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4 Lectures

1) 29/09/20 10:00-11:00

EFT of weak interactions in the SM

2) 29/09/20 14:00-15:00

Exclusive leptonic and semileptonic charged-current decays

3) 01/10/20 10:00-11:00

Inclusive semileptonic decays

4) 01/10/20 11:00-15:00

B-anomalies
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Outline

▶ Flavor in the SM

▶ Flavor transitions in SM

▶ Introduction to EFT (muon decay)

▶ ∆B = 1 EFT: operators, matching, mixing, . . .
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Flavor in the

Standard Model
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Effective theories (EFT) and the Standard Model (SM)

Notions of matter
changed within last

100 years

molecules

atoms

nuclei + e−

p+ + n + e−

quarks + leptons

particle zoo

elements +

???

▶ β-decay: n → p+ + e− + ν̄e

▶ 4-Fermi-theory (1933/34)

∼ GF [Ψ(p+)Γ Ψ(n)][e Γ′ νe]

Fermi coupling GF ∼ 1/M2

▶ up- and down-Quarks are
constituents of n and p

▶ Quarks are bound by strong
force (Gluons) to hadrons

▶ Quarks have fractional electric charges Qu = +2/3 and Qd = −1/3

▶ Conservation of charges in weak and strong interactions
→ described by symmetries (local gauge invariance)

▶ forces are transmitted by spin-1 gauge bosons
▸ strong interaction: Gluons
▸ weak interaction: massive charged W and neutral Z bosons

▶ Fermi constant GF ∝ g2
2/m

2
W is an effective coupling
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“General” principles employed in the SM

We try to test known principles and to find new ones at
microscopic length scales and high energy densities
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“General” principles employed in the SM

We try to test known principles and to find new ones at
microscopic length scales and high energy densities

1) relativistic quantum field theory + S-Matrix

▶ Lorentz symmetry imposes restrictions on interactions of fields

2) local gauge invariance provides fundamental interactions

▶ gauge fields + interactions are introduced automatically,
BUT gauge bosons are predicted to be massless

3) Spontaneous symmetry breaking (SSB)
(Englert/Brout-Higgs-Guralnik/Hagen/Kibble mechanism)

▶ requires postulation of (at least one) Higgs field (not strongly interacting)
▶ mass generation of gauge bosons and Quarks/Leptons
▶ masses of Quarks and Leptons ∝ to their coupling to Higgs

⇒ Interaction with Higgs gives rise to different flavors
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. . . the “current” SM

Leptons

Spin 1/2

Spin 0

Quarks

Higgs

The SM has 2 + 3 + 9 + 4 = 18 parameters
omitting massive neutrino’s and θQCD

Relativistic invariance + renormalizability (≤ dim 4)
▶ 3 generations of massless Lepton’s and Quark’s

▶ Higgs potential:
V(H) ∼ µ2(H†H) − Λ(H†H)2

▶ Yukawa potential:

LYukawa ∼ QL(YU H̃uR + YDHdR) + LLYLH`R

Local gauge invariance SU(3)c ⊗ SU(2)L ⊗U(1)Y

▶ 3 gauge couplings: gs , g2, g1

▶ massless gauge fields

SSB = Mass generation
▶ residual symmetry with massless photon:

SU(2)L ⊗U(1)Y → U(1)em

▶ massive gauge fields: mW , mZ

▶ massive Leptons and Quarks: (but mν = 0)
YL → me,µ,τ , YD → md,s,b, YU → mu,c,t

▶ Quark-mixing: VCKM = 3 × 3 unitary
4 parameters: λ, A, ρ, η
[Cabibbo/Kobayashi/Maskawa]
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Three generations in the SM

3 copies of matter fields (i = 1,2,3) postulated as SU(2)L doublets (Q,L) and singlets (u,d , `)

Quarks: QL,i = (
uL,i

dL,i
) , uR,i , dR,i Leptons: LL,i = (

νL,i

`L,i
) , `R,i
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3 copies of matter fields (i = 1,2,3) postulated as SU(2)L doublets (Q,L) and singlets (u,d , `)

Quarks: QL,i = (
uL,i

dL,i
) , uR,i , dR,i Leptons: LL,i = (

νL,i

`L,i
) , `R,i

Local gauge invariance implemented with the help of covariant derivative (same for all 3 copies)

Dµ Φ =
⎛
⎝
∂µ + ig1YΦBµ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
U(1)Y

+ ig2τ
aW a

µ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
SU(2)L

+ igsT AGA
µ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
SU(3)c

⎞
⎠

Φ

▶ some group-indices have been suppressed here

▶ hypercharges: YH fixed by requirement to have massless photon after EWSB

YQ = +1
6
, Yu = +

2
3
, Yd = −1

3
, YL = −

1
2
, Y` = −1, YH = +1

2

YQ = Yd + YH = Yu − YH and YL = Y` + YH

▶ electric charge: Q ≡ Y + τ3
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Three generations in the SM

3 copies of matter fields (i = 1,2,3) postulated as SU(2)L doublets (Q,L) and singlets (u,d , `)

Quarks: QL,i = (
uL,i

dL,i
) , uR,i , dR,i Leptons: LL,i = (

νL,i

`L,i
) , `R,i

Local gauge invariance implemented with the help of covariant derivative (same for all 3 copies)

