Introduction to Effective Theories in Flavor Physics

Christoph Bobeth Technical University Munich

> GDR Lectures 29 September, 2020

4 Lectures

1) 29/09/20 10:00-11:00

EFT of weak interactions in the SM

2) 29/09/20 14:00-15:00

Exclusive leptonic and semileptonic charged-current decays

3) 01/10/20 10:00-11:00

Inclusive semileptonic decays

4) 01/10/20 11:00-15:00

B-anomalies

Outline

- ▶ Flavor in the SM
- Flavor transitions in SM
- Introduction to EFT (muon decay)
- $\Delta B = 1$ EFT: operators, matching, mixing, ...

Flavor in the Standard Model

Notions of matter changed within last 100 years

Notions of matter changed within last 100 years

- ▶ β -decay: $n \rightarrow p^+ + e^- + \bar{\nu}_e$
- 4-Fermi-theory (1933/34)
 - $\sim \mathcal{G}_F[\overline{\Psi}(p^+)\,\Gamma\,\Psi(n)][\overline{e}\,\Gamma'\,\nu_e]$

Fermi coupling $G_F \sim 1/M^2$

Notions of matter changed within last 100 years

- ▶ β -decay: $n \rightarrow p^+ + e^- + \bar{\nu}_e$
 - 4-Fermi-theory (1933/34)
 - $\sim \mathcal{G}_{F}[\overline{\Psi}(p^{\scriptscriptstyle +})\,\Gamma\,\Psi(n)][\overline{e}\,\Gamma'\,\nu_{e}]$

Fermi coupling $G_F \sim 1/M^2$

- up- and down-Quarks are constituents of *n* and *p*
- Quarks are bound by strong force (Gluons) to hadrons
- Quarks have fractional electric charges $Q_u = +2/3$ and $Q_d = -1/3$

Notions of matter changed within last 100 years

- ▶ β -decay: $n \rightarrow p^+ + e^- + \bar{\nu}_e$
 - 4-Fermi-theory (1933/34)
 - $\sim \mathcal{G}_{F}[\overline{\Psi}(p^{\scriptscriptstyle +})\,\Gamma\,\Psi(n)][\overline{e}\,\Gamma'\,\nu_{e}]$

Fermi coupling $G_F \sim 1/M^2$

- up- and down-Quarks are constituents of n and p
- Quarks are bound by strong force (Gluons) to hadrons
 - Quarks have fractional electric charges $Q_{II} = +2/3$ and $Q_{cf} = -1/3$
 - Conservation of charges in weak and strong interactions
 described by symmetries (local gauge invariance)
 - forces are transmitted by spin-1 gauge bosons
 - strong interaction: Gluons
 - weak interaction: massive charged W and neutral Z bosons
- Fermi constant $G_F \propto g_2^2/m_W^2$ is an effective coupling

"General" principles employed in the SM

We try to test known principles and to find new ones at microscopic length scales and high energy densities

"General" principles employed in the SM

We try to test known principles and to find new ones at microscopic length scales and high energy densities

1) relativistic quantum field theory + S-Matrix

- Lorentz symmetry imposes restrictions on interactions of fields
- 2) local gauge invariance provides fundamental interactions
 - gauge fields + interactions are introduced automatically, BUT gauge bosons are predicted to be massless

3) Spontaneous symmetry breaking (SSB)

(Englert/Brout-Higgs-Guralnik/Hagen/Kibble mechanism)

- requires postulation of (at least one) Higgs field (not strongly interacting)
- mass generation of gauge bosons and Quarks/Leptons
- \blacktriangleright masses of Quarks and Leptons \propto to their coupling to Higgs

\Rightarrow Interaction with Higgs gives rise to different flavors

Relativistic invariance + renormalizability (< dim 4)

- ▶ 3 generations of massless Lepton's and Quark's
- ► Higgs potential:

 $V(H) \sim \mu^2 (H^{\dagger}H) - \Lambda (H^{\dagger}H)^2$

Yukawa potential:

 $\mathcal{L}_{Yukawa} \sim \overline{Q}_{L} \left(Y_{U} \widetilde{H} u_{R} + Y_{D} H d_{R} \right) + \overline{L}_{L} Y_{L} H \ell_{R}$

Relativistic invariance + renormalizability (< dim 4)

- ▶ 3 generations of massless Lepton's and Quark's
- ► Higgs potential:

 $V(H) \sim \mu^2 (H^\dagger H) - \Lambda (H^\dagger H)^2$

Yukawa potential:

 $\mathcal{L}_{Yukawa} \sim \overline{Q}_{L} \left(Y_{U} \widetilde{H} u_{R} + Y_{D} H d_{R} \right) + \overline{L}_{L} Y_{L} H \ell_{R}$

 q_{s}

Local gauge invariance

 $SU(3)_c \otimes SU(2)_L \otimes U(1)_Y$

3 gauge couplings:

*g*₂, *g*₁

massless gauge fields

The SM has 2 + 3 + 9 + 4 = 18 parameters

omitting massive neutrino's and θ_{QCD}

Relativistic invariance + renormalizability (< dim 4)

- ▶ 3 generations of massless Lepton's and Quark's
- ► Higgs potential:

 $V(H) \sim \mu^2 (H^\dagger H) - \Lambda (H^\dagger H)^2$

Yukawa potential:

 $\mathcal{L}_{Yukawa} \sim \overline{Q}_{L} \left(Y_{U} \widetilde{H} u_{R} + Y_{D} H d_{R} \right) + \overline{L}_{L} Y_{L} H \ell_{R}$

Local gauge invariance

 $SU(3)_c \otimes SU(2)_L \otimes U(1)_Y$

S gauge couplings: g₅,

 g_2, g_1

massless gauge fields

SSB = Mass generation

- ▶ residual symmetry with massless photon: $SU(2)_L \otimes U(1)_Y \rightarrow U(1)_{em}$
- ▶ massive gauge fields: m_W, m_Z
- ▶ massive Leptons and Quarks: (but $m_{\nu} = 0$)

 $Y_L \rightarrow m_{e,\mu,\tau}, \quad Y_D \rightarrow m_{d,s,b}, \quad Y_U \rightarrow m_{u,c,t}$

Quark-mixing: $V_{CKM} = 3 \times 3$ unitary
4 parameters: λ, A, ρ, η
[Cabibbo/Kobayashi/Maskawa]7/32

3 copies of matter fields (*i* = 1, 2, 3) postulated as SU(2)_L doublets (Q, L) and singlets (u, d, ℓ)

Quarks: $Q_{L,i} = \begin{pmatrix} u_{L,i} \\ d_{L,i} \end{pmatrix}$, $u_{R,i}$, $d_{R,i}$ Leptons: $L_{L,i} = \begin{pmatrix} \nu_{L,i} \\ \ell_{L,i} \end{pmatrix}$, $\ell_{R,i}$

3 copies of matter fields (i = 1, 2, 3**)** postulated as SU(2)_L doublets (Q, L) and singlets (u, d, ℓ)

Quarks:
$$Q_{L,i} = \begin{pmatrix} u_{L,i} \\ d_{L,i} \end{pmatrix}, \quad u_{R,i}, \quad d_{R,i}$$
 Leptons: $L_{L,i} = \begin{pmatrix} \nu_{L,i} \\ \ell_{L,i} \end{pmatrix}, \quad \ell_{R,i}$

Local gauge invariance implemented with the help of covariant derivative (same for all 3 copies)

$$\left[D_{\mu} \Phi = \left(\partial_{\mu} + \underbrace{ig_{1} Y_{\Phi} B_{\mu}}_{U(1)_{Y}} + \underbrace{ig_{2} \tau^{a} W_{\mu}^{a}}_{SU(2)_{L}} + \underbrace{ig_{s} T^{A} G_{\mu}^{A}}_{SU(3)_{c}} \right) \Phi \right]$$

