FF fT = tensor FF

▶ kinematical constraint at q2 = 0: f+ = f0

▶ in SM there is no b → q`ν` operator with tensor structure [q σµν . . .b]

Approximate relations among FFs in the Heavy-Quark limit mb →∞ valid up to ΛQCD/mb
[Isgur/Wise PRD 42 (1990) 2388]

▶ different sets for a) Heavy-to-heavy (b → c) (heavy = “ΛQCD ≪ mc ≲ mb”)

b) Heavy-to-Light (b → u,d , s) (light = “mq ≲ ΛQCD”)

▶ for heavy-to-light further “symmetries” in Large Recoil limit EM ∼ mB

2
⇔ q2 → 0

[Charles/Le Yaouanc/Oliver/Pene/Raynal hep-ph/9812358]
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Form Factor definitions
B → V ector FF’s

⟨V(k, η)∣ q γµ b ∣B(p)⟩ = εµναβη
∗νpαkβ

2V

mB +mV

⟨V(k)∣ q γµγ5 b ∣B(p)⟩ = iη∗ν
⎧
⎪⎪
⎨
⎪⎪
⎩

qµqν
2mV

q2
A0 + (mB +mV ) [gµν −

qµqν

q2
]A1

+ (mB −mV )

⎡
⎢
⎢
⎢
⎢
⎣

qµ −
q2

m2
B −m2

V

(p + k)µ
⎤
⎥
⎥
⎥
⎥
⎦

qν
q2

A2

⎫
⎪⎪
⎬
⎪⎪
⎭

⟨V(k, η)∣ q iσµνqν b ∣B(p)⟩ = εµναβη
∗νpαkβ2T1

⟨V(k, η)∣ q iσµνqνγ5 b ∣B(p)⟩ = iη∗ν
⎧
⎪⎪
⎨
⎪⎪
⎩

[gµν(m2
B −m2

V ) − (p + k)µqν ]T2 +

⎡
⎢
⎢
⎢
⎢
⎣

qµ −
q2

m2
B −m2

V

(p + k)µ
⎤
⎥
⎥
⎥
⎥
⎦

qνT3

⎫
⎪⎪
⎬
⎪⎪
⎭

▶ 7 B → V FFs: V = vector FF A1,2 = axial-vector FFs
A0 = scalar FF T1,2,3 = tensor FFs

▶ kinematical constraint at q2 = 0: A0 =
mB +mV

2mV
A1 −

mB −mV

2mV
A2 and T1 = T2

▶ in SM there is no b → q`ν` operators with tensor structure [q σµν . . .b]

Λb → Λc FF’s 3×vector FFs 3×axial-vector FFs and tensor FFs
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⎧
⎪⎪
⎨
⎪⎪
⎩

[gµν(m2
B −m2

V ) − (p + k)µqν ]T2 +

⎡
⎢
⎢
⎢
⎢
⎣

qµ −
q2

m2
B −m2

V

(p + k)µ
⎤
⎥
⎥
⎥
⎥
⎦

qνT3

⎫
⎪⎪
⎬
⎪⎪
⎭

▶ 7 B → V FFs: V = vector FF A1,2 = axial-vector FFs
A0 = scalar FF T1,2,3 = tensor FFs

▶ kinematical constraint at q2 = 0: A0 =
mB +mV

2mV
A1 −

mB −mV

2mV
A2 and T1 = T2

▶ in SM there is no b → q`ν` operators with tensor structure [q σµν . . .b]

Λb → Λc FF’s 3×vector FFs 3×axial-vector FFs and tensor FFs
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Form factor

determinations
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Determination of FF’s

FFs calculated with nonperturbative methods

Light-Cone Sum Rules (LCSR)

▶ low q2 = large recoil

▶ two setup’s with:

a) light-meson LCDA’s
b) B-meson LCDA’s

M =π

M =D

M =u (incl)

M =c (incl)

0 5 10 15 20 25
0.01

0.05

0.10

0.50

1

5

10

q
2 [GeV2]

1
0
4
×
B
r
(B
→
M
+
μ
ν
μ
)

Lattice QCD (LQCD)

▶ high q2 = low recoil

▶ 1st principle for B → P

▶ some appr. for B → V
assume stable V

▶ calculate hadronic corr-function via:
a) using unitarity⇒ dispersive

representation involving form factor

b) light-cone OPE at q2 where applicable
(q2 ≲ 0)⇒ partons & perturbative

▶ sum rule obtained by maching both
results and using (semi-global)
quark-hadron duality