Dµ Φα,a =
⎛
⎝
[∂µ + ig1YΦBµ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
U(1)Y

]δαβδab + ig2δabτ
a
αβW a

µ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
SU(2)L

+ igsδαβT A
abGA

µ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
SU(3)c

⎞
⎠

Φβ,b

▶ acting on Φ = {QL,i , uR,i , dR,i , . . .}

▶ Φα,a in fundamental representation: α→ SU(2)L, a→ SU(3)c

▶ gauge fields: Bµ, W a
µ, GA

µ (transform as adjoint representation)

▶ gauge couplings: g1, g2 , gs

▶ generators of SU(2)L: τa = σa/2 (σa
∶ 2 × 2 Pauli matrices, a = 1, 2, 3)

SU(3)c : T A = λA/2 (λA
∶ 3 × 3 Gellman matrices, A = 1, . . . 8)
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Three generations in the SM

3 copies of matter fields (i = 1,2,3) postulated as SU(2)L doublets (Q,L) and singlets (u,d , `)

Quarks: QL,i = (
uL,i

dL,i
) , uR,i , dR,i Leptons: LL,i = (

νL,i

`L,i
) , `R,i

Gauge interactions of matter fields

Lgauge =
3
∑
i=1

(QL,i i /D QL,i + uR,i i /D uR,i + dR,i i /D dR,i + Leptons) , /D ≡ Dµγµ

▶ local SU(2)L invariance forbids mass terms ∼ −mΦ [ΦLΦR +ΦRΦL]

▶ Lgauge is diagonal in generations

▶ can rotate with unitary 3 × 3 matrices V a
χ V a †

χ = 13×3 (a = Q,u,d)

Q′
L = V Q

L QL, u′R = V u
R uR , d ′R = V d

R dR

and Lgauge remains diagonal ⇒ QL, uR and dR are weak eigenstates

▶ huge global flavor symmetry of Lgauge: GSM ≡ U(1)Y ⊗ U(1)B ⊗ U(1)L

Gflavor ≡ SU(3)QL
⊗ SU(3)UR

⊗ SU(3)DR
⊗ SU(3)LL

⊗ SU(3)ER
⊗ U(1)PQ ⊗GSM
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Yukawa couplings → origin of Flavor

Yukawa interactions of Higgs-doublet with quarks & leptons H̃ = iσ2H∗

LYukawa = −
3
∑

i,j=1
(YU,ij [QL,i H̃]uR,j + YD,ij [QL,i H]dR,j + Leptons) + h.c.

▶ 3 × 3 complex-valued Yukawa couplings YU,D ⇒ not generation-diagonal !!!

▶ invariant under global GSM = U(1)Y ⊗ U(1)B ⊗ U(1)L, but not under Gflavor of Lgauge

⇒ accidental global symmetries of SM (at dim-4 only): B = baryon number, L = lepton number

Quark & Lepton masses when breaking the SU(2)L ×U(1)Y → U(1)em

Higgs-field acquires vacuum expectation value v (VEV)

(in Rξ-gauge)

⇒ [QL ⋅ (0,v)] = v dL and [QL iσ2
(0,v)] = v uL

H = ( 0
v/

√
2
) + ( G+

(h0 + iG0) /
√

2
)

LYukawa ≃ −
3
∑

i,j=1
(

v YU,ij√
2

[uL,i uR,j ] +
v YD,ij√

2
[dL,i dR,j ] + . . .) + h.c. + terms(h0,G0,±)

⇒ Quark masses are “generation-non-diagonal”:

!!! distinguish generations → Flavor
[MU]ij ≡

v YU,ij√
2

and [MD]ij ≡
v YD,ij√

2
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From weak → mass eigenstates
After EWSB mass terms of quarks are “generation-non-diagonal”

LYukawa ≃ −
3
∑

i,j=1
([MU]ij uL,i uR,j + [MD]ij dL,i dR,j) + h.c. + . . .

Requires separate rotations for uL and dL to mass eigenstates u′,d ′

u′L = V u
L uL, d ′L = V d

L dL, u′R = V u
R uR , d ′R = V d

R dR ,

such that mass matrices are diagonal but each generation has different mass⇒ flavor

Mdiag
a = V a

L Ma V a †
R = v

√
2

V a
L Ya V a †

R a = U,D

Remember that gauge interactions Lgauge are invariant under Q′
L = V Q

L QL,
but not under separate trafo of uL and dL

Lgauge =
3
∑
i=1

QL,i i /D QL,i + . . . =
3
∑

i,j,k=1

⎛
⎜
⎝

u′L,i [V u
L ]ik

d ′L,i [V d
L ]ik

⎞
⎟
⎠

T

i /D
⎛
⎜⎜
⎝

[V u †
L ]L,kj u′L,j

[V d †
L ]L,kj d ′L,j

⎞
⎟⎟
⎠

+ . . .

⇒ expanding SU(2)L indices:

charged flavor-non-diagonal
gauge interactions

∝ uL,i [V u
L V d †

L ]ij dL,j → uL VCKM dL

Cabibbo-Kobayashi-Maskawa (CKM)

10 / 32



From weak → mass eigenstates
After EWSB mass terms of quarks are “generation-non-diagonal”

LYukawa ≃ −
3
∑

i,j=1
([MU]ij uL,i uR,j + [MD]ij dL,i dR,j) + h.c. + . . .