- some group-indices have been suppressed here
- hypercharges: Y_H fixed by requirement to have massless photon after EWSB

$$Y_Q = +\frac{1}{6},$$
 $Y_U = +\frac{2}{3},$ $Y_d = -\frac{1}{3},$ $Y_L = -\frac{1}{2},$ $Y_\ell = -1,$ $Y_H = +\frac{1}{2}$
 $Y_Q = Y_d + Y_H = Y_U - Y_H$ and $Y_L = Y_\ell + Y_H$

• electric charge: $Q \equiv Y + \tau^3$

3 copies of matter fields (i = 1, 2, 3**)** postulated as SU(2)_L doublets (Q, L) and singlets (u, d, ℓ)

Quarks:
$$Q_{L,i} = \begin{pmatrix} u_{L,i} \\ d_{L,i} \end{pmatrix}, \quad u_{R,i}, \quad d_{R,i}$$
 Leptons: $L_{L,i} = \begin{pmatrix} \nu_{L,i} \\ \ell_{L,i} \end{pmatrix}, \quad \ell_{R,i}$

Local gauge invariance implemented with the help of covariant derivative (same for all 3 copies)

$$D_{\mu} \Phi_{\alpha,a} = \left(\left[\partial_{\mu} + \underbrace{ig_{1} Y_{\Phi} B_{\mu}}_{U(1)_{Y}} \right] \delta_{\alpha\beta} \delta_{ab} + \underbrace{ig_{2} \delta_{ab} \tau^{a}_{\alpha\beta} W^{a}_{\mu}}_{SU(2)_{L}} + \underbrace{ig_{s} \delta_{\alpha\beta} T^{A}_{ab} G^{A}_{\mu}}_{SU(3)_{c}} \right) \Phi_{\beta,b} \right)$$

- acting on $\Phi = \{Q_{L,i}, u_{R,i}, d_{R,i}, \dots\}$
- $\Phi_{\alpha,a}$ in fundamental representation:

$$\alpha \rightarrow SU(2)_L, a \rightarrow SU(3)_c$$

(transform as adjoint representation)

- **b** gauge fields: $B_{\mu}, W_{\mu}^{a}, G_{\mu}^{A}$
- ▶ gauge couplings: g₁, g₂, g_s

► generators of SU(2)_L:
$$\tau^a = \sigma^a/2$$
 ($\sigma^a : 2 \times 2$ Pauli matrices, $a = 1, 2, 3$)
SU(3)_c: $T^A = \lambda^A/2$ ($\lambda^A : 3 \times 3$ Gellman matrices, $A = 1, \ldots 8$

3 copies of matter fields (*i* = 1, 2, 3) postulated as SU(2)_L doublets (Q, L) and singlets (u, d, ℓ)

Quarks:
$$Q_{L,i} = \begin{pmatrix} u_{L,i} \\ d_{L,i} \end{pmatrix}, \quad u_{R,i}, \quad d_{R,i}$$
 Leptons: $L_{L,i} = \begin{pmatrix} \nu_{L,i} \\ \ell_{L,i} \end{pmatrix}, \quad \ell_{R,i}$

Gauge interactions of matter fields

$$\mathcal{L}_{\text{gauge}} = \sum_{i=1}^{3} \left(\overline{Q}_{L,i} \, i \not \! D \, Q_{L,i} + \overline{u}_{R,i} \, i \not \! D \, u_{R,i} + \overline{d}_{R,i} \, i \not \! D \, d_{R,i} + \text{Leptons} \right), \qquad \not \! D \equiv D_{\mu} \gamma^{\mu}$$

▶ local SU(2)_L invariance forbids mass terms ~ $-m_{\Phi}\left[\overline{\Phi}_{L}\Phi_{R} + \overline{\Phi}_{R}\Phi_{L}\right]$

- Lgauge is diagonal in generations
- ▶ can rotate with unitary 3 × 3 matrices

 $V_{\chi}^{a} V_{\chi}^{a\dagger} = \mathbb{1}_{3 \times 3} \quad (a = Q, u, d)$

$$Q'_L = V^Q_L Q_L, \qquad \qquad u'_R = V^u_R u_R, \qquad \qquad d'_R = V^d_R d_R$$

and \mathcal{L}_{gauge} remains diagonal \Rightarrow

 Q_L , u_R and d_R are weak eigenstates

huge global flavor symmetry of Lgauge:

 $G_{SM} \equiv U(1)_Y \otimes U(1)_B \otimes U(1)_L$

 $\mathsf{G}_{\mathsf{flavor}} \equiv \mathsf{SU}(3)_{Q_L} \otimes \mathsf{SU}(3)_{U_R} \otimes \mathsf{SU}(3)_{D_R} \otimes \mathsf{SU}(3)_{L_L} \otimes \mathsf{SU}(3)_{E_R} \otimes \mathsf{U}(1)_{\mathrm{PQ}} \otimes \mathsf{G}_{\mathrm{SM}}$

Yukawa couplings → origin of Flavor

Yukawa couplings → origin of Flavor

⇒ Quark masses are "generation-non-diagonal": <u>III distinguish generations</u> → Flavor

$$[M_U]_{ij} \equiv \frac{v Y_{U,ij}}{\sqrt{2}} \quad \text{and} \quad [M_D]_{ij} \equiv \frac{v Y_{D,ij}}{\sqrt{2}}$$

From weak → mass eigenstates

After EWSB mass terms of quarks are "generation-non-diagonal"

$$\mathcal{L}_{\mathsf{Yukawa}} \simeq -\sum_{i,j=1}^{3} \left([M_U]_{ij} \ \overline{u}_{L,i} \ u_{R,j} + [M_D]_{ij} \ \overline{d}_{L,i} \ d_{R,j} \right) + \text{h.c.} + \dots$$

Requires separate rotations for u_L and d_L to mass eigenstates u', d'

 $u_L' = V_L^u u_L, \qquad \qquad d_L' = V_L^d d_L, \qquad \qquad u_R' = V_R^u u_R, \qquad \qquad d_R' = V_R^d d_R,$

such that mass matrices are diagonal but each generation has different mass \Rightarrow flavor

$$M_a^{\text{diag}} = V_L^a M_a V_R^{a\dagger} = \frac{v}{\sqrt{2}} V_L^a Y_a V_R^{a\dagger}$$
 $a = U, D$

From weak → mass eigenstates

After EWSB mass terms of quarks are "generation-non-diagonal"

$$\mathcal{L}_{\mathsf{Yukawa}} \simeq -\sum_{i,j=1}^{3} \left([M_U]_{ij} \ \overline{u}_{L,i} \ u_{R,j} + [M_D]_{ij} \ \overline{d}_{L,i} \ d_{R,j} \right) + \mathsf{h.c.} + \dots$$

Requires separate rotations for u_L and d_L to mass eigenstates u', d'

 $u_L' = V_L^u u_L, \qquad \qquad d_L' = V_L^d d_L, \qquad \qquad u_R' = V_R^u u_R, \qquad \qquad d_R' = V_R^d d_R,$

such that mass matrices are diagonal but each generation has different mass ⇒ flavor

$$M_a^{\text{diag}} = V_L^a M_a V_R^{a\dagger} = \frac{v}{\sqrt{2}} V_L^a Y_a V_R^{a\dagger} \qquad a = U, L$$

Remember that gauge interactions \mathcal{L}_{gauge} are invariant under $Q'_L = V^Q_L Q_L$, but not under separate trafo of u_L and d_L

$$\mathcal{L}_{\text{gauge}} = \sum_{i=1}^{3} \overline{Q}_{L,i} i \not \! D Q_{L,i} + \dots = \left[\sum_{i,j,k=1}^{3} \left(\frac{\overline{u'}_{L,i} \left[V_{L}^{u} \right]_{ik}}{\overline{d'}_{L,i} \left[V_{L}^{d} \right]_{ik}} \right)' i \not \! D \left(\begin{bmatrix} V_{L}^{u\dagger} \right]_{L,kj} u'_{L,j} \\ \left[V_{L}^{d\dagger} \right]_{L,kj} d'_{L,j} \right) + \dots \right]$$

