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Standard Model
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Lecture 4

fﬁfecﬁve Tﬁeory above
the electroweak sca[e,
or SMEFT et al



Standard Model
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—(aY,qH + dY,H'q+eY,H'l+h.c.)
+D,H'D'H + upH'H — A(H'H)?

Y o .
D,uf= a,uf_ lgsG,qu_ lgLW,u?f_ ngB,uYf
Ve, =0,Vi— 0o, Vi + gf " ViVe

18 free parameters (19 together with 8qcp) all of them measured with a good precision



Motivation to go beyond the Standard Model

® The Standard Model has been totally successful in describing all collider and
low-energy experiments. Discovery of the 125 GeV Higgs boson was the last
piece of puzzle to fall into place

® On the other hand, we know for a fact that physics beyond the SM exists
(neutrino masses, dark matter, inflation, baryon asymmetry). There are also
some theoretical hints for new physics (strong CP problem, flavor hierarchies,
gauge coupling unification, naturalness problem)

® But there isnt one model or class of models that is strongly preferred, at this
moment. We need to keep an open mind on many possible forms of new physics
that may show up in experiment. This requires a model-independent approach

® Currently, the leading model-independent tool to parametrize the possible
effects of heavy new physics is effective field theory



EFT approach to BSM
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“a=-t 3w 3 ovns  gmme

VeB,W',G* feq.ud,le .
—(aY,qH +dY,H'q +eY,H I +h.c.) ‘quoﬂ

+D,H'D'H + upH'H — A(H'H)?
In the EFT approach, we assume that the particle spectrum is that of the SM,
In some energy regime between the weak scale and the cutoff A, where A >> mz.

Zerr = ZLsm + AL gsum
e \

Known SM All possible interactions

Lagrangian between the SM fields
not present in the SM

Remains to choose some power counting to organize Afgsv in a systematic expansion



Linear vs non-linear

Two mathematical formulations for effective theories with SM spectrum

| Non-linearly realized |
electroweak symmetry

ey veaized | 3

L electroweak symmetry| ‘ 5 {

SU(3)c x SU(2)L x U(1)y SU(3)c x U(1)em
LeSUQ2); ReUQ)y

H— LH U — LURT h— h

1255 GeV Higge b /
( j Gl :"G%< eV Higgs boson
Goldstone bosons (. ir%c?
2 V+h+lG3 eaten by W and Z U:exp(> )

In general, the two formulations lead to two distinct effective theorles\

Expansion
parameter
v &~ 246 GeV

Higgs VEV
v~ 246 GeV




Linear vs non-linear: Higgs self-couplings

In the SM Lo dm?|H|*> = 1| H|”
self-coupling i 5 ,
completely fixed... m m
PRy o ——m2h? — —pd =
2 2v 8v?2
...but they can be deformed by BSM effects
SMEFT HEFT
Pomerr = Ly — —= | H|° + 6(A) e Mg g g
SMEFT — SM A2 ZHEFT D — 632—h — ¢y @h —7h - ?h + ...

m7 m? A A

Lovprr D — —(1 + SA)h® — —(1 + 54 )h* = =h® — 226
2v 8v2 % V2

2¢ v 12¢,v* 3cev? CeV*

5/13= ,5/14= ,/15= ,/16=_

mZA\? m?A\? 4A2 82

SMEFT: Predicts correlations between self-couplings
aslongas A>>v

HEFT: no correlations between self-couplings



Linear vs non-linear

SMEFT and HEFT lead to a vastly different
phenomenology at the electroweak scale

Choosing SMEFT or HEFT implicitly entails an
assumption about a class of BSM theories that we want
to characterize

SMEFT is appropriate to describe BSM theories which
can be parametrically decoupled, that is to say, where the
mass scale of the new particles depends on a free
parameter(s) that can be taken to infinity

Conversely, HEFT is appropriate to describe non-
decoupling BSM theories, where the masses of the new
particles vanish in the limit v—0



Example: cubic Higgs deformation

Consider a toy EFT model where Higgs cubic (and only that) deviates from the SM

2

2V

2 m2 m2
Vi) = 252 4 20 (14 AL) B3 4 B
(") 2 2V< 3> 8v2

This EFT belongs to the HEFT but not SMEFT parameter space



HEFT = Non-analytic Higgs potential

2 2 2
mj ., M, s My,
Vih) = —h+—(14+A,) h° 4 h (1)
() 2 v (1+4) Sv2

Given a Lagrangian for Higgs boson h, one can always uplift -;—
it to a manifestly SU(2)xU(1) invariant form by replacing h —> 2H H — V

After this replacement, Higgs potential contains terms non-analytic at H=0

5 2 3
m
V(H) = M (ZHTH V2) +A3 (\/ZHTH V) (2)
Qy2 2V
| | o 1 0
(1) and (2) are equal in the unitary gauge i \/5 v+ h

Thus, (1) and (2) describe the same physics




Non-analytic Higgs potential

2 2

m 3
HY = % (0t —v2) + A ( HH — )
V(H) 8V2( v)+32V\/ v

In the unitary gauge, the Higgs potential looks totally healthy and renormalizable...