▶ numerical evaluation in discretized and
finite space-time volume

▶ achieves nowadays uncertainties below
10 % for B → P
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Example for B → P of FFs

LQCD averaged by FLAG (Flavour Lattice Averaging Group) http://flag.unibe.ch/2019/MainPage

B → π

0.2

0.4

0.6

0.8

1.0

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

F G LA 2019I I

B
(q

2
)φ
(q

2
)f
B
→
π
(q

2
)

z(q2, topt)

f0 average
f+ average

f+ HPQCD 06
f+ FNAL/MILC 15

f+ RBC/UKQCD 15
f0 FNAL/MILC 15

f0 RBC/UKQCD 15

B → D

▶ FLAG-averages provided in FF-parametrization: “constrained BCL with N = 3”

f+(q2) = 1
1 − q2/m2

B∗

N−1
∑
n=0

a+n [zn − (−1)n−N n
N

zN] , f0(q2) =
N−1
∑
n=0

a0
nzn

LQCD use f+(0) = f0(0) [Bourrely/Caprini/Lellouch 0807.2722]

▶ mapping to

z(q2
, topt) ≡

√

t+ − q2 −
√

t+ − topt
√

t+ − q2 +
√

t+ − topt
, t± = (mB ±mP)

2
, topt =

√

t+(
√

mB −
√

mP)
2

▶ combined fit in SM-framework with Vqb ⇒ fitting FF shape from data
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B → V form factors

Much “less solid” calculations for B → V FFs:
(more appropriate for experimental detection via V → P1P2 would be B → P1P2 FFs)

▶ LQCD has to assume Vector meson to be stable (approx.)

▶ similar issues for LCSR

Experimentally B → D∗`ν` favoured
⇒ for Vcb the B → D∗ FFs are important

▶ currently LQCD provides only A1

at q2
max = (mB −m∗

D)2

[FNAL/MILC 1403.0635, HPQCD 1711.11013]

▶ LCSR calculation done at
q2 = (−15, −10, −5, 0)GeV2

for all V , A0,1,2, T1,2,3

▶ fitted to z-expansion:
LCSR only

LCSR + LQCD
without [Khodjamirian/Mannel/Offen hep-ph/0611193]
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.
q2 [GeV2]
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.

0.6

.

0.8

.

1.0

.

A
1
[1

]

.

AB→D∗

1

.

EOS v0.2.3

[Gubernari/Kokulu/van Dyk 1811.00983]
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z-Expansions
and unitarity bounds

Further reading: Textbook by

Irinel Caprini

“Functional Analysis and Optimization Methods in Hadron Physics”

[https://doi.org/10.1007/978-3-030-18948-8]
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FFs & dispersion relation

Introduced FFs as B → M matrix element ⇒

⟨M ∣Jµ∣B⟩ ≡ (...)µF(q2)

with quark currents Jµ ≡ [qγµ . . .b]

by crossing symmetry same function F(q2)

⟨0∣Jµ∣BM⟩ ≡ (...)µF(q2)

describes also B +M production/annihilation

They are part of 2-point correlation function

Πµν(q2) = (qµqν − q2gµν)ΠT (q2) + gµν ΠL(q2) ≡ i ∫ d4x ei q⋅x ⟨0∣T{Jµ(x), Jν(0)}∣0⟩

that fulfills a (n-subtracted, n = 1 or 2 in practice) dispersion relation

χA(q2) = 1
n!

dΠA(t)
d tn

∣
t=q2

= 1
π
∫

∞

0
dt

Im ΠA(t)
(t − q2)n (A = L,T)

▶ dispersion relation allows to calculate χA(q2) at some q2 from knowledge of Im ΠA

or vice versa

▶ can calculate χA(q2
) perturbatively at q2 far from where Jµ can create resonances

for B → D(∗) need (mb +mc)ΛQCD ≪ (mb +mc)2 − q2 ⇒ q2 = 0 sufficient

“Standard OPE” ΠA,OPE(q2) = ∑∞k=1 CA,k ⟨Ok ⟩ Wilson coeff’s CA,k depend on mb,q

[(Novikov)/Shifman/Vainshtein/Zakharov NPB147 (1979) 385 & 448, (NPB174 (1980) 378)]
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Unitarity bounds on FFs

Hadronic representation:

Insert complete set of on-shell states ∣n⟩ = {∣BM⟩, . . .} with correct quantum numbers (unitarity)

