Introduction to Effective Theories in Flavor Physics

Christoph Bobeth Technical University Munich

> GDR Lectures 29 September, 2020

4 Lectures

1) **29/09/20 10:00-11:00**

EFT of weak interactions in the SM

2) **29/09/20 14:00-15:00**

Exclusive leptonic and semileptonic charged-current decays

3) **01/10/20 10:00-11:00**

Inclusive semileptonic decays

4) **01/10/20 11:00-15:00**

B-anomalies

Outline

- ▶ Flavor in the SM
- ▶ Flavor transitions in SM
- ▶ Introduction to EFT (muon decay)
- ▶ ∆*B* = 1 EFT: operators, matching, mixing, . . .

Flavor in the Standard Model

Notions of matter changed within last 100 years

Notions of matter changed within last 100 years

- \rightharpoonup *β*-decay: *n* → *p*⁺ + *e*[−] + *v*_{*e*}
- ▶ 4-Fermi-theory (1933/34)
	- ∼ *G^F* [Ψ(*p* ⁺) Γ Ψ(*n*)][*e* Γ ′ ν*e*]

Fermi coupling *G^F* ∼ 1/*M*²

Notions of matter changed within last 100 years

- \rightharpoonup *β*-decay: *n* → *p*⁺ + *e*[−] + *v*_{*e*}
- ▶ 4-Fermi-theory (1933/34)
	- ∼ *G^F* [Ψ(*p* ⁺) Γ Ψ(*n*)][*e* Γ ′ ν*e*]

Fermi coupling *G^F* ∼ 1/*M*²

- up- and down-Quarks are constituents of *n* and *p*
- Quarks are bound by strong force (Gluons) to hadrons
- ▶ Quarks have fractional electric charges *Q^u* = +2/3 and *Q^d* = −1/3

Notions of matter changed within last 100 years

- \rightharpoonup *β*-decay: *n* → *p*⁺ + *e*[−] + *v*_{*e*}
	- ▶ 4-Fermi-theory (1933/34)
	- ∼ *G^F* [Ψ(*p* ⁺) Γ Ψ(*n*)][*e* Γ ′ ν*e*]

Fermi coupling *G^F* ∼ 1/*M*²

- up- and down-Quarks are constituents of *n* and *p*
- Quarks are bound by strong force (Gluons) to hadrons

- Quarks have fractional electric charges $Q_u = +2/3$ and $Q_d = -1/3$
- Conservation of charges in weak and strong interactions \rightarrow described by symmetries (local gauge invariance)
- forces are transmitted by spin-1 gauge bosons
	- strong interaction: Gluons
		- ▸ weak interaction: massive charged *^W* and neutral *^Z* bosons
- ▶ Fermi constant $\mathcal{G}_F \propto g_2^2/m_W^2$ is an effective coupling

"General" principles employed in the SM

We try to test known principles and to find new ones at microscopic length scales and high energy densities

"General" principles employed in the SM

We try to test known principles and to find new ones at microscopic length scales and high energy densities

1) **relativistic quantum field theory** + **S-Matrix**

- ▶ Lorentz symmetry imposes restrictions on interactions of fields
- 2) **local gauge invariance** provides fundamental interactions
	- \triangleright gauge fields + interactions are introduced automatically. BUT gauge bosons are predicted to be massless

3) **Spontaneous symmetry breaking (SSB)**

(Englert/Brout-Higgs-Guralnik/Hagen/Kibble mechanism)

- ▶ requires postulation of (at least one) Higgs field (not strongly interacting)
- ▶ mass generation of gauge bosons and Quarks/Leptons
- ▶ masses of Quarks and Leptons ∝ to their coupling to Higgs

⇒ Interaction with Higgs gives rise to different flavors

Relativistic invariance + renormalizability (≤ dim 4)

- ▶ 3 generations of massless Lepton's and Quark's
- ▶ Higgs potential:

 $V(H) ~ ~ ~ \mu^2(H^{\dagger}H) - \Lambda(H^{\dagger}H)^2$

Yukawa potential:

 $\mathcal{L}_{\text{Yukawa}} \sim \overline{Q}_L(Y_U \widetilde{H} u_R + Y_D H d_R) + \overline{L}_L Y_L H \ell_R$

Relativistic invariance + renormalizability (≤ dim 4)

- 3 generations of massless Lepton's and Quark's
- ▶ Higgs potential:

 $V(H) ~ ~ ~ \mu^2(H^{\dagger}H) - \Lambda(H^{\dagger}H)^2$

Yukawa potential:

$$
\mathcal{L}_{\text{Yukawa}} \sim \overline{Q}_L (Y_U \widetilde{H} u_R + Y_D H d_R) + \overline{L}_L Y_L H \ell_R
$$

$Local gauge invariance$

 3 gauge couplings: massless gauge fields

The SM has $2 + 3 + 9 + 4 = 18$ parameters

omitting massive neutrino's and θ_{QCD}

Relativistic invariance + renormalizability (≤ dim 4)

- 3 generations of massless Lepton's and Quark's
- ▶ Higgs potential:

 $V(H) ~ ~ ~ \mu^2(H^{\dagger}H) - \Lambda(H^{\dagger}H)^2$

▶ Yukawa potential:

 $\mathcal{L}_{\text{Yukawa}} \sim \overline{Q}_L(Y_U \widetilde{H} u_R + Y_D H d_R) + \overline{L}_L Y_L H \ell_R$

Local gauge invariance $\vert \text{SU(3)}_c \otimes \text{SU(2)}_l \otimes \text{U(1)}_Y \vert$

3 gauge couplings: q_s , q_2 , q_1

massless gauge fields

SSB = Mass generation

- residual symmetry with massless photon: $SU(2)$ _{*l*} ⊗ $U(1)$ _V \rightarrow $U(1)$ _{em}
- m_W , m_Z and m_W , m_Z
- massive Leptons and Quarks: (but $m_{\nu} = 0$)

 $Y_l \rightarrow m_{\theta_l l l_l}$, $Y_D \rightarrow m_{d \phi_l}$, $Y_{l l} \rightarrow m_{l l \phi_l}$

Quark-mixing: $V_{CKM} = 3 \times 3$ unitary 4 parameters: λ , *A*, *ρ*, *η* [Cabibbo/Kobayashi/Maskawa] 7 / 32

3 copies of matter fields $(i = 1, 2, 3)$ postulated as $SU(2)_i$ **doublets** (Q, L) and **singlets** (u, d, ℓ)

Quarks: $Q_{L,i} = \begin{pmatrix} u_{L,i} \\ d \end{pmatrix}$ $\frac{d_{L,i}}{d_{L,i}}$, $u_{R,i}$, $d_{R,i}$ **Leptons:** $L_{L,i} = \begin{pmatrix} \nu_{L,i} \\ \ell_{L,i} \end{pmatrix}$ $\left(\ell_{L,i}\right)$, $\ell_{R,i}$

3 copies of matter fields $(i = 1, 2, 3)$ postulated as $SU(2)$, **doublets** (Q, L) and **singlets** (u, d, ℓ)

Quarks:
$$
Q_{L,i} = \begin{pmatrix} u_{L,i} \\ d_{L,i} \end{pmatrix}
$$
, $u_{R,i}$, $d_{R,i}$ **Leptons:** $L_{L,i} = \begin{pmatrix} v_{L,i} \\ e_{L,i} \end{pmatrix}$, $e_{R,i}$