Going away from the unitary gauge:

1 G, + G,
H=—— ,
V+h+iGy

3
V> A3 <\/(h+v)2+G2 )
G252Gi2

Away from the unitary gauge, it becomes clear that the Higgs potential contains
non-renormalizable interactions suppressed only by the EW scale v

3m? G*h? 3m2 & [/ =h\"
VoA, i FO(GY) = A =G (—) + 6(GY)
4 - \Y

4v h+v



Multi-Higgs production

Consider VBF production of n > 2 Higgs bosons: VLVL — n X h

By the equivalence theorem, '
at high energies the same as GG - nXh Vi a2 B
- o —
Expanded potential contains interactions ‘/!b# a s
o0 s -

2 . n -
Vo= A;%sz (—h) wpd® -
\%
n=2

leading to interaction vertices with
arbitrary number of Higgs bosons

nlmg

M(GG = h..h) ~ A,

n

Vn

Amplitudes for multi-Higgs production in W/Z boson fusion are only
suppressed by the scale v and do not decay with growing energy,
leading to unitarity loss at some scale right above v



Unitarity primer

symmetry factor

S matrix unitarity  gTg — | for n-body final state

implies relation between forward scattering amplitude,
and elastic and inelastic production cross sections

2ImA(p1py = P1P2) = Sz[dnz | M (pypy — ki) 2 + Z SanHn | My py — k.. k) B

Equation is “diagonalized” after
initial and final 2-body state are projected into partial waves

S2

\/ A2 7 cos 0P (cos z
al(s):m—ﬂ 1—T/_1dcos P(cos 0) M(s,cosb),

2Ima; = af + ) S, | dIL,, | 4|

This can be rewritten as the Argand circle equation

(Rﬁdl)z + (Imal — 1)2 — Rz, R12 = 1 — Z Sannn ‘ %}nelastic ‘2



Unitarity primer

Argand circle equation

(Real)z ~+ (Imal — 1)2 = Rz, R12 — 1 — Z Snjdnn ‘ ﬂ}nelastic ‘2

implies constraints on both
elastic and inelastic amplitudes Often used

Argan& circle shrinks

| Req, |

IN
(W

in the presence of

inelastic channels

IN
W

Z S | 411 | %ilnelastic ‘2

Re(a)

/

Often forgotten




Unitarity constraints on inelastic channels

Unitarity (strong coupling) constraint on inelastic multi-Higgs production

o0 o0

¥ [ 166~ P = ¥ —v,0/5)1G6 ~ i £ o)

n!

n=2 n=2
n—2 n—2
Volume of phase space _ _ S R
in the massless limit: V”(\/E) B Jdnﬂ 2= D =2)4rn)2=3  (n)2(4x)n

In a fundamental theory,
2 — n amplitude must decay as 1/sn/2-1
In order to maintain unitarity up to arbitrary high scales

Process Unitarity limit
2 — 2 1
23 1/s1/2

24 1/s




Unitarity constraints on HEFT

— |
Unitarity equation Z gVn(\/;) | M (GG — h") |2 < 0O(1)
n=2
n'm?
Our amplitude MGG = h...h) ~ A3 h
~ —— - Vn
n
— | — | s 2 (n)’m}  Asm) s
o)z Y —V MGG — I |* ~ AZ ~
( )Nggn! (VMGG = i) Z;n! (D)2(@mn 3 v 2 eXp[(4nv)2]

In model with deformed Higgs cubic, multi-Higgs amplitude do not decay with energy
leading to unitarity loss at a finite value of energy

Unless A3z is unobservably small, unitarity loss happens at the scale4 v~ 3 TeV !