 \Rightarrow expanding SU(2)_L indices:

charged flavor-non-diagonal gauge interactions

$$\propto \overline{u}_{L,i} \left[V_L^u V_L^{d\dagger} \right]_{ij} d_{L,j} \rightarrow \overline{u}_L V_{\mathsf{CKM}} d_L$$

Cabibbo-Kobayashi-Maskawa (CKM)

Flavor changes in SM → CKM matrix

determined by Yukawa-couplings

$$V_{\rm CKM} \equiv V_L^u V_L^{d\dagger}$$

CP violation realized via complex phase in $V_{\rm CKM}$

[Kobayashi/Maskawa Prog.Theor.Phys. 49 (1973) 652]

 $V_{CKM}V_{CKM}^{\dagger} = \mathbb{1}_{3\times3}$ \rightarrow in principle 18 – 9 = 9 real parameters unitary matrix:

- phase transformations of five quark fields allow to remove unphysical dof's (degrees of freedom) ► \Rightarrow only 4 real parameters
- \Rightarrow All information on guark Yukawa couplings $\in \mathbb{C}$ is given by 6 + 4 = 10 real parameters: they are the 6 guark masses and 4 CKM parameters

Testing the SM search for all flavor-changing processes predicted and not predicted by the SM and to (over-) determine CKM parameters

The CKM matrix

Cabibbo-Kobayashi-Maskawa matrix:

 $V_{\text{CKM}} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$

► unitarity $V_{CKM}^{\dagger} V_{CKM} = \mathbb{1}_{3 \times 3}$ of *i*-th and *j*-th rows/columns gives

6 Unitarity triangles (UT)

$$\Rightarrow$$
 most common *i* = 1, *j* = 3:

The CKM matrix

Cabibbo-Kobayashi-Maskawa matrix:

 $V_{\text{CKM}} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$

► unitarity $V_{CKM}^{\dagger} V_{CKM} = \mathbb{1}_{3 \times 3}$ of *i*-th and *j*-th rows/columns gives

6 Unitarity triangles (UT)

$$\Rightarrow$$
 most common *i* = 1, *j* = 3:

- there are many parametrizations of unitary 3 × 3 matrix with 4 param's
 - ⇒ convention dependence
- some things are convention independent (invariant under quark-field rephasing)

Plaquettes

 \Rightarrow m

 $J_{ij;kl} \equiv \pm \operatorname{Im}[V_{ik}V_{jl}V_{il}^*V_{jk}^*]$

with $i \neq j$ and $k \neq l$

- \Rightarrow for 3 × 3 all the $J_{ij;kl}$ are equivalent
- ⇒ a measure of CP violation

[Jarlskog PRL 55 (1985) 1039]

• Jarlskog invariant $J \equiv J_{ij;kl}$

is twice the area of unitarity triangles:

$$\textbf{`'J = 2 \times \Delta_{UT}''}$$

heasured $|J| \approx 2.8 \times 10^{-5}$

Parametrizations of the CKM matrix

Standard parametrization from PDG (Particle Data Group)

$$V_{\text{CKM}} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

 \Rightarrow uses 3 angles + 1 phase: $s_{ij} \equiv \sin \theta_{ij}$

 $(c_{ij})^2 = 1 - (s_{ij})^2$

Wolfenstein parametrization expansion in $\lambda \approx V_{us} \sim 0.2$

[Wolfenstein Phys.Rev.Lett. 51 (1983) 1945]

$$V_{\text{CKM}} \approx \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 & \lambda & \lambda^3 A(\rho - i\eta) \\ -\lambda & 1 - \frac{1}{2}\lambda^2 & \lambda^2 A \\ \lambda^3 A(1 - \rho - i\eta) & -\lambda^2 A & 1 \end{pmatrix} + \mathcal{O}\left(\lambda^4\right)$$

 \Rightarrow uses Wolfenstein parameters λ , A, ρ and η :

$$s_{12} = \lambda = \frac{|V_{us}|}{\sqrt{|V_{ud}|^2 + |V_{us}|^2}}, \quad s_{23} = A\lambda^2 = \lambda \left|\frac{V_{cb}}{V_{us}}\right|, \quad s_{13}e^{i\delta} = V_{ub}^* = A\lambda^3(\rho + i\eta) = \frac{A\lambda^3(\overline{\rho} + i\overline{\eta})\sqrt{1 - A^2\lambda^4}}{\sqrt{1 - \lambda^2}[1 - A^2\lambda^2(\overline{\rho} + i\overline{\eta})]}$$

 \Rightarrow ensures $\overline{\rho} + i\overline{\eta} = -(V_{ud}V_{ub}^*)/(V_{cd}V_{cb}^*)$ independent of phase convention

 $\Rightarrow \mathsf{CKM} \text{ in terms of } \lambda, \mathsf{A}, \overline{\rho} \text{ and } \overline{\eta} \text{ unitary to all orders in } \lambda: \quad \overline{\rho} = \rho \left(1 - \lambda^2/2 + \ldots\right), \quad \overline{\eta} = \eta \left(1 - \lambda^2/2 + \ldots\right)$

Now we know what "Flavor" means in the SM

ſ

What flavor transitions does the SM predict?

Tree (CC) versus Loops (FCNC)

Tree (CC) versus Loops (FCNC)

depend on SD-parameters \Rightarrow in SM: CKM and heavy masses: m_W, m_Z, m_t

- ⇒ extract in measurement and calculate in specific UV completions
- ▶ overall rescaling factor Fermi's constant $G_F \sim \text{GeV}^{-2}$, measured in $\mu \rightarrow e\bar{\nu}_e \nu_\mu$

Overview of decay channels for CKM determination

Also many strategies with hadronic *B* decays $B \rightarrow M_1 M_2$

So far "CKM-picture" of SM works

\Rightarrow fit of CKM-Parameters ...

CKM matrix in terms of 4 Wolfenstein parameters

 $\lambda \sim 0.22, \quad A, \quad \overline{\rho}, \quad \overline{\eta}$

 \Rightarrow nowadays a sophisticated fit:

"combine and overconstrain"

!!! numerous b-physics measurements

[experimental input from CKMfitter homepage]