Local gauge invariance implemented with the help of **covariant derivative** (same for all 3 copies)

$$
\left[D_{\mu}\Phi = \left(\partial_{\mu} + \underbrace{ig_1Y_{\Phi}B_{\mu}}_{U(1)\gamma} + \underbrace{ig_2\tau^aW_{\mu}^a}_{SU(2)_{L}} + \underbrace{ig_sT^AG_{\mu}^A}_{SU(3)_{c}}\right)\Phi\right]
$$

- ▶ some group-indices have been suppressed here
- ▶ hypercharges: *Y_H* fixed by requirement to have massless photon after EWSB

$$
Y_Q = +\frac{1}{6}
$$
, $Y_U = +\frac{2}{3}$, $Y_d = -\frac{1}{3}$, $Y_L = -\frac{1}{2}$, $Y_\ell = -1$, $Y_H = +\frac{1}{2}$
 $Y_Q = Y_d + Y_H = Y_u - Y_H$ and $Y_L = Y_\ell + Y_H$

 e lectric charge: $Q \equiv Y + \tau^3$

3 copies of matter fields ($i = 1, 2, 3$) postulated as $SU(2)$, **doublets** (Q, L) and **singlets** (u, d, l)

Quarks:
$$
Q_{L,i} = \begin{pmatrix} u_{L,i} \\ d_{L,i} \end{pmatrix}
$$
, $u_{R,i}$, $d_{R,i}$ **Leptons:** $L_{L,i} = \begin{pmatrix} v_{L,i} \\ e_{L,i} \end{pmatrix}$, $e_{R,i}$

Local gauge invariance implemented with the help of **covariant derivative** (same for all 3 copies)

$$
D_{\mu} \Phi_{\alpha, a} = \left(\left[\partial_{\mu} + \frac{ig_1 Y_{\phi} B_{\mu}}{U(1)_Y} \right] \delta_{\alpha \beta} \delta_{ab} + \underbrace{\frac{ig_2 \delta_{ab} \tau_{\alpha \beta}^a W_{\mu}^a}{SU(2)_L} + \underbrace{ig_s \delta_{\alpha \beta} T_{ab}^A G_{\mu}^A}_{SU(3)_c} \right) \Phi_{\beta, b}
$$

- \triangleright acting on $\Phi = \{Q_{L,i}, \ u_{R,i}, \ d_{R,i}, \dots\}$
- $\Phi_{\alpha,a}$ in fundamental representation:

$$
\alpha \to {\mathsf{SU(2)}}_L, \ a \to {\mathsf{SU(3)}}_c
$$

(transform as adjoint representation)

- \blacktriangleright gauge fields: B_μ , W_μ^a , G_μ^A
- gauge couplings: g_1 , g_2 , g_s
- **9** generators of $SU(2)_L$: $\tau^a = \sigma^a/2$ $(\sigma^a : 2 \times 2 \text{ Pauli matrices, } a = 1, 2, 3)$ $SU(3)_c$: $T^A = \lambda^A/2$ ($\lambda^A: 3 \times 3$ Gellman matrices, $A = 1, \ldots 8$)

3 copies of matter fields ($i = 1, 2, 3$) postulated as $SU(2)$, **doublets** (Q, L) and **singlets** (u, d, l)

Quarks:
$$
Q_{L,i} = \begin{pmatrix} u_{L,i} \\ d_{L,i} \end{pmatrix}
$$
, $u_{R,i}$, $d_{R,i}$ **Leptons:** $L_{L,i} = \begin{pmatrix} v_{L,i} \\ e_{L,i} \end{pmatrix}$, $e_{R,i}$

Gauge interactions of matter fields

$$
\mathcal{L}_{\text{gauge}} = \sum_{i=1}^{3} \left(\overline{Q}_{L,i} i \not{\!\!D} Q_{L,i} + \overline{u}_{R,i} i \not{\!\!D} u_{R,i} + \overline{d}_{R,i} i \not{\!\!D} d_{R,i} + \text{Leptons} \right), \quad \not{\!\!D} \equiv D_{\mu} \gamma^{\mu}
$$

▶ local SU(2)*^L* invariance forbids mass terms ∼ −*m*^Φ [Φ*L*Φ*^R* + Φ*R*Φ*L*]

- \triangleright $\mathcal{L}_{\text{aauge}}$ is diagonal in generations
- can rotate with unitary 3×3 matrices

 $\int_{X}^{a} V_{X}^{a\dagger} = \mathbb{1}_{3 \times 3}$ $(a = Q, u, d)$

$$
Q'_{L} = V^Q_L Q_L, \qquad \qquad u'_R = V^U_R u_R, \qquad \qquad d'_R = V^d_R d_R
$$

and $\mathcal{L}_{\text{gauge}}$ remains diagonal \Rightarrow \mathcal{Q}_L , \mathcal{U}_R and \mathcal{d}_R are weak eigenstates

huge global flavor symmetry of \mathcal{L}_{gauge} : G_{SM} ≡ U(1)_{*Y*} ⊗ U(1)_{*B*} ⊗ U(1)_{*L*}

^Gflavor [≡] SU(3)*QL* [⊗] SU(3)*UR* [⊗] SU(3)*DR* [⊗] SU(3)*LL* [⊗] SU(3)*ER* ⊗ U(1)PQ ⊗ GSM

Yukawa couplings → origin of Flavor

Yukawa couplings → origin of Flavor

⇒ Quark masses are "generation-non-diagonal": !!! distinguish generations → **Flavor**

$$
\left[\begin{bmatrix} [M_U]_{ij} \equiv \frac{\nu Y_{U,ij}}{\sqrt{2}} & \text{and} & [M_D]_{ij} \equiv \frac{\nu Y_{D,ij}}{\sqrt{2}} \end{bmatrix}\right]
$$

From weak → mass eigenstates

After EWSB mass terms of quarks are "generation-non-diagonal"

$$
\mathcal{L}_{\mathsf{Yukawa}} \simeq -\sum_{i,j=1}^3 \left([M_U]_{ij} \overline{u}_{L,i} u_{R,j} + [M_D]_{ij} \overline{d}_{L,i} d_{R,j} \right) + \text{h.c.} + \dots
$$

Requires separate rotations for u_L and d_L to mass eigenstates u', d'

 $u'_{L} = V_{L}^{u} u_{L},$ $d'_{L} = V_{L}^{d} d_{L},$ $u'_{R} = V_{R}^{u} u_{R},$ $d'_{R} = V_{R}^{d} d_{R},$

such that **mass matrices** are diagonal **but** each generation has different mass ⇒ flavor

$$
M_a^{\text{diag}} = V_L^a M_a V_R^{a\dagger} = \frac{\nu}{\sqrt{2}} V_L^a Y_a V_R^{a\dagger} \qquad a = U, D
$$

From weak → mass eigenstates

After EWSB mass terms of quarks are "generation-non-diagonal"

$$
\mathcal{L}_{\mathsf{Yukawa}} \simeq -\sum_{i,j=1}^3 \left([M_U]_{ij} \overline{u}_{L,i} u_{R,j} + [M_D]_{ij} \overline{d}_{L,i} d_{R,j} \right) + \text{h.c.} + \dots
$$

Requires separate rotations for u_L and d_L to mass eigenstates u', d'