Linear vs non-linear summary

EFT with non-linearly realized electroweak symmetry (aka HEFT) is
equivalent to EFT with linearly realized electroweak symmetry but whose
Lagrangian is a non-polynomial function of the Higgs field that is non-
analytic at H=0

This non-analyticity leads to explosion of multi-Higgs amplitudes at the
scale 4 v . For this reason, the validity regime of HEFT is limited below
the scale of order 4 v ~ 3 TeV

HEFT is useful to approximate BSM theories where new particles’ masses
vanish in the limit v = 0, e.g. SM + a 4th generation of chiral fermions

On the other hand, an EFT with linearly realized electroweak symmetry
and the Lagrangian polynomial in the Higgs field (aka SMEFT) is useful to
approximate BSM theories where new particles’ masses do not vanish in
the limit v = 0, and thus can be parametrically larger than the
electroweak scale, e.g. SM + vector-like fermions

In the following we forget HEFT and focus on SMEFT
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Assumptions: <«
1) At energies E < A no other degrees of freedom than those of the SM
2) Masses of BSM particles entering at the scale A do not vanish in the limitv = 0

Then we can organize the EFT as an expansion in 1/A,
where each term is a linear combination of SU(3)xSU(2)xU(1) invariant operators
of a given canonical dimension D

1 1 1 1
ZsmerT = ZLsm T ngks | A23D=6 | A3 2 p7 A43D=8 T
Known SM
Lagrangian Higher-dimensional

SU(3)c x SU(2). x U(1)vinvariant
interactions added to the SM

At each order we should include a complete and non-redundant set of operators
eventually subject to some additional global symmetries




SMEFT

* |n a sense, the future of particle physics is
about determining the Wilson coefficients of
all these higher-dimensional operators

* More optimistically, probing an operator
suppressed by the scale A corresponds, in a
way, to performing an experiment at an
experiment at the energy scale A. The
exciting point is that in many cases A >> TeV,
thus we are not limited by the LHC reach in
exploring high energies!

* EFT language does not describe all possible
form of new physics. However it is a very
universal language that allows us to
systematize our thinking and better plan and
design future experiments




SMEFT at dimension-5

1 1 1
ZsmEFT = ZLsm T | Z pg A33D=7 | e D=

0
H

i v’ ) <V/ﬁ>
—WLH)(LH)+h.c. > c¢c.—vuv.+h.c.

l 7 ] 1] v
A A L — (el)

® At dimension 5, the only operators one can construct are the so-called Weinberg

operators, which break the lepton number

® Aftfer electroweak symmetry breaking they give rise to Majorana mass terms for
the SM (left-handed) neutrinos

® Neutrino oscillation experiments strongly suggest that these operators are present
(unless neutrino masses are of the Dirac type)

This is a huge success of SMEFT: corrections to the SM Lagrangian predicted
at the leading order in the EFT expansion, are indeed observed in experiment!



SMEFT at dimension-5

2 1‘11.3 — r;rt2
7 ~ Ly +h =
SMEFT :) Cl:i A 1% lI/ ] + . C. Normal == Y- Inverted
Gl olar-7x10 JeV2 |
Neutrino masses or most likely in the 0.01 eV - 0.1 eV ballpark atmospheric i
(while the lightest neutrino may even be massless) ~2x107%V? atmospheri
m.);?___ e ~2x1073eV?2
: lar~Tx10-%eV?
It follows that A /cij ~ 1015 GeV -i&—
One problem now: i i 0 " 0
—_ _ | | |
Lswierr = Lsm+ L p=s + Lot 5Ly + 7 Lmg + -

If this is really the correct expansion, then we will never see any other effects
of higher-dimensional operators, except possibly of baryon-number violating ones :/

However, it is possible that there is more than one mass scale of new physics

Dimension-5 interactions are special because they violate lepton number L.
If we assume that the mass scale of new particles with L-violating interactions is A,
and there is also L-conserving new physics at the scale A << AL, then the expansion is

1 1 | 1
Z sMEFT = Z'sM 1 ALgD=5 | Ang:6 | A%QCZD=7 | IX

Lpg+ ...



1 1 1 1
Z smepT = ZLsm A Z' p-s Z |

Lpg+ ...