$ \begin{array}{l} V_{ud} (\mathrm{nuclei}) \\ V_{ud} E^{K \to \pi}(0) \\ V_{cd} (W \wedge 1) \\ V_{cd} (W \to c\bar{s}) \\ V_{ub} (\mathrm{semileptonic}) \\ V_{ub} (\mathrm{semileptonic}) \\ \mathcal{B}(\Lambda_p \to p\mu^-\bar{\nu}_{\mu})_{q^2 > 15} \mathcal{B}(\Lambda_p \to \Lambda_c \mu^-\bar{\nu}_{\mu})_{q^2 > 7} \end{array} $	$\begin{array}{c} 0.97425\pm0\pm0.00022\\ 0.2163\pm0.0005\\ 0.230\pm0.011\\ 0.94^{+0.32}\pm0.13\\ (4.01\pm0.08\pm0.22)\times10^{-3}\\ (41.00\pm0.03\pm0.74)\times10^{-3}\\ (1.00\pm0.09)\times10^{-2} \end{array}$
$ \begin{array}{l} \mathcal{B}(B^- \to \tau^- \overline{\nu}_\tau) \\ \mathcal{B}(D_s^- \to \mu^- \overline{\nu}_\tau) \\ \mathcal{B}(D_\tau^- \to \tau^- \overline{\nu}_\tau) \\ \mathcal{B}(D^- \to \mu^- \overline{\nu}_\tau) \\ \mathcal{B}(K^- \to \mu^- \overline{\nu}_\mu) / \mathcal{B}(\pi^- \to \mu^- \overline{\nu}_\mu) \\ \mathcal{B}(\tau^- \to K^- \overline{\nu}_\tau) / \mathcal{B}(\tau^- \to \pi^- \overline{\nu}_\tau) \end{array} $	$\begin{array}{l} (1.08\pm0.21)\times10^{-4}\\ (5.57\pm0.24)\times10^{-3}\\ (5.55\pm0.24)\times10^{-2}\\ (3.74\pm0.17)\times10^{-4}\\ (1.581\pm0.008)\times10^{-5}\\ 0.6355\pm0.0011\\ (0.6955\pm0.0096)\times10^{-2}\\ 1.3365\pm0.0032\\ (6.431\pm0.094)\times10^{-2} \end{array}$
$\mathcal{B}(B_s \to \mu \mu)$	$(2.8^{+0.7}_{-0.6}) \times 10^{-9}$
$ \begin{array}{c} V_{cd} f_+^{D\to\pi}(0) \\ V_{cs} f_+^{D\to K}(0) \end{array} \end{array} $	$\begin{array}{c} 0.148 \pm 0.004 \\ 0.712 \pm 0.007 \end{array}$
$\begin{array}{l} \varepsilon_K \\ \Delta m_d \\ \Delta m_s \\ \sin(2\beta)_{[cc]} \\ (\phi_s)_{[b-cis]} \end{array}$	$\begin{array}{c} (2.228\pm 0.011)\times 10^{-3}\\ (0.510\pm 0.003)\ \mathrm{ps^{-1}}\\ (17.757\pm 0.021)\ \mathrm{ps^{-1}}\\ 0.691\pm 0.017\\ -0.015\pm 0.035 \end{array}$
$ \begin{array}{c} \overbrace{S_{\sigma \tau}^{+-}, \ C_{\sigma \tau}^{+-}, \ S_{\rho \rho}^{00}, \mathcal{B}_{\pi \pi} \text{ all charges}} \\ S_{\rho \rho , L}^{+-}, \ C_{\rho - L}^{+-}, \ S_{\rho \rho}^{00}, \ C_{\rho \rho}^{00}, \mathcal{B}_{\rho \rho , L} \text{ all charges}} \\ B^{0} \rightarrow (\rho \pi)^{0} \rightarrow 3\pi \end{array} $	Inputs to isospin analysis Inputs to isospin analysis Time-dependent Dalitz analysis
$ \begin{array}{c} B^- \to D^{(*)} K^{(*)-} \\ B^- \to D^{(*)} K^{(*)-} \\ B^- \to D^{(*)} K^{(*)-} \end{array} $	Inputs to GLW analysis Inputs to ADS analysis GGSZ Dalitz analysis 17 / 32

So far "CKM-picture" of SM works

More on CKM fits

http://ckmfitter.in2p3.fr/www/html/ckm_main.html
http://www.utfit.org/UTfit/

Hierarchies in masses and CKM

The determinations in framework of SM show huge hierarchies that can not be explained in the SM

- masses within each generation
- CKM matrix

 $\lambda \approx 0.225$ Cabibbo angle

	(1	λ	$\lambda^{3}A$
V _{CKM} ≈	$-\lambda$	1	$\lambda^2 A$
	$\lambda^3 A$	$-\lambda^2 A$	1)

▶ in down-type FCNCs *top*-, *charm*- and *up*-contributions

$$b \to s$$

$$V_{tb}V_{ts}^* \approx -V_{cb}V_{cs}^* \sim \lambda^2 A$$

$$V_{ub}V_{us}^* \sim \lambda^4 A$$

$$\begin{array}{c} b \rightarrow d \\ \hline s \rightarrow d \\ \hline s \rightarrow d \\ \end{array} \qquad \qquad V_{tb} V_{td}^* \sim V_{cb} V_{cd}^* \sim V_{ub} V_{ud}^* \sim \lambda^3 A \\ \hline v_{cs} V_{cd}^* \approx -V_{us} V_{ud}^* \sim \lambda \\ V_{tc} V_{td}^* \sim \lambda^5 A \end{array}$$

⇒ in $s \rightarrow d$ top part enhanced by m_t^2 , but CKM-suppressed $\lambda^4 A \approx 0.0021$ versus $(m_c/m_W)^2 \approx 0.0003$

 \Rightarrow CKM suppresses dim-6, such that dim-8 phenomenologically not negligible in ΔM_K , ε_K , $K^+ \rightarrow \pi + \nu \overline{\nu}$

18/32

Effective theories: Example muon decay

Fermi theory for $\mu \rightarrow e \overline{\nu}_e \nu_\mu$

III Expansion in the μ-rest frame $q^2 \ll m_W^2$ ($m_\mu \approx 0.1 \text{ GeV}$ and $m_W \approx 80 \text{ GeV}$) ⇒ this corresponds to an **OPE (operator product expansion)**, keeping only dim-6

Fermi theory for $\mu \rightarrow e \overline{\nu}_e \nu_\mu$

n SM
$$\mu^- \rightarrow e^- \overline{\nu}_e \nu_\mu$$
 at tree-level
 $\mu^- \rightarrow e^- \overline{\nu}_e \nu_\mu$ at tree-level
 $i\mathcal{A}_{SM} = i \left(-i\frac{g_2}{\sqrt{2}}\right)^2 \left[\overline{u}(\rho_{\nu\mu})\gamma_\mu P_L u(p_\mu)\right] \frac{-ig^{\mu\nu}}{q^2 - m_W^2} \left[\overline{u}(\rho_e)\gamma_\nu P_L v(\rho_{\nu_e})\right]$
 $\approx \frac{g_2^2}{2m_W^2} \left[\overline{\nu}_\mu \gamma_\mu P_L \mu\right] \left[\overline{e} \gamma^\mu P_L \nu_e\right] + \mathcal{O}\left(m_\mu^2 / m_W^2\right) \qquad P_{L(R)} \equiv \frac{1}{2}(1 \mp \gamma_5)$

III Expansion in the μ-rest frame $q^2 \ll m_W^2$ ($m_\mu \approx 0.1 \text{ GeV}$ and $m_W \approx 80 \text{ GeV}$) ⇒ this corresponds to an **OPE (operator product expansion)**, keeping only dim-6

Can reproduce with an Effective Theory (as Fermi anticipated)

$$\mathcal{L}_{\mathsf{EFT}} = -\frac{4}{\sqrt{2}} C_{\mathsf{VLL}} Q_{\mathsf{VLL}} \qquad Q_{\mathsf{VLL}} \equiv [\overline{\nu}_{\mu} \gamma_{\mu} P_{\mathsf{L}} \mu] [\overline{\mathbf{e}} \gamma^{\mu} P_{\mathsf{L}} \nu_{\mathsf{e}}]$$

- ► C_{VLL} = Wilson coefficient ⇒ effective coupling constant
- Q_{VLL} = 4-Fermi Operator (contact interaction)

$$i\mathcal{A}_{\mathsf{EFT}} = i\left(-i\frac{4}{\sqrt{2}}C_{\mathsf{VLL}}\right)\left[\overline{\nu}_{\mu}\gamma_{\mu}P_{L}\mu\right]\left[\overline{e}\gamma^{\mu}P_{L}\nu_{e}\right] = \frac{4C_{\mathsf{VLL}}}{\sqrt{2}}Q_{\mathsf{VLL}}$$