 $u'_{L} = V_{L}^{u} u_{L},$ $d'_{L} = V_{L}^{d} d_{L},$ $u'_{R} = V_{R}^{u} u_{R},$ $d'_{R} = V_{R}^{d} d_{R},$

such that **mass matrices** are diagonal **but** each generation has different mass ⇒ flavor

$$
M_a^{\text{diag}} = V_L^a M_a V_R^{a\dagger} = \frac{\nu}{\sqrt{2}} V_L^a Y_a V_R^{a\dagger} \qquad a = U, D
$$

Remember that gauge interactions $\mathcal{L}_{\text{gauge}}$ are invariant under $Q'_{L} = V^Q_{L} Q_{L}$, but not under separate trafo of *u^L* and *d^L*

$$
\mathcal{L}_{\text{gauge}} = \sum_{i=1}^{3} \overline{Q}_{L,i} i \not\!\!D Q_{L,i} + \dots = \left[\sum_{i,j,k=1}^{3} \left(\frac{\overline{w}_{L,i} [V_L^u]_{ik}}{\overline{d'}_{L,i} [V_L^d]_{ik}} \right)^T i \not\!\!D \right] \left(\begin{bmatrix} [V_L^{u\dagger}]_{L,kj} u'_{L,j} \\ [V_L^{d\dagger}]_{L,kj} u'_{L,j} \end{bmatrix} \right) + \dots
$$

⇒ expanding SU(2)*^L* indices:

charged flavor-non-diagonal gauge interactions

$$
\left[\propto \overline{u}_{L,i} \left[V_L^u V_L^{d\dagger} \right]_{ij} d_{L,j} \rightarrow \overline{u}_L V_{CKM} d_L \right]
$$

Cabibbo-Kobayashi-Maskawa (CKM)

Flavor changes in SM → CKM matrix

$$
U_{i} = \{u, c, t\}:
$$
\n
$$
Q_{u} = +2/3
$$
\n
$$
L_{u d W^{\pm}} \simeq \frac{g_{2}}{\sqrt{2}} \left(\bar{u} \bar{c} \bar{t} \right) \begin{pmatrix} V_{u d} & V_{u s} & V_{u b} \\ V_{c d} & V_{c s} & V_{c b} \\ V_{t d} & V_{t s} & V_{t b} \end{pmatrix} \gamma^{\mu} P_{L} \begin{pmatrix} d \\ s \\ b \end{pmatrix} W_{\mu}^{+}
$$
\n
$$
Q_{d} = -1/3
$$
\n
$$
\sim \text{Cabilobo-Kobayashi-Maskawa (CKM) matrix}
$$
\n
$$
W^{+}
$$

 d determined by Yukawa-couplings

$$
V_{CKM} \equiv V_L^u V_L^{d\dagger}
$$

CP violation realized via complex phase in V_{CKM}

[Kobayashi/Maskawa Prog.Theor.Phys. 49 (1973) 652]

- **unitary** matrix: $\frac{d\mathsf{t}}{d\mathsf{c}} = \mathbb{1}_{3\times 3}$ → in principle 18 – 9 = 9 real parameters
- ▶ phase transformations of five quark fields allow to remove unphysical dof's (degrees of freedom) ⇒ **only 4 real parameters**
- ⇒ All information on quark Yukawa couplings ∈ **C** is given by 6 + 4 = 10 real parameters: they are the **6 quark masses** and **4 CKM parameters**

Testing the SM search for all flavor-changing processes predicted *and not* predicted by the SM *and* to (over-) determine CKM parameters

The CKM matrix

▶ Cabibbo-Kobayashi-Maskawa matrix:

 $V_{CKM} =$ ⎝ *Vud Vus Vub Vcd Vcs Vcb Vtd Vts Vtb* \overline{a} ⎠

 \triangleright unitarity $V_{CKM}^{\dagger} V_{CKM} = \mathbb{1}_{3 \times 3}$ of *i*-th and *j*-th rows/columns gives

6 Unitarity triangles (UT)

$$
\Rightarrow \text{most common } i = 1, j = 3:
$$

The CKM matrix

▶ Cabibbo-Kobayashi-Maskawa matrix:

 $V_{CKM} =$ ⎝ *Vud Vus Vub Vcd Vcs Vcb Vtd Vts Vtb* \overline{a} ⎠

 \triangleright unitarity $V_{CKM}^{\dagger} V_{CKM} = \mathbb{1}_{3 \times 3}$ of *i*-th and *j*-th rows/columns gives

6 Unitarity triangles (UT)

$$
\Rightarrow \text{most common } i = 1, j = 3:
$$

- \blacktriangleright there are many parametrizations of unitary 3×3 matrix with 4 param's
	- ⇒ convention dependence
- some things are convention independent (invariant under quark-field rephasing)

Plaquettes

*J*_{ij;*k*} ≡ ± Im $[V_{ik}V_{jl}V_{il}^*V_{jk}^*]$

with $i \neq j$ and $k \neq l$

- ⇒ for 3 × 3 all the *J_{ii:kl}* are equivalent
- ⇒ a measure of CP violation

[Jarlskog PRL 55 (1985) 1039]

▶ **Jarlskog invariant** *J* ≡ *Jij*;*kl*

is twice the area of unitarity triangles:

$$
∴ ∪ = 2 × ∆UT"
$$

\n⇒ measured |J| ≈ 2.8 × 10⁻⁵

Parametrizations of the CKM matrix

Standard parametrization from PDG (Particle Data Group)

$$
V_{CKM} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}
$$

 \Rightarrow uses 3 angles + 1 phase: $s_{ij} \equiv \sin \theta_{ij}$

 $2^2 = 1 - (s_{ij})^2$

Wolfenstein parametrization expansion in λ ≈ *Vus* ∼ 0.2 [Wolfenstein Phys.Rev.Lett. 51 (1983) 1945]

$$
V_{CKM} \approx \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 & \lambda & \lambda^3 A(\rho - i\eta) \\ -\lambda & 1 - \frac{1}{2}\lambda^2 & \lambda^2 A \\ \lambda^3 A(1 - \rho - i\eta) & -\lambda^2 A & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)
$$

 \Rightarrow uses Wolfenstein parameters λ , A, ρ and η :

$$
s_{12}=\lambda=\frac{|V_{us}|}{\sqrt{|V_{ud}|^2+|V_{us}|^2}},\hspace{0.5cm} s_{23}=A\lambda^2=\lambda\left|\frac{V_{cb}}{V_{us}}\right|,\hspace{0.5cm} s_{13}e^{i\delta}=V_{ub}^* =A\lambda^3(\rho+i\eta)=\frac{A\lambda^3(\overline{\rho}+i\overline{\eta})\sqrt{1-A^2\lambda^4}}{\sqrt{1-\lambda^2}[1-A^2\lambda^2(\overline{\rho}+i\overline{\eta}]]}
$$

 \Rightarrow ensures $\overline{\rho} + i\overline{\eta} = -(V_{ud}V_{ub}^*)/(V_{cd}V_{cb}^*)$ independent of phase convention

 \Rightarrow CKM in terms of λ , A , $\overline{\rho}$ and $\overline{\eta}$ unitary to all orders in λ : $\overline{\rho} = \rho (1 - \lambda^2/2 + ...)$, $\overline{\eta} = \eta (1 - \lambda^2/2 + ...)$

Now we know what "Flavor" means in the SM

↓

What flavor transitions does the SM predict?