. * *
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'o‘ '_ " ‘. e, .
K . ., . .., Yukawa
- . c
v << 1\ << Al 0"’ - “; ”’ T, LY [OZH]IJ HTHeIIzWJ
- l / K . . ., T, . (Ol gl | HTHuGH g,
* - ]
R - % ‘. Tl ‘A (Olyls | HYHA5H'q
* . *
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K . ’, *. (Ot | itioutsHI Dyt Oyl | ejowH o W,
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H—I— H 3 'S . "‘ [Omulrs iu?auﬂf,HTS;H (Ol | dsoTHYq; GS,
Al — — . .
H s ., Ondis | idSo,dsHID,H Ollis | dsoHlaiq, Wi,
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*
% i Table 2.3: Two-fermion D=6 operators in the Warsaw basis. The flavor indices
*
-’ ' |:| ‘. . denoted by I, J. For complex operators (Op,q and all Yukawa and dipole operat.
* . the corresponding complex conjugate operator is implicitly included.
. * _ _ _ _
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O- MV MV Table 2.%  Four-fermion D=6 operators in the Warsaw basis. Flavor indices a
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Odun ={d°°) (u€)




From operators to observables

Two Kinds of effects|

New m’rerac’rlons Correc’rlons ’ro
~ not present in ~ strength of |
- SM Lagrangian SN\ interactions :



New interactions

1. New vertices e.g.

In particular, violation of
global symmetries of the SM

2. New Lorentz structures

in addition to

in particular, violation of CP

h
|H|® - hf _|_3Vh5 h\\ Ve
A2 T 8AZ T 4A2 e 9%
he’ ,
h
C jc
e. —u‘d‘u
& A2
e L|H| W W 2V —hWWrW- +
- 8- A2 AL A2 7% ,uv
LS R -
_szWu WM present in the SM
»
3zsm9
[ k 1% _
e.g. —€uW, W W — Wi W, F,, +

2A?2



Modified interaction strength

There are 3 ways higher-dimensional operators may modify SM interaction strength

1. Directly: after electroweak symmetry breaking, an operator contributes to a
gauge or Yukawa interaction already present in the SM

2. Indirectly: after electroweak symmetry breaking, an operator contributes to the
kinetic term of a SM field, thus effectively shifting the strength of all
interactions of that field

3. Stealthily: after electroweak symmetry breaking, an operator contributes to an
experimental observable from which some SM parameter is extracted



Modified interaction strength: directly

L
Example: Ee ryien(H TDMH -D,H "H)

>
v
After electroweak symmetry breaking i(H'D,H - D ,H'H) — — 7\/ g+ 82, + ...

iCHe ) : : Vz\/gl% T g% _
v egyter(H'D,H— D H'H) - — cy, A2 ery erZ,

This adds up to the . _
weak interaction in the SM \/ gf + g% (7}3 — sin® OwQr + 5g4 )f}/”fZM

2

\Y%
Thus cHe can be constrained, e.qg.,

S Ze — —Cyy ——
SR He 2 A2 form LEP-1 Z-pole data




Modified interaction strength: indirectly

Example: (HTH) (HTH)

This contributes to the kinetic term of the Higgs boson

Cy ; ; Cy V2 )
F(H H[(HH) - e (9,h)
Together with the SM kinetic term:
1 ZCHDV2
< SMEFT 2 5(0,/1)2(1 By )

To restore canonical normalization, we need to rescale the Higgs boson field:

C V2
h—>h<1 | f )
A2

This restore canonical normalization of the Higgs boson field,
up to terms of order 1/A4, which we ignore here




Modified interaction strength: indirectly

2
h— hl 1 - CHOY After this rescaling, the dimension-6 contributio
' vanishes from the Higgs boson kinetic term

However, it resurfaces in all Higgs boson couplings present in the SM !

2
—[ZmWW+W + m% /4] — fl, (1 + CHEZV ) [ZmWW+W + m%Z Z]

2
CV

> mfff

Hence, the Higgs boson interaction strength predicted by the SM is universally shifted

— '_>ﬁ<1
meff \%

LHC measurements of the Higgs signal strength provide a bound on the Wilson coefficient

2
Cyr—V
p=1.09 = 0.11 HA2 —0.09+0.11
or, equivalently CH_ — 1 + 1

A2  (820GeV)? (740GeV)?

Higgs measurements only probe new physics scale of order a TeV



Modified interaction strength: stealthily

Consider the dimension-6 operator | H TDIMH ‘2

After electroweak symmetry breaking:

\ cupV (87 + 8PV’

CHD | 17+ 2
FlH D,,tHl v . 2,2,+ ...

(g2 + g2)v? CrrV2
Thus it modifies the Z boson mass: m% = oL 4gY I+ ZD\Z

We have this very precise O(10-4) measurement of the Z boson mass

m, = (91.1876 + 0.0021) GeV

From which we find the very stringent constraint

C 1
| _

A2 T (26 TeV)?