Fermi theory for $\mu \rightarrow e \overline{\nu}_e \nu_\mu$

$$\begin{array}{l} \ln \mathrm{SM} \ \mu^{-} \rightarrow e^{-} \overline{\nu}_{e} \nu_{\mu} \ \text{at tree-level} \\ \text{via } W^{\pm} \text{-boson exchange} \\ i\mathcal{A}_{\mathrm{SM}} \ = \ i \left(-i \frac{g_{2}}{\sqrt{2}} \right)^{2} \left[\overline{u}(p_{\nu_{\mu}}) \gamma_{\mu} P_{L} u(p_{\mu}) \right] \ \frac{-i g^{\mu\nu}}{q^{2} - m_{W}^{2}} \left[\overline{u}(p_{e}) \gamma_{\nu} P_{L} v(p_{\nu_{e}}) \right] \\ \approx \ \frac{g_{2}^{2}}{2m_{W}^{2}} \left[\overline{\nu}_{\mu} \gamma_{\mu} P_{L} \mu \right] \left[\overline{e} \gamma^{\mu} P_{L} \nu_{e} \right] + \mathcal{O} \left(m_{\mu}^{2} / m_{W}^{2} \right) \\ P_{L(R)} \equiv \frac{1}{2} (1 \mp \gamma_{5}) \end{array}$$

III Expansion in the μ-rest frame $q^2 \ll m_W^2$ ($m_\mu \approx 0.1 \text{ GeV}$ and $m_W \approx 80 \text{ GeV}$) ⇒ this corresponds to an **OPE (operator product expansion)**, keeping only dim-6

There is a full theory (the SM) and an effective theory that reproduces it for $q^2 \ll m_W^2$

Determine C_{VLL} from Matching both amplitudes (due to renormalization beyond tree-level at scale $\mu_W \sim m_W$)

$$\mathcal{A}_{\text{SM}} \stackrel{!}{=} \mathcal{A}_{\text{EFT}} \qquad \Rightarrow \qquad \qquad \mathcal{C}_{VLL}^{\text{SM}} = \frac{\sqrt{2} g_2^2}{8 m_W^2} = \frac{1}{\sqrt{2} v^2}$$

!!! $C_{VLL} \sim \text{GeV}^{-2}$ carries information on full theory

Fermi's constant \mathcal{G}_F from μ -lifetime

Can determine C_{VLL} from precise measurement of $\tau_{\mu} = (2.1969811 \pm 0.0000022) \mu s$

Calculate μ -lifetime from A_{EFT} , neglecting QED corrections from photons

$$\frac{1}{\tau_{\mu}} \equiv \Gamma_{\mu} = \frac{1}{2m_{\mu}} \sum d\Pi_{3} \left| \mathcal{A}_{\text{EFT}} \mathcal{A}_{\text{EFT}}^{\dagger} \right|^{2}$$
$$= \frac{m_{\mu}^{5}}{192\pi^{3}} |C_{VLL}|^{2} \left[1 + \Delta q^{(0)}(x) \right], \qquad x = \frac{m_{e}^{2}}{m_{\mu}^{2}} \sim 2 \cdot 10^{-5}$$

• $\Delta q^{(0)}(x)$ tiny phase-space corrections from e^- mass (m_{ν_e} and $m_{\nu_{\mu}}$ neglected)

Fermi's constant \mathcal{G}_F from μ -lifetime

Can determine C_{VLL} from precise measurement of $\tau_{\mu} = (2.1969811 \pm 0.0000022) \mu s$

Calculate μ -lifetime from A_{EFT} , with QED corrections

$$\frac{1}{\tau_{\mu}} \equiv \Gamma_{\mu} = \frac{1}{2m_{\mu}} \sum d\Pi_{3} \left| \mathcal{A}_{\mathsf{EFT}} \mathcal{A}_{\mathsf{EFT}}^{\dagger} \right|^{2} + \frac{1}{m_{\mu}} \sum d\Pi_{4} \dots \text{ real emission } + \dots$$
$$= \frac{m_{\mu}^{5}}{192\pi^{3}} \left[1 + \Delta q(\alpha_{e}, x) \right] |C_{VLL}|^{2}$$

with $\Delta q(\alpha_e, x) = \sum_{n=0}^{\infty} \left(\frac{\alpha_e}{\pi}\right)^n \Delta q^{(n)}(x)$, which depends on α_e and $x \neq 0$

 △ $q^{(1)}(x) = -1.8076$ [Kinoshita/Sirlin Phys. Rev. 113 (1959) 1652, Nir, PLB221 (1989) 184]
 △ $q^{(2)}(x) = (6.700 \pm 0.002)$ [Ritbergen/Stuart hep-ph/9904240]

Fermi's constant \mathcal{G}_F from μ -lifetime

Can determine C_{VLL} from precise measurement of $\tau_{\mu} = (2.1969811 \pm 0.0000022) \mu s$

Calculate μ -lifetime from A_{EFT} , with QED corrections

$$\frac{1}{\tau_{\mu}} \equiv \Gamma_{\mu} = \frac{1}{2m_{\mu}} \sum d\Pi_{3} \left| \mathcal{A}_{EFT} \mathcal{A}_{EFT}^{\dagger} \right|^{2} + \frac{1}{m_{\mu}} \sum d\Pi_{4} \dots \text{ real emission } + \dots$$

$$= \frac{m_{\mu}^{5}}{192\pi^{3}} \left[1 + \Delta q(\alpha_{e}, x) \right] \left| \mathcal{C}_{VLL} \right|^{2}$$
with $\Delta q(\alpha_{e}, x) = \sum_{n=0}^{\infty} \left(\frac{\alpha_{e}}{\pi} \right)^{n} \Delta q^{(n)}(x)$, which depends on α_{e} and $X_{V} \approx 0$

$$\Rightarrow \Delta q^{(1)}(x) = -1.8076 \qquad \text{[Kinoshita/Sirlin Phys. Rev. 113 (1951) 1652, Nir, PLB221 (1989) 184]}$$

$$\Rightarrow \Delta q^{(2)}(x) = (6.700 \pm 0.002) \qquad \text{[Rithergen/Stuart hep-ph/9904240]}$$

The EFT allows to conveniently separate QED dynamics from C_{VLL} into Δq

- !!! QED renormalization of Δq requires to choose scale $\mu \sim m_{\mu}$ to avoid large log's ln μ/m_{μ}
- \Rightarrow Formally $C_{VLL}(\mu)$ at low-energy scale, but trivial evolution to scale $\mu_W \sim m_W$

 \Rightarrow $G_F \equiv C_{VLL}$ is also called Fermi's constant, and it is best defined by -

one finds from τ_{μ} that

$$\mathcal{G}_{F} = |C_{VLL}| = 1.1663787(6) \cdot 10^{-5} \, \text{GeV}^{-2}$$

Fermi's constant in the SM

Determination of C_{VLL} can be used to determine short-distance parameters of SM:

Tree-level matching of the SM:

I: $C_{VLL}^{SM} = \frac{\sqrt{2}g_2^2}{8m_W^2} = \frac{1}{\sqrt{2}v^2} \Rightarrow v = 246.2 \,\text{GeV}$ $C_{VLL}^{SM} = \frac{\sqrt{2}g_2^2}{8m_W^2} \Big[1 + \Delta r(\alpha_e, m_W, m_Z, m_l, m_H) \Big]$

Beyond tree-level matching:

▶ radiative corrections to tree-level
$$W^{\pm}$$
 exchange in $\Delta r(\alpha_e, m_W, m_Z, m_t, m_H)$

- μ-lifetime important measurement to fix SM parameters like m_W, m_Z, m_H in electroweak-precision fits of SM
- ▶ if New Physics (NP) only contributes to $C_{VLL} = C_{VLL}^{SM} + C_{VLL}^{NP}$
 - \Rightarrow constraints from muon-liftime apply to sum $\mathcal{G}_F = |C_{VLL}^{SM} + C_{VLL}^{NP}|$
 - $\Rightarrow C_{VLL}^{NP}$ depends on fundamental parameters of NP scenario