Tree (CC) versus Loops (FCNC)

Tree (CC) versus Loops (FCNC)

depend on SD-parameters \Rightarrow in SM: CKM and heavy masses: m_W , m_Z , m_t

- ⇒ extract in measurement and calculate in specific UV completions
- ▶ overall rescaling factor **Fermi's constant** $G_F \sim \text{GeV}^{-2}$, measured in $\mu \to e \bar{\nu}_e \nu_\mu$

Overview of decay channels for CKM determination

Also many strategies with hadronic *B* decays $B \to M_1 M_2$ [Figures from Lellouch 1104.5484]

So far "CKM-picture" of SM works

⇒ fit of CKM-Parameters . . .

CKM matrix in terms of 4 Wolfenstein parameters

 $\lambda \sim 0.22$, **A**, $\overline{\rho}$, $\overline{\eta}$

 \Rightarrow nowadays a sophisticated fit:

"combine and overconstrain"

!!! numerous *b*-physics measurements

[experimental input from CKMfitter homepage]

So far "CKM-picture" of SM works

More on CKM fits **http://ckmfitter.in2p3.fr/www/html/ckm_main.html <http://www.utfit.org/UTfit/>**

Hierarchies in masses and CKM

The determinations in framework of SM show huge hierarchies that can not be explained in the SM

- \blacktriangleright masses within each generation
- **▶ CKM matrix**

 $\lambda \approx 0.225$ Cabibbo angle

▶ in down-type FCNCs *top*-, *charm*- and *up*-contributions

$$
\begin{aligned}\n\boxed{b \rightarrow s} \\
V_{tb} V_{ts}^* \approx -V_{cb} V_{cs}^* \sim \lambda^2 A \\
V_{ub} V_{us}^* \sim \lambda^4 A\n\end{aligned}
$$

$$
\begin{array}{lll}\n\left(b \rightarrow d\right) & V_{tb} V_{td}^* \sim V_{cb} V_{cd}^* \sim V_{ub} V_{ud}^* \sim \lambda^3 A \\
\hline\nS \rightarrow d & V_{cs} V_{cd}^* \approx -V_{us} V_{ud}^* \sim \lambda \\
& V_{ts} V_{td}^* \sim \lambda^5 A\n\end{array}
$$

 $V_{ts}V_{td}^* \sim \lambda^5 A$

⇒ in *s* → *d top* part enhanced by m_t^2 , but CKM-suppressed $\qquad \equiv$ $\lambda^4 A \approx 0.0021$ versus $(m_c/m_W)^2 \approx 0.0003$

 \Rightarrow CKM suppresses dim-6, such that dim-8 phenomenologically not negligible in Δ M_K , ε_K , $K^+ \to \pi + \nu \overline{\nu}$

18 / 32

Effective theories: Example muon decay

Fermi theory for $\mu \rightarrow e \overline{\nu}_e \nu_\mu$

!!! Expansion in the μ -rest frame $q^2 \ll m_W^2$ (*m*_{μ} ≈ 0.1 GeV and *m*_{*W*} ≈ 80 GeV) ⇒ this corresponds to an **OPE (operator product expansion)**, keeping only dim-6

Fermi theory for $\mu \rightarrow e \overline{\nu}_e \nu_\mu$

In SM µ**[−] →** *e* **[−]** ν*^e* ν^µ at tree-level via *W*±-boson exchange µ − νe ν^µ e[−] W[±] q *q* ≡ *p*^µ − *p*ν^µ = *p^e* + *p*ν*^e i*ASM = *i* (−*i g*2 √ 2) 2 [*u*(*p*ν^µ)γµ*PLu*(*p*µ)] −*i g*µν *q* ² − *m*² *W* [*u*(*pe*)γν*PLv*(*p*ν*^e*)] ≈ *g* 2 2 2*m*² *W* [νµγµ*P^L* µ][*e* γ ^µ*PL*ν*e*] + O (*m* 2 ^µ / *m* 2 *^W*) *PL*(*R*) ≡ 1 2 (1 ∓ γ5)

!!! Expansion in the μ -rest frame $q^2 \ll m_W^2$ (*m*_{μ} ≈ 0.1 GeV and *m*_{*W*} ≈ 80 GeV) ⇒ this corresponds to an **OPE (operator product expansion)**, keeping only dim-6

Can reproduce with an **Effective Theory** (as Fermi anticipated)

$$
\left[\mathcal{L}_{\text{EFT}} = -\frac{4}{\sqrt{2}} \, C_{\text{VLL}} \, Q_{\text{VLL}} \right] \quad Q_{\text{VLL}} \equiv \left[\overline{\nu}_{\mu} \gamma_{\mu} P_{\text{L}} \mu \right] \left[\overline{e} \gamma^{\mu} P_{\text{L}} \nu_{e} \right]
$$

- C_{VII} = Wilson coefficient \Rightarrow effective coupling constant
- ▶ *QVLL* = 4-Fermi **Operator** (contact interaction)

$$
i\mathcal{A}_{\text{EFT}} = i \left(-i \frac{4}{\sqrt{2}} C_{VLL} \right) [\overline{\nu}_{\mu} \gamma_{\mu} P_L \mu] [\overline{e} \gamma^{\mu} P_L \nu_e] = \frac{4 C_{VLL}}{\sqrt{2}} Q_{VLL}
$$

 μ^-

 $-v_e$

 $\nu_\mu \sim e^-$

Fermi theory for $\mu \rightarrow e \overline{\nu}_e \nu_\mu$

!!! Expansion in the μ -rest frame $q^2 \ll m_W^2$ (*m*_{μ} ≈ 0.1 GeV and *m*_{*W*} ≈ 80 GeV) ⇒ this corresponds to an **OPE (operator product expansion)**, keeping only dim-6

There is a full theory (the SM) and an effective theory that reproduces it for $q^2 \ll m_W^2$

Determine *C_{<i>VLL}* from **Matching** both amplitudes (due to renormalization beyond tree-level at scale μ_{*W*} ∼ *m_W*)</sub>

$$
\mathcal{A}_{\text{SM}} \stackrel{!}{=} \mathcal{A}_{\text{EFT}} \qquad \Rightarrow \qquad \qquad \mathcal{C}_{\text{VLL}}^{\text{SM}} = \frac{\sqrt{2} g_2^2}{8 m_W^2} = \frac{1}{\sqrt{2} v^2}
$$

!!! *CVLL* ∼ GeV−² carries information on full theory

Fermi's constant G_F **from** μ -lifetime

Can determine C_{VLL} from precise measurement of $\tau_{\mu} = (2.1969811 \pm 0.0000022)\mu s$

Calculate μ -lifetime from A_{EFT} , neglecting QED corrections from photons

$$
\frac{1}{\tau_{\mu}} = \Gamma_{\mu} = \frac{1}{2m_{\mu}} \sum d\Pi_3 \left| A_{\text{EFT}} A_{\text{EFT}}^{\dagger} \right|^2
$$

$$
= \frac{m_{\mu}^5}{192\pi^3} |C_{VLL}|^2 \left[1 + \Delta q^{(0)}(x) \right], \qquad \qquad X = \frac{m_{\theta}^2}{m_{\mu}^2} \sim 2 \cdot 10^{-5}
$$