Πµν = i∫ d4x ei q⋅x ⨋
n

dµn ⟨0∣Jµ(x)∣N⟩ ⟨N ∣Jν(0)∣0⟩ Jµ(x) = ei P̂x Jµ(0)e−i P̂x

= i(2π)4 ⨋
n

dµn δ
(4)[q − pn] ⟨0∣Jµ∣N⟩ ⟨N ∣Jν ∣0⟩

if choose µ = ν, then on r.h.s ∣⟨0∣Jµ∣N⟩∣2 ≥ 0 is positive, such that

Im Πµµ = (2π)4 ⨋
n

dµn δ
(4)[q − pn] ∣⟨0∣Jµ∣N⟩∣2 ← keep only first state ∣BM⟩ in sum

≥ (2π)4 ∫ dµBM δ(4)[q − pBM]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∣F(q2)∣2 ← remember ⟨0∣Jµ ∣BM⟩∝ F(q2
)

From dispersion relation obtain a bound on ∣F(t)∣ in terms of perturbative result of χA(q2)

1 ≥ 1
χA(q2)π ∫

∞

p2
BM

dt
φ̃(t) ∣F(t)∣2

(t − q2)n

▶ lower intergration boundary t = 0 → t = p2
BM

since dµBM ∝ θ[q2 − p2
BM]

▶ these bounds are on FF on the real axis q2 > p2
BM
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Mapping to unit disk

Considered B → M FFs F(q2) extended to complex plane

q2 ↦ t ∈ C from semileptonic region m2
`
≤ q2

≤ t−

▶ t− ≡ (mB −mM)2 = q2
max

▶ t+ ≡ (mB +mM)2 is threshold for ∣BM⟩ production

▶ choose freely t0 < t+

and transform to z-plane into unit-circle

z(t , t0) ≡
√

t+ − t −
√

t+ − t0√
t+ − t +

√
t+ − t0

⇒ “semileptonic” region mapped to ∣z ∣ ≪ 1
∣z ∣ ≤ 0.035 for B → D and ∣z ∣ ≤ 0.29 for B → π

t

∞
t+t−m2

ℓ t0

z

−1 1

Unitarity bound becomes

1
2πi ∮

dz
z

∣φ(z)B(z)F(z)∣2 ≤ 1

▶ outer function φ(z)∝
√
φ̃(z) / χA(q2)

▶ F(t) is mostly analytic. If there are known
subthreshold resonances at t− ≤ t ≤ t+ (stable

under QCD, e.g. B(∗)

c etc.) they are removed with a
Blascke factor B(z) (sufficient to know positions zn)
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z–Parametrization

FF parametrization in z = z(t, t0) ansatz

F(z) = 1
B(z) φ(z)

∞

∑
k=0

ak zk

▶ B(z) × F(z) is analytic function

▶ φ(z) has no zeros inside unit disc

Ansatz into unitarity bound & z-integration

∞

∑
k=0

∣ak ∣
2 ≤ 1

!!! constraint on coefficients as well

Having in mind truncation in k after few terms, because ∣z ∣ ≪ 1 in “semileptonic region”,
+ unitarity bound on ∣ak ∣ provides model-independent and powerful parametrization!

(There can be some caveates, depending on B → M, and issues with asymptotic limits)

BGL = Boyd/Grinstein/Lebed [hep-ph/9412324, 9508211, 9705252]

▶ often used for B → D(∗) FFs
▶ use φ(z) and B(z) such that unitarity bound takes form ∑k ∣ak ∣2 ≤ 1

BCL = Bourrely/Caprini/Lellouch [0807.2722]

▶ used by FLAG and often LQCD collaborations for B
(s) → π,K ,D FFs

▶ replace φ(z)→ simple pole, e.g. 1 − q2/mB∗ , differently for each FF
▶ unitarity bound takes complicated form ∑j,k Bjk(t0)aj(t0)ak(t0) ≤ 1

23 / 31



z–Parametrization

FF parametrization in z = z(t, t0) ansatz

F(z) = 1
B(z) φ(z)

∞

∑
k=0

ak zk

▶ B(z) × F(z) is analytic function

▶ φ(z) has no zeros inside unit disc

Ansatz into unitarity bound & z-integration

∞

∑
k=0

∣ak ∣
2 ≤ 1

!!! constraint on coefficients as well

Having in mind truncation in k after few terms, because ∣z ∣ ≪ 1 in “semileptonic region”,
+ unitarity bound on ∣ak ∣ provides model-independent and powerful parametrization!