Fermi's constant beyond the SM

Let's assume only left-handed ν 's \Rightarrow then only one additonal $\Delta L = 0$ operator

leads to modification of μ -lifetime

$$\frac{1}{\tau_{\mu}} = \frac{m_{\mu}^{5}}{192\pi^{3}} \left[1 + \Delta q^{(0)}(x) \right] \underbrace{\left(|C_{VLL}|^{2} + \frac{|C_{SRL}|^{2}}{4} + \frac{18}{5} \frac{m_{\theta}}{m_{\mu}} \operatorname{Re}\left(C_{VLL}C_{SRL}^{*}\right) \times \left[1 + \mathcal{O}(x) \right] \right)}_{\equiv \left(\mathcal{G}_{F}^{(0)}\right)^{2}}$$

- ► $\mathcal{G}_{F}^{(0)}$ denotes that only $\Delta q^{(0)}(x)$ is used when additional Q_{SRL} included ⇒ theory less precisely known compared to only Q_{VLL}
- one observable not enough to fix two complex-valued numbers
 - \Rightarrow measure other observables in $d^2\Gamma/(dE_e \ d\cos \vartheta) \rightarrow$ Michel parameters
- ▶ in SMEFT ($v \ll \Lambda$): $C_{VLL}^{SM} \sim 1/v^2$ and additional suppression of v^2/Λ^2 for C_{VLL}^{NP} and C_{SRL} ⇒ in τ_{μ} the $|C_{SRL}|^2 \sim v^4/\Lambda^4$ compared to $v^2/\Lambda^2 \rightarrow$ negligible ⇒ one might neglect Re $(C_{VLL}C_{SRL}^*) \sim v^2/\Lambda^2$, because helicity-suppressed

Michel parameters

More observables to discriminate SM and NP effects ⇒ measure angular distribution

$$\frac{d^2\Gamma}{dx\,d\cos\vartheta} \propto x^2 \left\{ 3(1-x) + \frac{2\rho}{3}(4x-3) + 3\eta \,\frac{x_0}{x}(1-x) \pm P_\mu \,\xi\,\cos\vartheta \left[1-x + \frac{2\delta}{3}(4x-3)\right] \right\}$$

- in restframe of muon & electron polarisation insensitive detector
- maximum electron energy $E_e^{max} = (m_{\mu}^2 + m_e^2)/(2m_{\mu})$ reduced electron energy $x = E_e/E_e^{max}$ and $x_0 = m_e/E_e^{max}$
- ϑ is direction of electron w.r.t. muon polarization \vec{P}_{μ}
- degree of muon polarisation $P_{\mu} = |\vec{P}_{\mu}|$

Angular observables ρ , η , ξ , δ known as Michel parameters

[Michel ProcPhysSocA63 (1950) 514, Bouchiat/Michel PR106 (1957) 170, Kinoshita/Sirlin (1957) PR107 593 & PR108 844]

in SM: $\rho = \xi \delta = 3/4$, $\xi = 1$, $\eta = 0$

⇒ measurements with electron polarisation depend on further Michel parameters

Michel parameters

More observables to discriminate SM and NP effects ⇒ measure angular distribution

$$\frac{d^2\Gamma}{dx\,d\cos\vartheta} \propto x^2 \left\{ 3(1-x) + \frac{2\rho}{3}(4x-3) + 3\eta \,\frac{x_0}{x}(1-x) \pm P_\mu \,\xi\,\cos\vartheta \left[1-x + \frac{2\delta}{3}(4x-3)\right] \right\}$$

- in restframe of muon & electron polarisation insensitive detector
- maximum electron energy $E_e^{max} = (m_{\mu}^2 + m_e^2)/(2m_{\mu})$ reduced electron energy $x = E_e/E_e^{max}$ and $x_0 = m_e/E_e^{max}$
- ϑ is direction of electron w.r.t. muon polarization \vec{P}_{μ}
- degree of muon polarisation $P_{\mu} = |\vec{P}_{\mu}|$

Angular observables ρ , η , ξ , δ known as Michel parameters

[Michel ProcPhysSocA63 (1950) 514, Bouchiat/Michel PR106 (1957) 170, Kinoshita/Sirlin (1957) PR107 593 & PR108 844]

in SM: $\rho = \xi \delta = 3/4$, $\xi = 1$, $\eta = 0$

⇒ measurements with electron polarisation depend on further Michel parameters

III SM particularly simple \Rightarrow few parameters and correlations between many observables

- few parameters \Rightarrow theory control needed only for few observables for good determinations ►
- correlations \Rightarrow allow stringent tests of SM
- more parameters/operators in new physics scenarios lead to less predictivity
 - ⇒ less stringent tests possible and more measurements needed

Effective theory for $\triangle B = 1$ decays

B-Hadron decays are a Multi-scale problem ...

... with hierarchical interaction scales

electroweak IA	>>>	ext. mom'a in <i>B</i> restframe	>>>	QCD-bound state effects
<i>m_W</i> ≈ 80 GeV <i>m_Z</i> ≈ 91 GeV	<i>m_B</i> ≈ 5 GeV			$\Lambda_{QCD} \approx 0.5 \text{ GeV}$

B-Hadron decays are a Multi-scale problem ...

... with hierarchical interaction scales

B-Hadron decays are a Multi-scale problem ...

... with hierarchical interaction scales

 C_i = Wilson coefficients contain short-dist. pmr's (heavy masses m_t ,... – CKM factored out) and leading logarithmic QCD-corrections to all orders in α_s

 \Rightarrow in SM known up to NNLO QCD and NLO EW/QED

Q_i = dim-6 operators flavor-changing coupling of light quarks

Tree-level = "current-current" op's in the SM

SM = Full theory: in *b*-rest frame external momenta $q^2 \sim m_b^2 \ll m_W^2 \Rightarrow$ expand *W*-propagator

Tree-level = "current-current" op's in the SM

SM = Full theory: in *b*-rest frame external momenta $q^2 \sim m_b^2 \ll m_W^2 \Rightarrow$ expand *W*-propagator

$$i\mathcal{A}_{\text{SM}} = -\frac{g_2^2}{2} V_{cb} V_{cs}^* \frac{1}{q^2 - m_W^2} [\bar{s}\gamma_\mu P_L c] [\bar{c}\gamma^\mu P_L b]$$

$$\stackrel{q^2 \ll m_W^2}{\approx} \frac{4G_F}{\sqrt{2}} V_{cb} V_{cs}^* [\bar{s}\gamma_\mu P_L c] [\bar{c}\gamma^\mu P_L b] + \mathcal{O}\left(\frac{m_b^2}{m_W^2}\right)$$

The same result can be obtained from an EFT Lagrangian

Tree-level = "current-current" op's in the SM

SM = Full theory: in *b*-rest frame external momenta $q^2 \sim m_b^2 \ll m_W^2 \Rightarrow$ expand *W*-propagator

$$i\mathcal{A}_{\rm SM} = -\frac{g_2^2}{2} V_{cb} V_{cs}^* \frac{1}{q^2 - m_W^2} [\bar{s}\gamma_\mu P_L c] [\bar{c}\gamma^\mu P_L b]$$

$$\stackrel{q^2 \ll m_W^2}{\approx} \frac{4 \mathcal{G}_F}{\sqrt{2}} V_{cb} V_{cs}^* [\bar{s}\gamma_\mu P_L c] [\bar{c}\gamma^\mu P_L b] + \mathcal{O}\left(\frac{m_b^2}{m_W^2}\right)$$

The same result can be obtained from an EFT Lagrangian

$$\mathcal{L}_{\text{EFT}} = c_2 Q_2 = \frac{4 \mathcal{G}_F}{\sqrt{2}} V_{cb} V_{cs}^* C_2 Q_2 \qquad Q_2 \equiv [\overline{s} \gamma_\mu P_L c] [\overline{c} \gamma^\mu P_L b]$$
$$i \mathcal{A}_{\text{EFT}} = -c_2 [\overline{s} \gamma_\mu P_L c] [\overline{c} \gamma^\mu P_L b]$$