► $\Delta q^{(0)}(x)$ tiny phase-space corrections from e^- mass (m_{ν} _{*e*} and m_{ν} _μ neglected)

Fermi's constant G_F **from** μ -lifetime

Can determine $C_{V/L}$ from precise measurement of $\tau_{\mu} = (2.1969811 \pm 0.0000022)\mu s$

Calculate μ -lifetime from A_{EFT} , with QED corrections

$$
\frac{1}{\tau_{\mu}} \equiv \Gamma_{\mu} = \frac{1}{2m_{\mu}} \sum d\Pi_3 \left| A_{\text{EFT}} A_{\text{EFT}}^{\dagger} \right|^2 + \frac{1}{m_{\mu}} \sum d\Pi_4 \dots \text{real emission} + \dots
$$

$$
= \frac{m_{\mu}^5}{192\pi^3} \left[1 + \Delta q(\alpha_{\theta}, x) \right] \left| C_{VLL} \right|^2
$$

with $\Delta q(\alpha_e, x) = \sum_{n=0}^{\infty} \left(\frac{\alpha_e}{\pi} \right)$ $\left(\frac{x_e}{\pi}\right)^n \Delta q^{(n)}(x)$, which depends on α_e and *x* $y \approx 0$

- ▶ ∆*q* (1) (*x*) = −1.8076 [Kinoshita/Sirlin Phys. Rev. 113 (1959) 1652, Nir, PLB221 (1989) 184]
- ▶ ∆*q* (2)

(*x*) = (6.700 ± 0.002) [Ritbergen/Stuart hep-ph/9904240]

Fermi's constant G_F **from** μ -lifetime

Can determine $C_{V/L}$ from precise measurement of $\tau_{\mu} = (2.1969811 \pm 0.0000022)\mu s$

Calculate μ -lifetime from A_{EFT} , with QED corrections

$$
\frac{1}{\tau_{\mu}} \equiv \Gamma_{\mu} = \frac{1}{2m_{\mu}} \sum d\Pi_{3} |A_{\text{EFT}} A_{\text{EFT}}^{\dagger}|^{2} + \frac{1}{m_{\mu}} \sum d\Pi_{4} ... \text{ real emission } + ...
$$
\n
$$
= \frac{m_{\mu}^{5}}{192\pi^{3}} \left[1 + \Delta q(\alpha_{e}, x)\right] |C_{VLL}|^{2}
$$
\nwith $\Delta q(\alpha_{e}, x) = \sum_{n=0}^{\infty} \left(\frac{\alpha_{e}}{\pi}\right)^{n} \Delta q^{(n)}(x)$, which depends on α_{e} and $\lambda_{V} \approx 0$
\n $\Rightarrow \Delta q^{(1)}(x) = -1.8076$
\n $\Rightarrow \Delta q^{(2)}(x) = (6.700 \pm 0.002)$
\n[Kinoshita/Sitlin Phys. Rev. 113 (195) 1652, Nir, PLB221 (1989) 184]

The EFT allows to conveniently separate QED dynamics from C_{VLL} into Δq

!!! QED renormalization of ∆*q* requires to choose scale µ ∼ *m*µ to avoid large log's ln µ/*m*µ

 \Rightarrow Formally $C_{VLL}(\mu)$ at low-energy scale, but trivial evolution to scale $\mu_W \sim m_W$

⇒ *G^F* **≡** *CVLL* is also called **Fermi's constant**, and it is best defined by

one finds from τ_{μ} that $G_F = |C_{VLL}| = 1.1663787(6) \cdot 10^{-5} \text{ GeV}^{-2}$

Fermi's constant in the SM

Determination of C_{VII} can be used to determine short-distance parameters of SM:

Tree-level matching of the SM:

$$
C_{VLL}^{SM} = \frac{\sqrt{2} g_2^2}{8 m_W^2} = \frac{1}{\sqrt{2} v^2} \Rightarrow \left[v = 246.2 \text{ GeV} \right]
$$

$$
C_{VLL}^{SM} = \frac{\sqrt{2} g_2^2}{8 m_W^2} \left[1 + \left[\Delta r(\alpha_e, m_W, m_Z, m_t, m_H) \right] \right]
$$

Beyond tree-level matching:

$$
\blacktriangleright \text{ radiative corrections to tree-level } W^{\pm} \text{ exchange in } \Delta r(\alpha_e, m_W, m_Z, m_t, m_H)
$$

- \blacktriangleright μ -lifetime important measurement to fix SM parameters like m_W, m_Z, m_H in electroweak-precision fits of SM
- \blacktriangleright if **New Physics (NP)** only contributes to $C_{VLL} = C_{VLL}^{SM} + C_{VLL}^{NP}$
	- \Rightarrow constraints from muon-liftime apply to sum $G_F = |C_{VLL}^{\text{SM}} + C_{VLL}^{\text{NP}}|$
	- \Rightarrow C_{VLL}^{NP} depends on fundamental parameters of NP scenario

Fermi's constant beyond the SM

Let's assume only left-handed ν 's \Rightarrow then only one additonal $\Delta L = 0$ operator

$$
\mathcal{L}_{\text{EFT}} = -\frac{4}{\sqrt{2}} \left[\left(C_{VLL}^{\text{SM}} + C_{VLL}^{\text{NP}} \right) Q_{VLL} + C_{SRL} Q_{SRL} \right] \qquad Q_{SRL} = \left[\overline{\nu}_{\mu} P_{R} \mu \right] \left[\overline{e} P_{L} \nu_{e} \right]
$$

leads to modification of μ -lifetime

$$
\frac{1}{\tau_{\mu}} = \frac{m_{\mu}^{5}}{192\pi^{3}} \Big[1 + \Delta q^{(0)}(x) \Big] \underbrace{\Big(|C_{VLL}|^{2} + \frac{|C_{SRL}|^{2}}{4} + \frac{18}{5} \frac{m_{\theta}}{m_{\mu}} \operatorname{Re} (C_{VLL} C_{SRL}^{*}) \times [1 + \mathcal{O}(x)] \Big)}_{\equiv \Big(\mathcal{G}_{F}^{(0)} \Big)^{2}}
$$

- ▶ *G* (0) *F* denotes that only ∆*q* (0) (*x*) is used when additional *QSRL* included ⇒ theory less precisely known compared to only Q_{VU}
- one observable not enough to fix two complex-valued numbers
	- \Rightarrow measure other observables in $d^2\Gamma/(dE_e\ d\cos\vartheta) \rightarrow$ Michel parameters
- **▶** in SMEFT ($v \ll \Lambda$): $C_{VLL}^{SM} \sim 1/v^2$ and additional suppression of v^2/Λ^2 for C_{VLL}^{NP} and C_{SRL} \Rightarrow in τ_{μ} the $|C_{SRL}|^2 \sim v^4/\Lambda^4$ compared to $v^2/\Lambda^2 \rightarrow$ negligible \Rightarrow one might neglect Re $\left(C_{VLL}C_{SRL}^*\right)\sim v^2/\Lambda^2$, because helicity-suppressed

Michel parameters

More observables to discriminate SM and NP effects \Rightarrow measure angular distribution

$$
\frac{d^2\Gamma}{dx \, d\!\cos\vartheta} \;\; \propto \;\; x^2 \left\{ 3(1-x) + \frac{2\,\rho}{3} (4x-3) + 3\,\eta\,\frac{x_0}{x} (1-x) \pm P_\mu\,\xi\,\cos\vartheta \left[1-x + \frac{2\,\delta}{3} (4x-3) \right] \right\}
$$