Requires separate rotations for uL and dL to mass eigenstates u′,d ′

u′L = V u
L uL, d ′L = V d

L dL, u′R = V u
R uR , d ′R = V d

R dR ,

such that mass matrices are diagonal but each generation has different mass⇒ flavor

Mdiag
a = V a

L Ma V a †
R = v

√
2

V a
L Ya V a †

R a = U,D

Remember that gauge interactions Lgauge are invariant under Q′
L = V Q

L QL,
but not under separate trafo of uL and dL

Lgauge =
3
∑
i=1

QL,i i /D QL,i + . . . =
3
∑

i,j,k=1

⎛
⎜
⎝

u′L,i [V u
L ]ik

d ′L,i [V d
L ]ik

⎞
⎟
⎠

T

i /D
⎛
⎜⎜
⎝

[V u †
L ]L,kj u′L,j

[V d †
L ]L,kj d ′L,j

⎞
⎟⎟
⎠

+ . . .

⇒ expanding SU(2)L indices:

charged flavor-non-diagonal
gauge interactions

∝ uL,i [V u
L V d †

L ]ij dL,j → uL VCKM dL

Cabibbo-Kobayashi-Maskawa (CKM)

10 / 32



Flavor changes in SM → CKM matrix

Ui = {u, c, t}:

Qu = +2/3

Dj = {d , s,b}:

Qd = −1/3

LudW± ≃ g2√
2

(ū c̄ t̄)
⎛
⎜⎜
⎝

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

⎞
⎟⎟
⎠
γµPL

⎛
⎜⎜
⎝

d
s
b

⎞
⎟⎟
⎠

W+
µ

∼ Cabibbo-Kobayashi-Maskawa (CKM) matrix

�Ui Dj

W+

▶ determined by Yukawa-couplings VCKM ≡ V u
L V d †

L

▶ CP violation realized via complex phase in VCKM
[Kobayashi/Maskawa Prog.Theor.Phys. 49 (1973) 652]

▶ unitary matrix: VCKMV †
CKM = 13×3 → in principle 18 − 9 = 9 real parameters

▶ phase transformations of five quark fields allow to remove unphysical dof’s (degrees of freedom)

⇒ only 4 real parameters

⇒ All information on quark Yukawa couplings ∈ C is given by 6 + 4 = 10 real parameters:
they are the 6 quark masses and 4 CKM parameters

Testing the SM search for all flavor-changing processes predicted and not predicted by the SM
and to (over-) determine CKM parameters
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The CKM matrix

▶ Cabibbo-Kobayashi-Maskawa matrix:

VCKM =
⎛
⎜
⎝

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

⎞
⎟
⎠

▶ unitarity V †
CKMVCKM = 13×3

of i-th and j-th rows/columns gives

6 Unitarity triangles (UT)

⇒ most common i = 1, j = 3:

▶ there are many parametrizations of unitary
3 × 3 matrix with 4 param’s
⇒ convention dependence

▶ some things are convention independent
(invariant under quark-field rephasing)

Plaquettes

Jij;kl ≡ ± Im[Vik Vjl V
∗
il V∗

jk ]

with i ≠ j and k ≠ l

⇒ for 3 × 3 all the Jij;kl are equivalent

⇒ a measure of CP violation
[Jarlskog PRL 55 (1985) 1039]

▶ Jarlskog invariant J ≡ Jij;kl

is twice the area of unitarity triangles:

“J = 2 ×△UT”

⇒ measured ∣J ∣ ≈ 2.8 × 10−5
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[Jarlskog PRL 55 (1985) 1039]

▶ Jarlskog invariant J ≡ Jij;kl

is twice the area of unitarity triangles:

“J = 2 ×△UT”

⇒ measured ∣J ∣ ≈ 2.8 × 10−5
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Parametrizations of the CKM matrix
Standard parametrization from PDG (Particle Data Group)

VCKM =
⎛
⎜⎜⎜
⎝

c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

⎞
⎟⎟⎟
⎠

⇒ uses 3 angles + 1 phase: sij ≡ sin θij (cij)
2
= 1 − (sij)

2

Wolfenstein parametrization expansion in λ ≈ Vus ∼ 0.2 [Wolfenstein Phys.Rev.Lett. 51 (1983) 1945]

VCKM ≈
⎛
⎜⎜⎜⎜
⎝

1 − 1
2λ

2 λ λ3A(ρ − iη)

−λ 1 − 1
2λ

2 λ2A

λ3A(1 − ρ − iη) −λ2A 1

⎞
⎟⎟⎟⎟
⎠
+O (λ4)

⇒ uses Wolfenstein parameters λ, A, ρ and η:

s12 = λ =
∣Vus ∣

√

∣Vud ∣
2 + ∣Vus ∣2

, s23 = Aλ2
= λ ∣

Vcb

Vus
∣ , s13eiδ

= V∗ub = Aλ3
(ρ + iη) =

Aλ3
(ρ + iη)

√
1 − A2λ4

√
1 − λ2[1 − A2λ2(ρ + iη]

⇒ ensures ρ + iη = −(Vud V∗ub)/(Vcd V∗cb) independent of phase convention

⇒ CKM in terms of λ, A, ρ and η unitary to all orders in λ: ρ = ρ (1 − λ2
/2 + . . .), η = η (1 − λ2

/2 + . . .)