Requiring equality of amplitudes (Greens funct's) = Matching

$$\mathcal{A}_{\text{SM}} \stackrel{!}{=} \mathcal{A}_{\text{EFT}} \implies C_2 = -\frac{4\mathcal{G}_F}{\sqrt{2}} V_{cb} V_{cs}^* \qquad (\text{or } C_2 = -1)$$
$$V_{cb} V_{cs}^* \approx -V_{tb} V_{ts}^* + \dots \implies C_2 = +\frac{4\mathcal{G}_F}{\sqrt{2}} V_{tb} V_{ts}^* \qquad (\text{or } C_2 = +1)$$
used here $V_{ub} V_{us}^* \ll V_{tb} V_{us}^* \ll V_{cb} V_{cs}^*$

Matching at higher orders

Benefit of EFT's \Rightarrow can resum large log's to all orders in perturbation theory (PT)

$$\alpha_{s}^{n} \ln^{n} \left(\frac{m_{b}}{m_{W}}\right) = \alpha_{s}^{n} \left[\ln \left(\frac{m_{b}}{\mu_{0}}\right) + \ln \left(\frac{\mu_{0}}{m_{W}}\right) \right]^{n}, \qquad \ln \left(\frac{m_{b}}{m_{W}}\right) \approx -2.8$$
Matching
$$C_{i}(\mu_{0}, m_{W}) = C_{i}^{(0)} + \frac{\alpha_{s}}{4\pi} C_{i}^{(1)} + \dots \text{ order by order } \mu_{0} = \text{factorisation scale}$$

$$\underbrace{I_{i}}_{u,c} = \frac{\alpha_{s}}{4\pi} C^{(1)} \times \underbrace{I_{i}}_{u,c} + C^{(0)} \times \underbrace{I_{i}}_{u$$

• generates additional operator $Q_1 \equiv [\bar{s}_{\alpha} \gamma_{\mu} P_L c_{\beta}] [\bar{c}_{\beta} \gamma^{\mu} P_L b_{\alpha}]$

- $\alpha,\ \beta = {\rm color\ indices}$
- allows to separate log's of full theory side into Wilson coefficients $C^{(1)}$ and . .
- ▶ 1-loop matrix element ∝ C⁽⁰⁾ of EFT has same ln(m_b/µ₀) since EFT should reproduce IR of full theory (otherwise wrong EFT)
- ▶ $C^{(1)}(\mu_0)$ can be determined perturbatively only with choice: $\mu_0 \sim m_W$ otherwise large log's will enter $C^{(1)}(\mu_0)$

Matching at higher orders

Benefit of EFT's \Rightarrow can resum large log's to all orders in perturbation theory (PT)

• generates additional operator $Q_1 \equiv [\bar{s}_{\alpha} \gamma_{\mu} P_L c_{\beta}] [\bar{c}_{\beta} \gamma^{\mu} P_L b_{\alpha}]$

 $\alpha, \beta = \text{color indices}$

- ▶ allows to separate log's of full theory side into Wilson coefficients C⁽¹⁾ and ...
- ▶ 1-loop matrix element ∝ C⁽⁰⁾ of EFT has same ln(m_b/µ₀) since EFT should reproduce IR of full theory (otherwise wrong EFT)
- C⁽¹⁾(μ₀) can be determined perturbatively only with choice: μ₀ ~ m_W otherwise large log's will enter C⁽¹⁾(μ₀)

Matching at higher orders

Benefit of EFT's \Rightarrow can resum large log's to all orders in perturbation theory (PT)

• generates additional operator $Q_1 \equiv [\bar{s}_{\alpha} \gamma_{\mu} P_L c_{\beta}] [\bar{c}_{\beta} \gamma^{\mu} P_L b_{\alpha}]$

 α, β = color indices

- ▶ allows to separate log's of full theory side into Wilson coefficients C⁽¹⁾ and ...
- ▶ 1-loop matrix element ∝ C⁽⁰⁾ of EFT has same ln(m_b/µ₀) since EFT should reproduce IR of full theory (otherwise wrong EFT)
- ▶ $C^{(1)}(\mu_0)$ can be determined perturbatively only with choice: $\mu_0 \sim m_W$ otherwise large log's will enter $C^{(1)}(\mu_0)$

Matching determines Wilson coefficients at high scale $\mu_0 \sim m_W$

Renormalization Group (RG) equation

- ▶ main purpose of RG eq.: relating couplings (Wilson coefficients) at different scales
- effect of RG eq.: resummation of large log's to all orders in coupling (α_s or α_e)

RG equation derived from requirement that "bare" (effective) couplings are µ-independent

 $\mu \frac{d}{d\mu} C_i(\mu) = \left[\gamma^T(\mu)\right]_{ij} C_j(\mu) \qquad \gamma_{ij} = \text{anomalous dimension matrix (=ADM)}$

Formal solution of system of coupled 1st order ordinary differential equations (ODE)

 $C_{i}(\mu) = [U(\mu, \mu_{0})]_{ij} C_{j}(\mu_{0}), \qquad [U(\mu, \mu_{0})]_{ij} = T_{\mu'} \exp\left[\int_{\mu_{0}}^{\mu} \gamma^{T}(\mu') d\mu'\right]$

Renormalization Group (RG) equation

- main purpose of RG eq.: relating couplings (Wilson coefficients) at different scales
- effect of RG eq.: resummation of large log's to all orders in coupling (α_s or α_e)

RG equation derived from requirement that "bare" (effective) couplings are µ-independent

 $\mu \frac{d}{d\mu} C_i(\mu) = \left[\gamma^T(\mu) \right]_{ij} C_j(\mu) \qquad \gamma_{ij} = \text{anomalous dimension matrix (=ADM)}$

Formal solution of system of coupled 1st order ordinary differential equations (ODE)

$$C_{i}(\mu) = [U(\mu, \mu_{0})]_{ij} C_{j}(\mu_{0}), \qquad [U(\mu, \mu_{0})]_{ij} = T_{\mu'} \exp\left[\int_{\mu_{0}}^{\mu} \gamma^{T}(\mu') d\mu'\right]$$

In case of two operators Q_1 and Q_2 , leading order RG equation

$$\mu \sim m_b, \quad \mu_0 \sim m_W, \quad \eta \equiv \alpha_s(\mu_0)/\alpha_s(\mu) \approx 0.55, \quad \eta_{\pm} \equiv (\eta^{6/23} \pm \eta^{-12/23})/2$$

$$C_1(\mu) = \eta_+ C_1(\mu_0) + \eta_- C_2(\mu_0) \approx +1.11C_1(\mu_0) - 0.26C_2(\mu_0)$$

$$C_2(\mu) = \eta_- C_1(\mu_0) + \eta_+ C_2(\mu_0) \approx -0.26C_1(\mu_0) + 1.11C_2(\mu_0)$$
SM matching:
$$C_1^{SM}(\mu_0) = 0 + \mathcal{O}(\alpha_s) \quad \text{and} \quad C_2^{SM}(\mu_0) = 1 + \mathcal{O}(\alpha_s)$$

$$\Rightarrow \text{ non-zero } C_1 \text{ at scales } \mu < \mu_0 \text{ from "Mixing of } Q_2 \text{ into } Q_1$$
"

Examples of mixing of $Q_{1,2}$ into ...