Modified interaction strength: stealthily

Consider the dimension-6 operator | H TDIMH ‘2

After electroweak symmetry breaking:

CHDV2 (gl% + gI%)V2
5 Z /Z + ...
2A\2 8 woK

CHD | 17+ 2
FlH D H|

Thus it modifies the Z boson mass:

We havethis v,

No!




Modified interaction strength: stealthily

Consider the dimension-6 operator | H TDIMH ‘2

After electroweak symmetry breaking:

\ cupV> (87 + 8PV’

CHD | 1yt 2
FlH D,,tHl v . 2,2, + ...

( 2 4 2)V2 CorrV2
Thus it modifies the Z boson mass: m% = oL 4gY 1+ ZD\Z

We cannot use the Z-boson mass measurement to constrain new physics
because, it is one of the inputs to determine the electroweak parameters of the SM

Inthe SM: G, =

\/EVZ gL — 06485
. ¢2g2 gy = 0.3580
4r(gt + &7) v = 246.22 GeV

, (g + gV’
My = A with very small errors




Modified interaction strength: stealthily

‘ H T D H |2 In the presence of our dimension-6 operators, the relation between
H electroweak couplings and observables is disrupted

1 o= 818y 2 (87 + &9)V° <1 N CHDV2>
\V2v2 4n(g? + g7) g 4 2A2

Now we cannot assign numerical values to the electroweak parameters, because they depend on cHp

GF=

A useful trick is to get rid of the dimension-6 pollution in the input equations
by redefining the SM electroweak parameters

g — 3 <1 _ Crip8iV’ ) gy = <1 n CHp&YV’ >
L L Y Y
4(gz — 87)A\? 4(g7 — 87)A\?

For the twiddle electroweak parameter, we can now assign numerical values

Gp = :
Vv g, = 0.6485
__ Gk gy = 0.3580
@+ g '
@i v =246.22 GeV
m; =

4 same as in the SM



Modified interaction strength: stealthily

Z mass cannot be used to constrain new physics, because it was already used to set
numerical values for the twiddle electroweak parameter

But new physics emerges now in other observables, e.g. in the W mass

8V _ 81V (1 Crip8iV” ) _ 81V (1 Crip8iV” )
A(8r — g\ 481 — 8PN

My, =

2

2 2
We can now use the experimental measurement of the W mass

my, = (80.379 £0.012) GeV

to constrain the Wilson coefficients

1 Crp 1

< —X<
(7 T@V)z AT (12 TGV)Z at 1 sigma

Numerically very different constraint than what one would (incorrectly) obtain from Z mass!



Modified interaction strength: stealthily

Corollary: relation between Wilson coefficients and interaction strength in the
Lagrangian depends on the input scheme

Sector Electroweak Flavor
SM parameters Y I Y Y \Y% )« /1 A PN
ET:SLTG GF G(O) m, ny, T(K — jw,)/T(r — m,), T(B — 11,), AMg, AM,.




Modified interaction strength

All of these effects: new vertices and Lorentz structures

+ direct, indirect, and stealthy shifts of the SM interaction strength,

often operate simultaneously

Example, Higgs interactions with gauge bosons in dimension-6 SMEFT:

f
Ly =_"[2(1 + 8, )My WIW, + (14 d¢,)m% 2,2,

qr
2

+ng JS Ga Ga

Lot~ p

q T '
IA!}!UPVILV + "UJ’(L' QI V[/ﬂ!!/ I/‘ MY + (71!|_|9I (I/{ a If‘;pll/ + }1 )

2

e €qgr.

IA}:.VA/M/ o szy z‘ie Zy.uA;n/ + C:z 4Jé;2 lfpulfpv
+FzE]gIZ ay Z;.w I FWDQLQYZ Oy, A,u.u

2

2

€ a £ 1 . eqr. 9 i
+c.'70 Jq G;qu/ 2 C’)"}'_A)J.VA(;.V +c 2 Z A, + C;» J—L
4 ¥ 2cy 4c2

+Cow

+ C"D"}'

ZiiZeie]

Important to properly evaluate all these effects, to correctly capture the correlations

between various couplings predicted by SMEFT



Bosonic CP-even

(H'H)?
(HTH)O(HTH)
D,
H'HGS,G4,
HTHW}, W},
H'H By, B,

H'o"HW}, B,
zngz WJ Wk

Warsaw Basis

Bosonic CP-odd

»,a : :.{:f; | ™
b S
J il e AN
li ’