(There can be some caveates, depending on B → M, and issues with asymptotic limits)

BGL = Boyd/Grinstein/Lebed [hep-ph/9412324, 9508211, 9705252]

▶ often used for B → D(∗) FFs
▶ use φ(z) and B(z) such that unitarity bound takes form ∑k ∣ak ∣2 ≤ 1

BCL = Bourrely/Caprini/Lellouch [0807.2722]

▶ used by FLAG and often LQCD collaborations for B
(s) → π,K ,D FFs

▶ replace φ(z)→ simple pole, e.g. 1 − q2/mB∗ , differently for each FF
▶ unitarity bound takes complicated form ∑j,k Bjk(t0)aj(t0)ak(t0) ≤ 1

23 / 31



Heavy-to-heavy FFs
Constraints from HQET

Further reading:

Textbook by

Aneesh Manohar and Mark Wise

“Heavy Quark Physics” [Camb.Monogr.Part.Phys.Nucl.Phys.Cosmol. 10 (2000) 1-191]

Reviews/Lectures

M. Neubert [Phys. Rept. 245, 259 (1994)]

M. Wise [Les Houches Summer School 1997, hep-ph/9805468]
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Heavy-quark systems

Consider here bound state with single heavy quark H(Q) = (Q q)

▶ heavy means mq ∼ ΛQCD ≪ mQ , in practice mQ = mb or mc

▶ interaction of Q with light quarks and gluons (= brown muck) (in or close to it’s restframe)
described with Heavy Quark Effective Theory (HQET)

▶ heavy mass implies that changes of velocity due to brown muck

vµ = pµ

mQ
⇒ δvµ = δp

µ

mQ
∼ ΛQCD

mQ
→ 0 for mQ →∞

⇒ Q has constant velocity

▶ since QCD flavorblind all heavy quarks alike for mQ →∞
⇒ heavy-quark flavor symmetry, broken by (1/mb − 1/mc)

▶ acts in restframe as static color source
⇒ heavy-quark spin symmetry, broken at 1/mQ by chromo-magnetic interactions

▶ HQET Lagrangian is a series in

LHQET = L0 +
1

mQ

L1 +
1

m2
Q

L2 + . . .

where only L0 has spin-flavor symmetry
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Heavy quark field

Start by splitting QCD-field, where momentum pµ = mQvµ + k with k ∼ ΛQCD and v ⋅ v = 1

Q(x) = e−imQ v ⋅x [hv(x) +Hv(x)], /vhv = hv , /vHv = −Hv

Insert into QCD-Lagrangian (full theory)

LQCD = Q(i /D −mQ)Q

= [hv +Hv ] eimQ v ⋅x (i /D −mQ) e−imQv ⋅x [hv +Hv ]

= [hv +Hv ] (i /D −mQ +mQ /v) [hv +Hv ]

= [hv +Hv ] [i /Dhv + (i /D − 2mQ)Hv ]

= hv(iv ⋅D)hv −Hv(iv ⋅D + 2mQ)Hv + hv i /D⊥Hv +Hv i /D⊥hv

Use EOM (iv ⋅D + 2mQ)Hv = i /D⊥hv to arrive at Vµ⊥ ≡ Vµ − (v ⋅ V)vµ

LQCD = hv(iv ⋅D)hv + hv i /D⊥
1

2mQ + iv ⋅D
i /D⊥ hv

Derivatives acting on hv(x) yield residual momentum Dµhv(x) → kµuv(p) ≪ 2mQhv(x)

⇒ expansion
1

2mQ + iv ⋅D
≈ 1

2mQ

− 1
4m2

Q

(iv ⋅D) + . . .
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HQET

The HQET Lagrangian (at tree-level)

LHQET = hv(iv ⋅D)hv + 1
2mQ

hv i /D⊥i /D⊥hv + O ((mQ)−2)

≈ hv(iv ⋅D)hv + 1
2mQ

hv(i /D⊥)2hv

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
kinetic energy

− cF
gs

4mQ
hvσµνGµνhv

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
magnetic moment

▶ kinetic energy of heavy quark breaks flavor symmetry ∝ 1/mQ

⇒ reparametrization invariance shows that no αs corrections to all orders

▶ magnetic moment interaction (µQ ⋅ Bc) breaks heavy quark spin & flavor symmetry
⇒Wilson coefficient cF = 1 +O (αs)

Normalization of hadron states in QCD

▶ in QCD ⟨H(p′, ε′)∣H(p, ε)⟩ = 2E(p⃗) (2π)3δ(3)[p⃗ − p⃗′]δεε′

▶ in HQET ⟨Hv ′(k ′, ε′)∣Hv(k , ε)⟩ = 2v0 (2π)3δv ′v δ
(3)[k⃗ − k⃗ ′]δεε′ (labelled by v and residual k )

▶ QCD↔ HQET ∣H(p, ε)⟩ = √
mH ∣Hv(k , ε)⟩ +O ((mQ)−1)
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B → D(∗) FFs

Use instead of q2: w = pB ⋅ pD

2mBmD(∗)
= v ⋅ v ′ =

m2
B +m2

D(∗)
− q2

2mBmD(∗)
with 1 ≤ w ≤ 1.6 . . .