- ▶ in restframe of muon & electron polarisation insensitive detector
- **E** maximum electron energy $E_{e}^{max} = (m_{\mu}^2 + m_{e}^2)/(2m_{\mu})$
- \blacktriangleright reduced electron energy $x = E_e / E_e^{\text{max}}$ and $x_0 = m_e / E_e^{\text{max}}$
- ϑ is direction of electron w.r.t. muon polarization \tilde{P}_{μ}
- **►** degree of muon polarisation $P_{\mu} = |\vec{P}_{\mu}|$

Angular observables ρ**,** η**,** ξ**,** δ known as **Michel parameters**

[Michel ProcPhysSocA63 (1950) 514, Bouchiat/Michel PR106 (1957) 170, Kinoshita/Sirlin (1957) PR107 593 & PR108 844] in SM: $\rho = \xi \delta = 3/4$, $\xi = 1$, $\eta = 0$

⇒ measurements with electron polarisation depend on further Michel parameters

Michel parameters

More observables to discriminate SM and NP effects \Rightarrow measure angular distribution

$$
\frac{d^2\Gamma}{dx \, d\!\cos\vartheta} \;\; \propto \;\; x^2 \left\{ 3(1-x) + \frac{2\,\rho}{3} (4x-3) + 3\,\eta\,\frac{x_0}{x} (1-x) \pm P_\mu\,\xi\,\cos\vartheta \left[1-x + \frac{2\,\delta}{3} (4x-3) \right] \right\}
$$

- in restframe of muon & electron polarisation insensitive detector
- **E** maximum electron energy $E_{e}^{max} = (m_{\mu}^2 + m_{e}^2)/(2m_{\mu})$
- \blacktriangleright reduced electron energy $x = E_e / E_e^{\text{max}}$ and $x_0 = m_e / E_e^{\text{max}}$
- ϑ is direction of electron w.r.t. muon polarization P_μ
- degree of muon polarisation $P_{\mu} = |\vec{P}_{\mu}|$

Angular observables ρ**,** η**,** ξ**,** δ known as **Michel parameters**

[Michel ProcPhysSocA63 (1950) 514, Bouchiat/Michel PR106 (1957) 170, Kinoshita/Sirlin (1957) PR107 593 & PR108 844]

in SM: $\rho = \xi \delta = 3/4, \xi = 1, \eta = 0$

⇒ measurements with electron polarisation depend on further Michel parameters

!!! SM particularly simple ⇒ few parameters and correlations between many observables

- ▶ few parameters ⇒ theory control needed only for few observables for good determinations
- $correlations \Rightarrow$ allow stringent tests of SM
- more parameters/operators in new physics scenarios lead to less predictivity
	- ⇒ less stringent tests possible and more measurements needed

Effective theory for ∆*B* **= 1 decays**

*B***-Hadron decays are a Multi-scale problem** . . .

. . . with hierarchical interaction scales

*B***-Hadron decays are a Multi-scale problem** . . .

. . . with hierarchical interaction scales

W

g

 \mathfrak{f}^+

l [−]

 $W > 0$

q 26 / 32

q Q

W >

W

 \bar{q}

 σ

 Y, Z

*B***-Hadron decays are a Multi-scale problem** . . .

. . . with hierarchical interaction scales

 C_i = Wilson coefficients contain short-dist. pmr's (heavy masses m_t ,... – CKM factored out) and leading logarithmic QCD-corrections to all orders in α*s* ⇒ in SM known up to NNLO QCD and NLO EW/QED

Qi **= dim-6 operators** flavor-changing coupling of light quarks

Tree-level = "current-current" op's in the SM

 ${\sf SM}$ = **Full theory**: in *b*-rest frame external momenta $q^2 \sim m_b^2 \ll m_W^2$ ⇒ expand *W*-propagator

Tree-level = "current-current" op's in the SM

 ${\sf SM}$ = **Full theory**: in *b*-rest frame external momenta $q^2 \sim m_b^2 \ll m_W^2$ ⇒ expand *W*-propagator

$$
iA_{\rm SM} = -\frac{g_2^2}{2}V_{cb}V_{cs}^* \frac{1}{q^2 - m_W^2} [\bar{s}\gamma_\mu P_L c][\bar{c}\gamma^\mu P_L b]
$$

$$
q^2 \underset{\approx}{\ll m_W^2} \frac{4G_F}{\sqrt{2}}V_{cb}V_{cs}^* [\bar{s}\gamma_\mu P_L c][\bar{c}\gamma^\mu P_L b] + \mathcal{O}\left(\frac{m_b^2}{m_W^2}\right)
$$

The same result can be obtained from an **EFT** Lagrangian

Tree-level = "current-current" op's in the SM

 ${\sf SM}$ = **Full theory**: in *b*-rest frame external momenta $q^2 \sim m_b^2 \ll m_W^2$ ⇒ expand *W*-propagator

$$
iA_{\text{SM}} = -\frac{g_{2}^{2}}{2}V_{cb}V_{cs}^{*}\frac{1}{q^{2}-m_{W}^{2}}[\bar{s}\gamma_{\mu}P_{L}c][\bar{c}\gamma^{\mu}P_{L}b]
$$
\n
$$
q^{2} \underset{\approx}{\leq} m_{W}^{2} \frac{4G_{F}}{\sqrt{2}}V_{cb}V_{cs}^{*}[\bar{s}\gamma_{\mu}P_{L}c][\bar{c}\gamma^{\mu}P_{L}b] + \mathcal{O}\left(\frac{m_{b}^{2}}{m_{W}^{2}}\right)
$$

The same result can be obtained from an **EFT** Lagrangian

$$
L_{\text{EFT}} = c_2 Q_2 = \frac{4 \tilde{g}_F}{\sqrt{2}} V_{cb} V_{cs}^* C_2 Q_2
$$
\n
$$
Q_2 = [\bar{s} \gamma_\mu P_L c][\bar{c} \gamma^\mu P_L b]
$$
\n
$$
i A_{\text{EFT}} = -c_2 [\bar{s} \gamma_\mu P_L c][\bar{c} \gamma^\mu P_L b]
$$

Requiring equality of amplitudes (Greens funct's) = **Matching**

$$
\mathcal{A}_{\text{SM}} \stackrel{!}{=} \mathcal{A}_{\text{EFT}} \qquad \Rightarrow \qquad \mathcal{C}_2 = -\frac{4 \, G_F}{\sqrt{2}} \, V_{cb} \, V_{cs}^* \qquad \text{(or } \mathcal{C}_2 = -1)
$$
\n
$$
V_{cb} \, V_{cs}^* \approx -V_{tb} \, V_{ts}^* + \dots \qquad \Rightarrow \qquad \mathcal{C}_2 = +\frac{4 \, G_F}{\sqrt{2}} \, V_{tb} \, V_{ts}^* \qquad \text{(or } \mathcal{C}_2 = +1)
$$
\nused here $V_{ub} \, V_{us}^* \ll V_{tb} \, V_{ts}^* \ll V_{ub} \, V_{us}^* \ll V_{cb} \, V_{cs}^*$

Matching at higher orders

Benefit of EFT's \Rightarrow can resum large log's to all orders in perturbation theory (PT)