13 / 32



Now we know what “Flavor”

means in the SM

↓

What flavor transitions

does the SM predict?
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Tree (CC) versus Loops (FCNC)

charged current (CC) Qi ≠ Qj

Tree: only Ui → Dj & Di → Uj

U
i

D
j

l

l

W

M1 → `ν̄`

M1 → M2 + `ν̄`

Amp ∼ GF Vij

U
i

D
j

W

U
l

D
k

M1 → M2M3

∼ GF Vij V
∗
lk

neutral current (FCNC) Qi = Qj

Loop: Di → Dj (& Ui → Uj )

D
i

W


D
j

U
a

M1 → M2 + {γ, Z , g}
{γ, Z , g}→ {`¯̀, νν̄,M3}

∼ GF g∑
a

Vai V
∗
aj f(ma)

D
i

D
j

W W
U

a

l
b

ll
b

M1 → `¯̀

M1 → M2 + {`¯̀, νν̄,M3}
M0 ↔ M

0
(= mixing)

∼ GF g2∑
a,b

Vai V
∗
aj f(ma,b)
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Tree (CC) versus Loops (FCNC)

charged current (CC) Qi ≠ Qj

Tree: only Ui → Dj & Di → Uj

U
i

D
j

l

l

M1 → `ν̄`

M1 → M2 + `ν̄`

Amp ∼ GF C(Vij)

U
i

D
j

D
k

U
l

M1 → M2M3

∼ GF C(Vij)

neutral current (FCNC) Qi = Qj

Loop: Di → Dj (& Ui → Uj )

D
i

D
j

M1 → M2 + {γ, Z , g}
{γ, Z , g}→ {`¯̀, νν̄,M3}

∼ GF C(Vij ,ma)

D
i

D
j

ll

M1 → `¯̀

M1 → M2 + {`¯̀, νν̄,M3}
M0 ↔ M

0
(= mixing)

∼ GF C(Vij ,ma,mb)

▶ decoupling for mQ ≪ mW ⇒ effective theory à la Fermi [Fermi 1933/34]

works for all quarks except top quark (mW < mt )

▶ short-distance (SD) couplings: C = Wilson coefficients
depend on SD-parameters⇒ in SM: CKM and heavy masses: mW , mZ , mt

⇒ extract in measurement and calculate in specific UV completions

▶ overall rescaling factor Fermi’s constant GF ∼ GeV−2, measured in µ→ eν̄eνµ
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Overview of decay channels for CKM determination

c

d

W+

D+

l+

νl

c

u
d

W+

D0

π−

νl

l+

c

s

W+

D+
s

l+

νl

c

u
s

W+

D0

K−

νl

l+

Nuclear β-decay

u

d

W+

π+

νl

l+

u

s
W+

K+

νl

l+

d
u

s
W+

K0

π−

νl

l+

⎛

⎜
⎜
⎜
⎜
⎜

⎝

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

⎞

⎟
⎟
⎟
⎟
⎟

⎠

d

dW+b

W−

u, c, t

b

B0
d B̄0

d

s

sW+b

W−

u, c, t

b

B0
s B̄0

s

d
u

b
W+

B0

π−

νl

l+

d
c

b
W+

B0

D−

νl

l+

Also many strategies with hadronic B decays B → M1M2 [Figures from Lellouch 1104.5484]
16 / 32



So far “CKM-picture” of SM works

⇒ fit of CKM-Parameters . . .

2003 → 2019

CKM matrix in terms of
4 Wolfenstein parameters

λ ∼ 0.22, A, ρ, η

⇒ nowadays a sophisticated fit:

“combine and overconstrain”

!!! numerous b-physics measurements

[experimental input from CKMfitter homepage]
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So far “CKM-picture” of SM works

⇒ fit of CKM-Parameters . . . 2003 → 2019

-1.5

-1

-0.5

0

0.5

1

1.5

-1 -0.5 0 0.5 1 1.5 2

sin 2βWA

∆md

∆ms
 &  ∆md

εK

εK

|Vub/Vcb|

sin 2βWAγ β
α

ρ

η

excluded area has < 0.05 CL

C K M
f i t t e r

LP 2003

More on CKM fits http://ckmfitter.in2p3.fr/www/html/ckm_main.html
http://www.utfit.org/UTfit/

Unitarity: VubV∗
ud + VcbV∗

cd + VtbV∗
td = 0
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Hierarchies in masses and CKM

The determinations in framework of SM show huge hierarchies
that can not be explained in the SM

▶ masses within each generation

▶ CKM matrix

λ ≈ 0.225 VCKM ≈
⎛
⎜⎜⎜⎜
⎝

1 λ λ3A

−λ 1 λ2A

λ3A −λ2A 1

⎞
⎟⎟⎟⎟
⎠Cabibbo angle

▶ in down-type FCNCs top-, charm- and up-contributions

b → s VtbV∗
ts ≈ −VcbV∗

cs ∼ λ2A

VubV∗
us ∼ λ4A

b → d VtbV∗
td ∼ VcbV∗

cd ∼ VubV∗
ud ∼ λ3A

s → d VcsV∗
cd ≈ −VusV∗

ud ∼ λ

VtsV∗
td ∼ λ5A

⇒ in s → d top part enhanced by m2
t , but CKM-suppressed

105

106

107

108

109

1010

1011 t

b

e

u
d

mu
s

c

eV

tau

λ4A ≈ 0.0021 versus (mc/mW )
2
≈ 0.0003

⇒ CKM suppresses dim-6, such that dim-8 phenomenologically not negligible in ∆MK , εK , K+ → π + νν
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Effective theories:

Example muon decay
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Fermi theory for µ→ e νe νµ

In SM µ− → e− νe νµ at tree-level
via W±-boson exchange µ− νe

νµ e−

W±

q

q ≡ pµ − pνµ
= pe + pνe

iASM = i (−i
g2√

2
)

2

[u(pνµ)γµPLu(pµ)]
−i gµν

q2 −m2
W

[u(pe)γνPLv(pνe)]

≈
g2

2

2m2
W

[νµγµPL µ][e γµPLνe] +O (m2
µ /m2

W ) PL(R) ≡
1
2
(1 ∓ γ5)

!!! Expansion in the µ-rest frame q2 ≪ m2
W (mµ ≈ 0.1 GeV and mW ≈ 80 GeV)

⇒ this corresponds to an OPE (operator product expansion), keeping only dim-6
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Fermi theory for µ→ e νe νµ

In SM µ− → e− νe νµ at tree-level
via W±-boson exchange µ− νe

νµ e−

W±

q

q ≡ pµ − pνµ
= pe + pνe

iASM = i (−i
g2√

2
)

2

[u(pνµ)γµPLu(pµ)]
−i gµν

q2 −m2
W

[u(pe)γνPLv(pνe)]

≈
g2

2

2m2
W

[νµγµPL µ][e γµPLνe] +O (m2
µ /m2

W ) PL(R) ≡
1
2
(1 ∓ γ5)

!!! Expansion in the µ-rest frame q2 ≪ m2
W (mµ ≈ 0.1 GeV and mW ≈ 80 GeV)

⇒ this corresponds to an OPE (operator product expansion), keeping only dim-6

Can reproduce with an Effective Theory (as Fermi anticipated)

LEFT = − 4
√

2
CVLL QVLL QVLL ≡ [νµγµPL µ][e γµPLνe]

▶ CVLL = Wilson coefficient⇒ effective coupling constant

▶ QVLL = 4-Fermi Operator (contact interaction)

µ− νe

νµ e−

iAEFT = i (−i
4

√
2

CVLL) [νµγµPL µ][e γµPLνe] = 4CVLL√
2

QVLL
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Fermi theory for µ→ e νe νµ

In SM µ− → e− νe νµ at tree-level
via W±-boson exchange µ− νe

νµ e−

W±

q

q ≡ pµ − pνµ
= pe + pνe

iASM = i (−i
g2√

2
)

2

[u(pνµ)γµPLu(pµ)]
−i gµν

q2 −m2
W

[u(pe)γνPLv(pνe)]

≈
g2

2

2m2
W

[νµγµPL µ][e γµPLνe] +O (m2
µ /m2

W ) PL(R) ≡
1
2
(1 ∓ γ5)

!!! Expansion in the µ-rest frame q2 ≪ m2
W (mµ ≈ 0.1 GeV and mW ≈ 80 GeV)

⇒ this corresponds to an OPE (operator product expansion), keeping only dim-6

There is a full theory (the SM) and an effective theory that reproduces it for q2 ≪ m2
W

Determine CVLL from Matching both amplitudes (due to renormalization beyond tree-level at scale µW ∼ mW )

ASM
!= AEFT ⇒ CSM

VLL =
√

2 g2
2

8 m2
W

= 1
√

2v 2

!!! CVLL ∼ GeV−2 carries information on full theory
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Fermi’s constant GF from µ-lifetime

Can determine CVLL from precise measurement of τµ = (2.196 981 1 ± 0.000 002 2)µs

Calculate µ-lifetime from AEFT, neglecting QED corrections from photons

1
τµ

≡ Γµ = 1
2mµ

∑dΠ3 ∣AEFT A
†
EFT∣

2

=
m5
µ

192π3
∣CVLL∣2 [1 +∆q(0)(x)], x = m2

e

m2
µ

∼ 2 ⋅ 10−5

▶ ∆q(0)(x) tiny phase-space corrections from e− mass (mνe and mνµ neglected)
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Fermi’s constant GF from µ-lifetime

Can determine CVLL from precise measurement of τµ = (2.196 981 1 ± 0.000 002 2)µs

Calculate µ-lifetime from AEFT, with QED corrections

1
τµ

≡ Γµ = 1
2mµ

∑dΠ3 ∣AEFT A
†
EFT∣

2
+ 1

mµ
∑dΠ4 . . . real emission + . . .