- ———— ot = Y-

HYHGe,Ge,
HIHW!,W},
H'H B,,B,.,
H'o'HW},B,,

Yukawa
(07,11 | HTHeSHT
0! 11y | HYHuSH'q,
(O )1y | HTHdSH g,

Vertex

[022 1J

[ (3) 1

[ HellJ

Dipole

il15,0,HI D, H 0511
if]diﬁuéjﬂTaiﬁ“H [OeB]IJ
ieSo 65 Hi Dy H 0! cl1s
i@%QJHTE)H 0! 11

eSouwHia W,
5o, H 0B,
u?awT“ﬁTqJ wa

u§o,, Hiolqy Wi

pu
facha Gb Ge¢

vp™ pp

icjjaiﬁﬂqJHToiEjH [OLB]IJ
wlis | o5 HID,H Ol
idso,ds H D, H
iuSo,dSHT D, H

u?au,,ﬁTqJ B,
o, T*Hiq; G,
df,UWﬁTJqu Wﬁy

(3)
facha Gb Ge [OHqI

)
il
)
ez‘jk’Wz‘ Wi, Wk, [OS;]IJ
vp' pp On ]]
]

Table 2.2: Bosonic D=6 operators in the Warsaw basis.

[Owndlrs 0% 11s

(RR)(RR) [OHud]IJ [OIIB]IJ d?UWHTQJ B;UJ

Oee n(e‘o,e%)(eo,e”) Oye
Ouu (

I_L (u Juﬂc) O,
Odd (dcdud

(d°c,,d°)

Table 2.3: Two-fermion D=6 operators in the Warsaw basis. The flavor indices are
denoted by I, J. For complex operators (Op,q and all Yukawa and dipole operators)
the corresponding complex conjugate operator is implicitly included.

)
)

Oey (e¢o,€%)(u‘o,uc) Ocq
e‘o,ef)(d°o,d°

Oed ( ¢ ”—c d 7) Oqu

)(do,d°) 04

qu

Ao, T°d°) Oy
o,

Oua (u¢o,t

/ c a
O.q | (wfo,Tu’

X
X Full set has 2499 distinct operators,
including flavor structure and CP conjugates

(LL)(LL)
(Ea“ )(fau ) Oquqd

1(46,9)(40,.q) Oguqd
1(46,0°9)(45,.0"q) Otequ
(€6,,0)(35,.9) Olequ
(lo,0'0)(Go,0%q) Otedg

Other options are the SILH basis,
HISZ basis, Higgs basis, ...
though all of the above much less used

Table 2.4: Four-fermion D=6 operators in the Warsaw basis. Flavor indices are
suppressed here to reduce the clutter. The factor 7 is equal to 1/2 when all flavor
indices are equal (e.g. in [Oee1111), and 7 = 1 otherwise. For each complex operator
the complex conjugate should be included.

Alonso et al 1312.2014, Henning et al 1512.03433



To square or not to square

1 1 1 1

gSMEFngSM+X°CZD=5 F—Zp=¢ + 5L p=7 A431):8"‘

A? A3

1
A2

Mg

Amplitude truncated at dimension 6: M — M SM I

Observables depend on amplitude squared:

[ M|* = | Mgy 1> + — (MeMgy + MgMgy, )

1 2
| M|
A2 A4

SM prediction dimension-6 correction Should | keep this???

Yes, if SM contribution is zero, as for example in flavor-violating Higgs decays
Yes, if you can argue that dimension-8 contribution is suppressed wrt to dimension-6 squared
Otherwise, no, except to evaluate you uncertainty due to higher orders in SMEFT.



Beyond dimension-6 ?
1 1 1 1

QSMEFT=°CZSM+X31)=5 F—Zp=¢ + 5L p=7 A431):8"‘

A? A3

As of now:
- The size of a SMEFT operator basis is known for any reasonable dimension DC
= A concrete basis of operators has been constructed up to dimension 9

When it makes sense to include operators with dimension higher than six,
in a phenomenological analysis ?



Beyond dimension-6 ?
1 1 1 1

ESMEFngSM"I'X‘SZD:S F—Zp=¢ + 5L p=7 A431):8"‘

A? A3

Sometimes, a qualitatively new phenomenon arises at higher dimensions

At tree level, light-by-light scattering
receives contribution from dimension-8, 2
which in some situations may compete with 3D=8 D (BMVBﬂv) T
lower order loop contributions

Neutron-antineutron oscillations _
arise at dimension-9 L =9 D €4pc€aer(dd)(qpq.)(q.95) + -

In all such cases however, you need to argue why you don’t expect
any larger effects of new physics from operators of lower dimensions



Thank You