$\alpha_s^n \ln^n \left(\frac{m_b}{m_W} \right) = \alpha_s^n \left[\ln \left(\frac{m_b}{\mu_0} \right) + \ln \left(\frac{\mu_0}{m_W} \right) \right]^n$, $\ln \left(\frac{m_b}{m_W} \right) \approx -2.8$ \n		
Matching	$C_i(\mu_0, m_W) = C_i^{(0)} + \frac{\alpha_s}{4\pi} C_i^{(1)} + \dots$ order by order	μ_0 = factorisation scale
$\sum_{n = 0}^{b} \frac{w_c}{4\pi}$	$\frac{1}{4\pi} C^{(1)} \times \frac{1}{4\pi} C^{(2)} \times \dots$	μ_0
$\sum_{n = 0}^{b} \frac{w_c}{4\pi} C^{(3)} \times \dots$ \n <td>μ_0</td> \n	μ_0	
$\sum_{n = 0}^{b} \frac{w_c}{4\pi} C^{(4)} \times \dots$ \n <td>μ_0</td> \n	μ_0	
$\sum_{n = 0}^{b} \frac{w_c}{4\pi} C^{(5)} \times \dots$ \n <td>μ_0</td> \n	μ_0	
$\sum_{n = 0}^{b} \frac{w_c}{4\pi} C^{(5)} \times \dots$ \n <td>μ_0</td> \n	μ_0	

▶ generates additional operator $Q_1 \equiv [\bar{s}_{\alpha} \gamma_{\mu} P_L c_{\beta}][\bar{c}_{\beta} \gamma]$

- α , β = color indices
-
-
-

Matching at higher orders

Benefit of EFT's \Rightarrow can resum large log's to all orders in perturbation theory (PT)

▶ generates additional operator $Q_1 \equiv [\bar{s}_{\alpha} \gamma_{\mu} P_L c_{\beta}][\bar{c}_{\beta} \gamma]$

 α , β = color indices

- \blacktriangleright allows to separate log's of full theory side into Wilson coefficients $C^{(1)}$ and ...
- ▶ 1-loop matrix element ∝ *C* (0) of EFT has same ln(*mb*/µ0) since EFT should reproduce IR of full theory (otherwise wrong EFT)
- \blacktriangleright *C*⁽¹⁾(μ ₀) can be determined perturbatively only with choice: μ ₀ ∼ m _{*W*} otherwise large log's will enter $C^{(1)}(\mu_0)$

Matching at higher orders

Benefit of EFT's \Rightarrow can resum large log's to all orders in perturbation theory (PT)

▶ generates additional operator $Q_1 \equiv [\bar{s}_{\alpha} \gamma_{\mu} P_L c_{\beta}][\bar{c}_{\beta} \gamma]$

 α , β = color indices

- \blacktriangleright allows to separate log's of full theory side into Wilson coefficients $C^{(1)}$ and ...
- ▶ 1-loop matrix element ∝ *C* (0) of EFT has same ln(*mb*/µ0) since EFT should reproduce IR of full theory (otherwise wrong EFT)
- \blacktriangleright *C*⁽¹⁾(μ ₀) can be determined perturbatively only with choice: μ ₀ ∼ m _{*W*} otherwise large log's will enter $C^{(1)}(\mu_0)$

Matching determines Wilson coefficients at high scale $\mu_0 \sim m_W$

Renormalization Group (RG) equation

- ▶ main purpose of RG eq.: relating couplings (Wilson coefficients) at different scales
- \triangleright effect of RG eq.: resummation of large log's to all orders in coupling (α_s or α_e)

RG equation derived from requirement that "bare" (effective) couplings are μ -independent

 $\mu \frac{d}{d}$ $\frac{d}{d\mu}C_i(\mu) = \left[\gamma^T(\mu)\right]_{ij}$ γ_{ij} = **anomalous dimension matrix (=ADM)**

Formal solution of system of coupled 1st order ordinary differential equations (ODE)

 $C_i(\mu) = [U(\mu, \mu_0)]_{ij} C_j(\mu_0),$ $[U(\mu, \mu_0)]_{ij} = T_{\mu'} \exp \left| \int_{\mu}^{\mu} d\mu \right|$ $\left[\begin{smallmatrix} \mu & \ & \gamma^{\mathsf{T}}(\mu')\mathsf{d}\mu' \ \mu_0 & \end{smallmatrix}\right]$

Renormalization Group (RG) equation

- ▶ main purpose of RG eq.: relating couplings (Wilson coefficients) at different scales
- \triangleright effect of RG eq.: resummation of large log's to all orders in coupling (α_s or α_e)

RG equation derived from requirement that "bare" (effective) couplings are μ -independent

 $\mu \frac{d}{d}$ $\frac{d}{d\mu}C_i(\mu) = \left[\gamma^T(\mu)\right]_{ij}$ γ_{ij} = **anomalous dimension matrix (=ADM)**

Formal solution of system of coupled 1st order ordinary differential equations (ODE)

$$
C_i(\mu) = \left[U(\mu,\mu_0)\right]_{ij} C_j(\mu_0), \qquad \qquad \left[U(\mu,\mu_0)\right]_{ij} = T_{\mu'} \exp\left[\int_{\mu_0}^{\mu} \gamma^T(\mu') d\mu'\right]
$$

In case of two operators $Q_{\overline{1}}$ and $Q_{\overline{2}}$, leading order RG equation

$$
\mu \sim m_b, \quad \mu_0 \sim m_W, \quad \eta \equiv \alpha_s(\mu_0)/\alpha_s(\mu) \approx 0.55, \quad \eta_{\pm} \equiv (\eta^{6/23} \pm \eta^{-12/23})/2
$$

\n
$$
C_1(\mu) = \eta_{+} C_1(\mu_0) + \eta_{-} C_2(\mu_0) \approx +1.11 C_1(\mu_0) - 0.26 C_2(\mu_0)
$$

\n
$$
C_2(\mu) = \eta_{-} C_1(\mu_0) + \eta_{+} C_2(\mu_0) \approx -0.26 C_1(\mu_0) + 1.11 C_2(\mu_0)
$$

\nSM matching:
$$
C_1^{SM}(\mu_0) = 0 + \mathcal{O}(\alpha_s) \quad \text{and} \quad C_2^{SM}(\mu_0) = 1 + \mathcal{O}(\alpha_s)
$$

\n
$$
\Rightarrow \text{non-zero } C_1 \text{ at scales } \mu < \mu_0 \text{ from "Mixing of } \mathbf{Q}_2 \text{ into } \mathbf{Q}_1
$$

QCD penguin operators: $b \rightarrow s q\overline{q}$

$$
\begin{aligned} Q_{3(5)} &= \left[\overline{s}\gamma_\mu P_L b\right] \sum_q \left[\overline{q}\gamma^\mu P_{L(R)}q\right] \\ Q_{4(6)} &= \left[\overline{s}_\alpha \gamma_\mu P_L b_\beta\right] \sum_q \left[\overline{q}_\beta \gamma^\mu P_{L(R)} q_\alpha\right] \end{aligned}
$$

$$
\begin{array}{c}\nb \rightarrow c_2 \rightarrow s \\
\hline\n\text{g} \\
\text{g} \\
\text{h} \\
\text{g} \\
\text{h} \\
\
$$