=
m5
µ

192π3
[1 +∆q(αe, x)] ∣CVLL∣2

with ∆q(αe, x) =
∞

∑
n=0

(αe

π
)

n
∆q(n)(x), which depends on αe and x y ≈ 0

▶ ∆q(1)(x) = −1.8076 [Kinoshita/Sirlin Phys. Rev. 113 (1959) 1652, Nir, PLB221 (1989) 184]

▶ ∆q(2)(x) = (6.700 ± 0.002) [Ritbergen/Stuart hep-ph/9904240]

The EFT allows to conveniently separate QED dynamics from CVLL into ∆q

!!! QED renormalization of ∆q requires to choose scale µ ∼ mµ to avoid large log’s lnµ/mµ

⇒ Formally CVLL(µ) at low-energy scale, but trivial evolution to scale µW ∼ mW

⇒ GF ≡ CVLL is also called Fermi’s constant, and it is best defined by

one finds from τµ that GF = ∣CVLL∣ = 1.1663787(6) ⋅ 10−5 GeV−2
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Fermi’s constant in the SM

Determination of CVLL can be used to determine short-distance parameters of SM:

Tree-level matching of the SM: CSM
VLL =

√
2 g2

2

8 m2
W

= 1
√

2v 2
⇒ v = 246.2 GeV

Beyond tree-level matching: CSM
VLL =

√
2 g2

2

8 m2
W

[1 +∆r(αe,mW ,mZ ,mt ,mH) ]

▶ radiative corrections to tree-level W± exchange in ∆r(αe,mW ,mZ ,mt ,mH)

▶ µ-lifetime important measurement to fix SM parameters like mW ,mZ ,mH

in electroweak-precision fits of SM

▶ if New Physics (NP) only contributes to CVLL = CSM
VLL +CNP

VLL

⇒ constraints from muon-liftime apply to sum GF = ∣CSM
VLL +CNP

VLL∣

⇒ CNP
VLL depends on fundamental parameters of NP scenario
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Fermi’s constant beyond the SM
Let’s assume only left-handed ν’s ⇒ then only one additonal ∆L = 0 operator

LEFT = − 4
√

2
[ (CSM

VLL +CNP
VLL) QVLL +CSRL QSRL] QSRL ≡ [νµPR µ][e PLνe]

leads to modification of µ-lifetime

1
τµ

=
m5
µ

192π3
[1 +∆q(0)(x)]

⎛
⎝
∣CVLL∣2 + ∣CSRL∣2

4
+ 18

5

≈1/200
¬
me

mµ
Re (CVLLC∗

SRL) × [1 +O (x) ]
⎞
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≡(G(0)F )

2

▶ G (0)
F denotes that only ∆q(0)(x) is used when additional QSRL included

⇒ theory less precisely known compared to only QVLL

▶ one observable not enough to fix two complex-valued numbers

⇒ measure other observables in d2Γ/(dEe dcosϑ) → Michel parameters

▶ in SMEFT (v ≪ Λ): CSM
VLL ∼ 1/v 2 and additional suppression of v 2/Λ2 for CNP

VLL and CSRL

⇒ in τµ the ∣CSRL∣2 ∼ v4/Λ4 compared to v2/Λ2 → negligible

⇒ one might neglect Re (CVLLC∗
SRL) ∼ v 2/Λ2, because helicity-suppressed

[for example Jenkins/Manohar/Stoffer 1709.04486] 23 / 32



Michel parameters

More observables to discriminate SM and NP effects ⇒ measure angular distribution

d2Γ

dx dcosϑ
∝ x2 {3(1 − x) + 2ρ

3
(4x − 3) + 3η

x0

x
(1 − x) ± Pµ ξ cosϑ [1 − x + 2 δ

3
(4x − 3)]}

▶ in restframe of muon & electron polarisation insensitive detector
▶ maximum electron energy Emax

e = (m2
µ +m2

e)/(2mµ)
▶ reduced electron energy x = Ee/Emax

e and x0 = me/Emax
e

▶ ϑ is direction of electron w.r.t. muon polarization P⃗µ
▶ degree of muon polarisation Pµ = ∣P⃗µ∣

Angular observables ρ, η, ξ, δ known as Michel parameters
[Michel ProcPhysSocA63 (1950) 514, Bouchiat/Michel PR106 (1957) 170, Kinoshita/Sirlin (1957) PR107 593 & PR108 844 ]

in SM: ρ = ξδ = 3/4, ξ = 1, η = 0
⇒ measurements with electron polarisation depend on further Michel parameters

!!! SM particularly simple⇒ few parameters and correlations between many observables

▶ few parameters⇒ theory control needed only for few observables for good determinations

▶ correlations⇒ allow stringent tests of SM

▶ more parameters/operators in new physics scenarios lead to less predictivity
⇒ less stringent tests possible and more measurements needed
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Effective theory

for ∆B = 1 decays
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B-Hadron decays are a Multi-scale problem . . .

. . . with hierarchical interaction scales

electroweak IA

mW ≈ 80 GeV
mZ ≈ 91 GeV

≫ ext. mom’a in B restframe

mB ≈ 5 GeV

≫ QCD-bound state effects

ΛQCD ≈ 0.5 GeV
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B-Hadron decays are a Multi-scale problem . . .

. . . with hierarchical interaction scales

electroweak IA

mW ≈ 80 GeV
mZ ≈ 91 GeV

≫ ext. mom’a in B restframe

mB ≈ 5 GeV

⇒ decoupling heavy particles

W ,Z -boson, top-quark

LEFT ∼ GF VCKM × [∑
9,10

C` ¯̀
i Q` ¯̀

i + ∑
7γ,8g

Ci Qi +CC+(QCD & QED-peng)]

semi-leptonic el- & chr-mgn dipole charged current QCD & QED -penguin

b sW

l +

u,c,t

l −

u,c,t

b s

W

l − l +

u,c,t

W

b sW

u,c,t u,c,t

b sW

g

u,c,t u,c,t

b u,c

su,c

W

b sW

q

u,c,t

q

g

u,c,t

b sW

q

u,c,t

q

u,c,t

b s

W

q
Q

q

u,c,t

W
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B-Hadron decays are a Multi-scale problem . . .