Consider B and D∗ as heavy: pB = mBv and pD = mD(∗)v
′

In the following convenient to use FFs F(w) relevant for B → D(∗)`ν` are

⟨D(p′)∣cγµb∣B(p)⟩
√

mBmD
= ⟨Dv ′ ∣cv ′γ

µbv ∣Bv ⟩ = h+ [v + v ′]µ + h− [v − v ′]µ

⟨D∗(p′, ε)∣cγµb∣B(p)⟩
√

mBmD∗
= ⟨D∗

v ′(ε)∣cv ′γ
µbv ∣Bv ⟩ = hV iεµναβε∗νv ′αvβ

⟨D∗(p′, ε)∣cγµγ5b∣B(p)⟩
√

mBmD∗
= ⟨D∗

v ′(ε)∣cv ′γµγ5bv ∣Bv ⟩ = hA1(w + 1)ε∗µ − ε ⋅ v [hA2 vµ + hA3 v ′µ]

6 FFs that describe B → D(∗)`ν`, in terms of initial and final velocities
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Hadronic matrix elements

Technique of calculating matrix elements (ME) of operators with “hadronic fields”

▶ fields P = B,D and V = B∗,D∗ in ground-state doublets (4 × 4 matrix, bispinor)

H(Q)

v = 1 + /v
2

(

≡V(v,ε)
³¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹µ
/P∗(Q)

v −

≡P(v)
³¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹µ

γ5P(Q)

v ), /vH(Q)

v = H(Q)

v , v ⋅ P∗(Q)

v = 0

⇒ transforms under heavy-quark symmetry as H(Q)

v → D(R)QH(Q)

v

▶ quark currents replaced by field-products of B and D(∗) that represent their MEs

cv ′Γbv → Tr{H
(c)
v ′ ΓH(b)

v X} where X = X0 + X1 /v + X2 /v ′ + X3 /vv ′

transform in same way under heavy-quark symmetry

▶ X and Xi = Xi(w) contain dynamics due to light degrees of freedom
slight = ±1/2 ⇒ depends only on initial and final velocities v and v ′, no Lorentz indices

▶ with /vH(Q)

v = H(Q)

v and /v /v = v2 = 1 ⇒ X → −ξ(w) just a scalar function

Isgur-Wise function [PLB 232 (1990) 113; PLB 237 (1990) 527]
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Form factor relations

Performing traces and comparing with definitions of FFs yields

h+(w) = hV (w) = hA1(w) = hA3(w) = ξ(w), h−(w) = hA2(w) = 0

Normalization of ξ(w) at zero-recoil w → 1 given by ME of b-number current in QCD

2pµB = 2mBvµ= ⟨B(p)∣bγµb∣B(p)⟩

= mB⟨Bv ∣bvγ
µbv ∣Bv ⟩ = mB h+(1) [v + v]µ = 2mBvµ ξ(1) ⇒ ξ(1) = 1

Lukes theorem [Luke, PLB252 (1990) 247]

There are no 1/mQ corrections to form factor relations at zero recoil

QCD corrections to (cΓb) currents when matching on HQET:

ξ(1) → ηA [1 + δ1/m2
Q
] ξ(1), ηA = 1 + αs
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at 2-loop ηA = 0.960 ± 0.007 [Czarnecki hep-ph/9603261 ]
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Another FF parametrization

The combination of unitarity bounds with FF relations from HQET is due to

CNL = Caprini/Lellouch/Neubert [hep-ph/9712417]

▶ combine all spin-parity cannels (JP = 0+,0−,1−,1+) and
include Bc poles in unitarity bounds

▶ exploit spin symmetry of HQET in ground-state doublets of B(∗) and D(∗),
including subleading 1/mQ and αs corrections

▶ use z-expansion up to O (z3) for B → D vector-FF V1(w), i.e. 3 parameters → ρ2
1, c1,d1

⇒ unitarity bounds lead to strong correlation between ρ2
1 and c1,

such that d1 quasi-fixed

▶ other B → D∗ and B∗ → D(∗) FFs expressed via HQET relations as

Fj(w)
V1(w)

= Aj [1 + Bj(w − 1) +Cj(w − 1)2 +Dj(w − 1)3 + . . .]

where A,B,C,D known from HQET (including uncertainties)
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