▶ 1 is contribution from
$$
C_{3,4,5,6}^{\text{SM}}(\mu_0)
$$

► because
$$
C_2^{SM}(\mu_0) = 1
$$
,
main contr'n from mixing with Q_2

$$
\blacktriangleright \hspace{0.2cm} C_{1}^{SM}(\mu_0) = \mathcal{O}\left(\alpha_{s}\right) \ll C_{2}^{SM}(\mu_0)
$$

$$
\begin{array}{c}\n0.39 \\
\begin{array}{c}\n\downarrow \\
\downarrow \\
\downarrow \\
\end{array}\n\end{array}
$$

$$
\mu \sim m_b, \quad \mu_0 \sim m_W, \quad \text{using } C_{3,4,5,6}^{\text{SM}}(\mu_0)
$$

$$
C_3(\mu) = +0.0010 \left[1 - 1.5 C_1(\mu_0) + 12.6 C_2(\mu_0) \right]
$$

$$
C_4(\mu) = -0.0017 \left[1 - 2.0 C_1(\mu_0) + 16.0 C_2(\mu_0) \right]
$$

$$
C_5(\mu) = +0.0004 \left[1 - 1.5 C_1(\mu_0) + 19.2 C_2(\mu_0) \right]
$$

$$
C_6(\mu) = -0.0027 \left[1 - 1.5 C_1(\mu_0) + 12.6 C_2(\mu_0) \right]
$$

at
$$
\mu_0
$$
: -3 $C_{3,5}^{SM} = C_{4,6}^{SM} = \frac{\alpha_s(\mu_0)}{8\pi} \widetilde{E}_0(x_t)$ and $\widetilde{E}_0(x_t) \approx -1$

These operators are most relevant for $B \to K + (\pi, \rho, \ldots)$ or $B \to K^* + (\pi, \rho, \ldots)$

Electro- and chromo-magnetic dipole operators: *b* **→** *s*γ **and** *b* **→** *sg*

$$
Q_{7\gamma} = \frac{e}{(4\pi)^2} m_b [\bar{s}\sigma^{\mu\nu} P_B b] F_{\mu\nu} \qquad Q_{8g} = \frac{g_s}{(4\pi)^2} m_b [\bar{s}_{\alpha}\sigma^{\mu\nu} P_B T_{\alpha\beta}^a b_{\beta}] G_{\mu\nu}^a
$$

$$
\mu \sim m_b, \quad \mu_0 \sim m_W, \quad \text{using} \quad C_{7\gamma}^{\text{SM}}(\mu_0) = -0.19 \qquad \text{and} \qquad C_{8g}^{\text{SM}}(\mu_0) = -0.05
$$

$$
C_{7\gamma}(\mu) \approx -0.13 + 0.02 C_1(\mu_0) - 0.19 C_2(\mu_0) \stackrel{\text{SM}}{=} -0.32
$$

$$
C_{8g}(\mu) \approx -0.03 + 0.10 C_1(\mu_0) - 0.09 C_2(\mu_0) \stackrel{\text{SM}}{=} -0.12
$$

Electro- and chromo-magnetic dipole operators: $b \rightarrow s\gamma$ and $b \rightarrow sg$

$$
Q_{7\gamma} = \frac{e}{(4\pi)^2} m_b \Big[\overline{s} \sigma^{\mu \nu} P_B b \Big] F_{\mu \nu} \qquad Q_{8g} = \frac{g_s}{(4\pi)^2} m_b \Big[\overline{s}_{\alpha} \sigma^{\mu \nu} P_B T_{\alpha \beta}^a b_{\beta} \Big] G_{\mu \nu}^a
$$

$$
\mu \sim m_b, \quad \mu_0 \sim m_W, \quad \text{using} \quad C_{7\gamma}^{\text{SM}}(\mu_0) = -0.19 \qquad \text{and} \qquad C_{8g}^{\text{SM}}(\mu_0) = -0.05
$$

$$
C_{7\gamma}(\mu) \approx -0.13 + 0.02 C_1(\mu_0) - 0.19 C_2(\mu_0) \stackrel{\text{SM}}{=} -0.32
$$

$$
C_{8g}(\mu) \approx -0.03 + 0.10 C_1(\mu_0) - 0.09 C_2(\mu_0) \stackrel{\text{SM}}{=} -0.12
$$

 \Rightarrow a 10% change in $C_2^{\text{NP}}(\mu_0) \approx 0.1$ w.r.t. SM gives

- **▶ 6% effect on** $C_{7\gamma}(\mu)$
- ▶ 12% on *Br*($B \rightarrow X_s \gamma$) $\propto |C_7(\mu)|^2$

example of strong "indirect constraints" on $C_2(\mu_0)$ from $Br(B \to X_s \gamma)$

Semileptonic: $\mathbf{b} \to \mathbf{s} \, \ell^+ \ell^-$

$$
Q_9 = [\overline{s}\gamma_\mu P_L b] \sum_\ell [\overline{\ell}\gamma^\mu \ell]
$$

In SM (μ = 5 GeV, μ_0 = 160 GeV)

 $\widetilde{C}_1^{(0)}(\mu_0) = 0, \quad \widetilde{C}_2^{(0)}(\mu_0) = 1, \quad \widetilde{C}_1^{(1)}(\mu_0) = 23.3, \quad \widetilde{C}_4^{(1)}(\mu_0) = 0.5, \quad C_9^{(1)}(\mu_0) = 1.5$ The $LL + NLL$ piece

 $C_9(\mu) = 4.50 \, \widetilde{C}_1^{(0)}(\mu_0) + 1.89 \widetilde{C}_2^{(0)}(\mu_0) + 0.04 \, \widetilde{C}_1^{(1)}(\mu_0) - 0.03 \, \widetilde{C}_4^{(1)}(\mu_0) + C_9^{(1)}(\mu_0)$ $\frac{SM}{2}$ 0. + 1.89 + 0.92 – 0.02 + 1.47 = 4.26

Note: Here used Chetyrkin/Misiak/Münz [hep-ph/9612313] operator definition of *Q*¹ , . . . , *Q*⁶

$$
\widetilde{Q}_1 \equiv [\overline{s}\gamma_\mu P_L \mathbf{T}^a c][\overline{c}\gamma^\mu P_L \mathbf{T}^a b] \quad \text{and} \quad \widetilde{Q}_2 \equiv [\overline{s}\gamma_\mu P_L c][\overline{c}\gamma^\mu P_L b]
$$

\n
$$
\textcircled{a} \text{LO:} \quad \widetilde{C}_1^{(0)} = 2C_1^{(0)} \quad \text{and} \quad \widetilde{C}_2^{(0)} = C_1^{(0)}/3 + C_2^{(0)}
$$

Have EFT Lagrangian! What next?

Outlook . . .

What is achieved via EFT:

- \blacktriangleright decoupled heavy degrees of freedom for process $\ll m_W$
- $▶$ restricted to most relevant dim $≤$ 6 operators
- ▶ RG equation resums large log's $\alpha_s^n \ln(m_b/m_W)^n$ to all orders in α_s
- EFT allows to include BSM effects via new operators model-independently

Need predictions of observables

- ▶ example of muon decay is "trivial" as only QED involved ⇒ in principle perturbative
- **▶** processes with quarks involve QCD: quarks are not free, but confined at $\ll m_W$!!! external states are mesons/baryons ⇒ nonperturbative

Nonperturbative methods and/or reliable parametrizations + phenomenology required