. . . with hierarchical interaction scales

electroweak IA

mW ≈ 80 GeV
mZ ≈ 91 GeV

≫ ext. mom’a in B restframe

mB ≈ 5 GeV

⇒ effective theory

at scales below mB

LEFT ∼ GF VCKM × [∑
9,10

C` ¯̀
i Q` ¯̀

i + ∑
7γ,8g

Ci Qi +CC+(QCD & QED-peng)]

semi-leptonic el- & chr-mgn dipole charged current QCD & QED -penguin

b s


l
 l

b s
 b s

g

b u,c

u,c s

b s

q q

Ci = Wilson coefficients contain short-dist. pmr’s (heavy masses mt , . . . – CKM factored out)
and leading logarithmic QCD-corrections to all orders in αs

⇒ in SM known up to NNLO QCD and NLO EW/QED

Qi = dim-6 operators flavor-changing coupling of light quarks
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Tree-level = “current-current” op’s in the SM

SM = Full theory: in b-rest frame external momenta q2 ∼ m2
b ≪ m2

W ⇒ expand W -propagator

iASM = −
g2

2

2
VcbV∗

cs
1

q2 −m2
W

[sγµPLc][cγµPLb]

q2
≪m2

W≈
4GF√

2
VcbV∗

cs [sγµPLc][cγµPLb] + O
⎛
⎝

m2
b

m2
W

⎞
⎠

The same result can be obtained from an EFT Lagrangian

b u,c

u,c s

LEFT = c2Q2 =
4GF√

2
VcbV∗

cs C2Q2 Q2 ≡ [sγµPLc][cγµPLb]

iAEFT = − c2 [sγµPLc][cγµPLb]

Requiring equality of amplitudes (Greens funct’s) = Matching

ASM
!= AEFT ⇒ c2 = −

4GF√
2

VcbV∗
cs (or C2 = −1)

VcbV∗
cs ≈ −VtbV∗

ts + . . . ⇒ c2 = +
4GF√

2
VtbV∗

ts (or C2 = +1)

used here VubV∗us ≪ VtbV∗ts and VubV∗us ≪ VcbV∗cs
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SM = Full theory: in b-rest frame external momenta q2 ∼ m2
b ≪ m2

W ⇒ expand W -propagator

iASM = −
g2

2

2
VcbV∗

cs
1

q2 −m2
W

[sγµPLc][cγµPLb]

q2
≪m2

W≈
4GF√

2
VcbV∗

cs [sγµPLc][cγµPLb] + O
⎛
⎝

m2
b

m2
W

⎞
⎠

The same result can be obtained from an EFT Lagrangian

b u,c

u,c s

LEFT = c2Q2 =
4GF√

2
VcbV∗

cs C2Q2 Q2 ≡ [sγµPLc][cγµPLb]

iAEFT = − c2 [sγµPLc][cγµPLb]

Requiring equality of amplitudes (Greens funct’s) = Matching

ASM
!= AEFT ⇒ c2 = −

4GF√
2

VcbV∗
cs (or C2 = −1)
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Matching at higher orders
Benefit of EFT’s ⇒ can resum large log’s to all orders in perturbation theory (PT)

αn
s lnn ( mb

mW
) = αn

s

⎡⎢⎢⎢⎢⎣
ln(mb

µ0
) + ln( µ0

mW
)
⎤⎥⎥⎥⎥⎦

n

, ln( mb

mW
) ≈ −2.8

Matching Ci(µ0,mW ) = C(0)
i + αs

4π
C(1)

i + . . . order by order µ0 = factorisation scale

+ Counter Term (=CT)

!
=

αs

4π C(1)×

b u,c

u,c s

+ C(0)×

b u,c

u,c s

+ CT

▶ generates additional operator Q1 ≡ [s̄αγµPLcβ][c̄βγµPLbα] α, β = color indices

▶ allows to separate log’s of full theory side into Wilson coefficients C(1) and . . .

▶ 1-loop matrix element ∝ C(0) of EFT has same ln(mb/µ0)
since EFT should reproduce IR of full theory (otherwise wrong EFT)

▶ C(1)(µ0) can be determined perturbatively only with choice: µ0 ∼ mW
otherwise large log’s will enter C(1)(µ0)

Matching determines Wilson coefficients at high scale µ0 ∼ mW
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Renormalization Group (RG) equation

▶ main purpose of RG eq.: relating couplings (Wilson coefficients) at different scales

▶ effect of RG eq.: resummation of large log’s to all orders in coupling (αs or αe)

RG equation derived from requirement that “bare” (effective) couplings are µ-independent

µ
d

dµ
Ci(µ)= [γT (µ)]

ij
Cj(µ) γij = anomalous dimension matrix (=ADM)

Formal solution of system of coupled 1st order ordinary differential equations (ODE)

Ci(µ) = [U(µ,µ0)]ij Cj(µ0), [U(µ,µ0)]ij = Tµ′ exp [∫
µ

µ0
γT (µ′)dµ′]

In case of two operators Q1 and Q2, leading order RG equation

µ ∼ mb , µ0 ∼ mW , η ≡ αs(µ0)/αs(µ) ≈ 0.55, η± ≡ (η6/23 ± η−12/23)/2

C1(µ) = η+C1(µ0) + η−C2(µ0) ≈ +1.11C1(µ0) − 0.26C2(µ0)

C2(µ) = η−C1(µ0) + η+C2(µ0) ≈ −0.26C1(µ0) + 1.11C2(µ0)

SM matching: CSM
1 (µ0) = 0 +O(αs) and CSM

2 (µ0) = 1 +O(αs)

⇒ non-zero C1 at scales µ < µ0 from “Mixing of Q2 into Q1”
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Examples of mixing of Q1,2 into . . .