QCD penguin operators: $b \rightarrow s q \overline{q}$

$$\begin{aligned} Q_{3(5)} &= \left[\overline{s}\gamma_{\mu}P_{L}b\right]\sum_{q}\left[\overline{q}\gamma^{\mu}P_{L(R)}q\right] \\ Q_{4(6)} &= \left[\overline{s}_{\alpha}\gamma_{\mu}P_{L}b_{\beta}\right]\sum_{q}\left[\overline{q}_{\beta}\gamma^{\mu}P_{L(R)}q_{\alpha}\right] \end{aligned}$$

Men osm

()

$$b \xrightarrow{C_2} s$$

$$\mu \sim m_b, \quad \mu_0 \sim m_W, \quad \text{using } C_{3,4,5,6}^{\circ}(\mu_0)$$

$$C_3(\mu) = +0.0010 \left[1 - 1.5 C_1(\mu_0) + 12.6 C_2(\mu_0) \right]$$

$$C_4(\mu) = -0.0017 \left[1 - 2.0 C_1(\mu_0) + 16.0 C_2(\mu_0) \right]$$

$$C_5(\mu) = +0.0004 \left[1 - 1.5 C_1(\mu_0) + 19.2 C_2(\mu_0) \right]$$

$$C_6(\mu) = -0.0027 \left[1 - 1.5 C_1(\mu_0) + 12.6 C_2(\mu_0) \right]$$

at
$$\mu_0$$
: $-3 C_{3,5}^{SM} = C_{4,6}^{SM} = \frac{\alpha_s(\mu_0)}{8\pi} \widetilde{E}_0(x_t)$ and

These operators are most relevant for $B \rightarrow K + (\pi, \rho, ...)$ or $B \rightarrow K^* + (\pi, \rho, ...)$

- 1 is contribution from $C_{3,4,5,6}^{\text{SM}}(\mu_0)$
- ▶ because C₂SM(µ₀) = 1, main contr'n from mixing with Q₂

$$\blacktriangleright C_1^{\mathrm{SM}}(\mu_0) = \mathcal{O}(\alpha_s) \ll C_2^{\mathrm{SM}}(\mu_0)$$

 $\widetilde{E}_0(x_t) \approx -0.39$

Examples of mixing of $Q_{1,2}$ into ...

Electro- and chromo-magnetic dipole operators: $b \rightarrow s\gamma$ and $b \rightarrow sg$

$$Q_{7\gamma} = \frac{e}{(4\pi)^2} m_b [\bar{s}\sigma^{\mu\nu} P_R b] F_{\mu\nu} \qquad Q_{8g} = \frac{g_s}{(4\pi)^2} m_b [\bar{s}_\alpha \sigma^{\mu\nu} P_R \mathbf{T}^a_{\alpha\beta} b_\beta] G^a_{\mu\nu}$$

$$\mu \sim m_b, \quad \mu_0 \sim m_W, \quad \text{using} \quad C^{\text{SM}}_{7\gamma}(\mu_0) = -0.19 \quad \text{and} \quad C^{\text{SM}}_{8g}(\mu_0) = -0.05$$

$$C_{7\gamma}(\mu) \approx -0.13 + 0.02 C_1(\mu_0) - 0.19 C_2(\mu_0) \quad \stackrel{\text{SM}}{=} -0.32$$

$$C_{8g}(\mu) \approx -0.03 + 0.10 C_1(\mu_0) - 0.09 C_2(\mu_0) \quad \stackrel{\text{SM}}{=} -0.12$$

Examples of mixing of $Q_{1,2}$ into ...

Electro- and chromo-magnetic dipole operators: $b \rightarrow s\gamma$ and $b \rightarrow sg$

$$Q_{7\gamma} = \frac{e}{(4\pi)^2} m_b [\bar{s}\sigma^{\mu\nu} P_B b] F_{\mu\nu} \qquad Q_{8g} = \frac{g_s}{(4\pi)^2} m_b [\bar{s}_\alpha \sigma^{\mu\nu} P_B \mathbf{T}^a_{\alpha\beta} b_\beta] G^a_{\mu\nu}$$

$$\mu \sim m_b, \quad \mu_0 \sim m_W, \quad \text{using} \quad C^{\text{SM}}_{7\gamma}(\mu_0) = -0.19 \quad \text{and} \quad C^{\text{SM}}_{8g}(\mu_0) = -0.05$$

$$C_{7\gamma}(\mu) \approx -0.13 + 0.02 C_1(\mu_0) - 0.19 C_2(\mu_0) \quad \stackrel{\text{SM}}{=} \quad -0.32$$

$$C_{8g}(\mu) \approx -0.03 + 0.10 C_1(\mu_0) - 0.09 C_2(\mu_0) \quad \stackrel{\text{SM}}{=} \quad -0.12$$

 \Rightarrow a 10 % change in $C_2^{\rm NP}(\mu_0) \approx$ 0.1 w.r.t. SM gives

- 6% effect on C_{7γ}(μ)
- ▶ 12% on $Br(B \to X_s \gamma) \propto |C_7(\mu)|^2$

example of strong "indirect constraints" on $C_2(\mu_0)$ from $Br(B \rightarrow X_s \gamma)$

Examples of mixing of $Q_{1,2}$ into ... Semileptonic: $b \rightarrow s \ell^+ \ell^ Q_9 = [\bar{s}\gamma_\mu P_L b] \sum_{\ell} [\bar{\ell}\gamma^\mu \ell]$

In SM (μ = 5 GeV, μ ₀ = 160 GeV)

 $\widetilde{C}_{1}^{(0)}(\mu_{0}) = 0, \quad \widetilde{C}_{2}^{(0)}(\mu_{0}) = 1, \quad \widetilde{C}_{1}^{(1)}(\mu_{0}) = 23.3, \quad \widetilde{C}_{4}^{(1)}(\mu_{0}) = 0.5, \quad C_{9}^{(1)}(\mu_{0}) = 1.5$

The LL + NLL piece

 $C_{9}(\mu) = 4.50 \ \widetilde{C}_{1}^{(0)}(\mu_{0}) + 1.89 \ \widetilde{C}_{2}^{(0)}(\mu_{0}) + 0.04 \ \widetilde{C}_{1}^{(1)}(\mu_{0}) - 0.03 \ \widetilde{C}_{4}^{(1)}(\mu_{0}) + C_{9}^{(1)}(\mu_{0})$ $\underset{=}{\overset{\text{SM}}{=}} 0. + 1.89 + 0.92 - 0.02 + 1.47 = 4.26$

<u>Note</u>: Here used Chetyrkin/Misiak/Münz [hep-ph/9612313] operator definition of Q_1, \ldots, Q_6

$$\widetilde{Q}_1 \equiv [\overline{s}\gamma_{\mu}P_L \mathbf{T}^a c] [\overline{c}\gamma^{\mu}P_L \mathbf{T}^a b] \quad \text{and} \quad \widetilde{Q}_2 \equiv [\overline{s}\gamma_{\mu}P_L c] [\overline{c}\gamma^{\mu}P_L b]$$
$$(Production C) = C_1^{(0)} = C_1^{(0)} \quad \text{and} \quad \widetilde{C}_2^{(0)} = C_1^{(0)}/3 + C_2^{(0)}$$

Have EFT Lagrangian! What next?

Outlook ...

What is achieved via EFT:

- decoupled heavy degrees of freedom for process <
- ▶ restricted to most relevant dim ≤ 6 operators
- ▶ RG equation resums large log's $\alpha_s^n \ln(m_b/m_W)^n$ to all orders in α_s
- ▶ EFT allows to include BSM effects via new operators model-independently

Need predictions of observables

- ▶ example of muon decay is "trivial" as only QED involved ⇒ in principle perturbative
- ▶ processes with quarks involve QCD: quarks are not free, but confined at ≪ m_W !!! external states are mesons/baryons ⇒ nonperturbative

→ hadro	onic matrix elements needed	examples for $b \rightarrow s$
►	decay constants	$\langle 0 \overline{s} \gamma^{\mu} \dots b B(p) angle$
►	local form factors	$\langle M(p') \overline{s}\gamma^{\mu}\dots b B(p) angle$
►	nonlocal objects	$\int dx \ e^{ikx} \langle M(p') T\{[\overline{q}\gamma^{\alpha}q](x), \ [\overline{s} \ \gamma^{\mu} \dots b](0) B(p) \rangle$

Nonperturbative methods and/or reliable parametrizations + phenomenology required