QCD penguin operators: b → s qq

Q3(5) = [sγµPLb]∑
q
[qγµPL(R)q]

Q4(6) = [sαγµPLbβ]∑
q
[qβγµPL(R)qα] �

 

g

b s

q q

C

2

µ ∼ mb , µ0 ∼ mW , using CSM
3,4,5,6(µ0)

C3(µ) = +0.0010 [1 − 1.5 C1(µ0) + 12.6 C2(µ0)]

C4(µ) = −0.0017 [1 − 2.0 C1(µ0) + 16.0 C2(µ0)]

C5(µ) = +0.0004 [1 − 1.5 C1(µ0) + 19.2 C2(µ0)]

C6(µ) = −0.0027 [1 − 1.5 C1(µ0) + 12.6 C2(µ0)]

▶ 1 is contribution from CSM
3,4,5,6(µ0)

▶ because CSM
2 (µ0) = 1,

main contr’n from mixing with Q2

▶ CSM
1 (µ0) = O (αs) ≪ CSM

2 (µ0)

at µ0: −3 CSM
3,5 = CSM

4,6 = αs(µ0)
8π

Ẽ0(xt) and Ẽ0(xt) ≈ −0.39

These operators are most relevant for
B → K + (π, ρ, . . .) or B → K∗ + (π, ρ, . . .)

b sW

q

u,c,t

q

g

u,c,t
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Examples of mixing of Q1,2 into . . .
Electro- and chromo-magnetic dipole operators: b → sγ and b → sg

Q7γ =
e

(4π)2
mb[sσµνPRb]Fµν Q8g = gs

(4π)2
mb[sασµνPRTa

αβbβ]Ga
µν

µ ∼ mb , µ0 ∼ mW , using CSM
7γ (µ0) = −0.19 and CSM

8g (µ0) = −0.05

C7γ(µ) ≈ −0.13 + 0.02 C1(µ0) − 0.19 C2(µ0)
SM= −0.32

C8g(µ) ≈ −0.03 + 0.10 C1(µ0) − 0.09 C2(µ0)
SM= −0.12

⇒ a 10 % change in CNP
2 (µ0) ≈ 0.1 w.r.t. SM gives

▶ 6% effect on C7γ(µ)

▶ 12 % on Br(B → Xsγ)∝ ∣C7(µ)∣2

example of strong “indirect constraints” on C2(µ0) from Br(B → Xsγ)
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Examples of mixing of Q1,2 into . . .

Semileptonic: b → s `+`−

Q9 = [sγµPLb]∑
`

[`γµ`]
�

 



b s

l l

C

2

In SM (µ = 5 GeV, µ0 = 160 GeV)

C̃(0)
1 (µ0) = 0, C̃(0)

2 (µ0) = 1, C̃(1)
1 (µ0) = 23.3, C̃(1)

4 (µ0) = 0.5, C(1)
9 (µ0) = 1.5

The LL + NLL piece

C9(µ) = 4.50 C̃(0)
1 (µ0) + 1.89C̃(0)

2 (µ0) + 0.04 C̃(1)
1 (µ0) − 0.03 C̃(1)

4 (µ0) +C(1)
9 (µ0)

SM= 0. + 1.89 + 0.92 − 0.02 + 1.47 = 4.26

Note: Here used Chetyrkin/Misiak/Münz [hep-ph/9612313] operator definition of Q1, . . . ,Q6

Q̃1 ≡ [s̄γµPLTac][c̄γµPLTab] and Q̃2 ≡ [s̄γµPLc][c̄γµPLb]

@ LO: C̃(0)
1 = 2C(0)

1 and C̃(0)
2 = C(0)

1 /3 +C(0)
2

30 / 32



Have EFT Lagrangian!

What next?
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Outlook . . .

What is achieved via EFT:

▶ decoupled heavy degrees of freedom for process ≪ mW

▶ restricted to most relevant dim ≤ 6 operators

▶ RG equation resums large log’s αn
s ln(mb/mW )n to all orders in αs

▶ EFT allows to include BSM effects via new operators model-independently

Need predictions of observables

▶ example of muon decay is “trivial” as only QED involved⇒ in principle perturbative

▶ processes with quarks involve QCD: quarks are not free, but confined at ≪ mW

!!! external states are mesons/baryons ⇒ nonperturbative

⇒ hadronic matrix elements needed examples for b → s

▶ decay constants ⟨0∣ s γµ . . .b ∣B(p)⟩

▶ local form factors ⟨M(p′)∣ s γµ . . .b ∣B(p)⟩

▶ nonlocal objects ∫ dx eikx ⟨M(p′)∣T{[qγαq](x), [s γµ . . .b](0) ∣B(p)⟩

Nonperturbative methods and/or reliable parametrizations + phenomenology required
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