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Standard Model

ℒSM = −
1
4 ∑

V∈B,Wi,Ga

VμνVμν + ∑
f∈q,u,d,l,e

if̄γμDμ f

−(ūYuqH + d̄YdH†q + ēYeH†l + h . c . )
+DμH†DμH + μ2

HH†H − λ(H†H)2

Dμ f = ∂μ f − igsGa
μTaf − igLWi

μ
σi

2
f − igYBμYf

Va
μν = ∂μVa

ν − ∂νVa
μ + gf abcVb

μVc
ν

18 free parameters (19 together with θQCD) all of them measured  with a good precision 



• The Standard Model has been totally successful in describing all collider and 
low-energy experiments. Discovery of the 125 GeV Higgs boson was the last 
piece of puzzle to fall into place


• On the other hand, we know for a fact that physics beyond the SM exists 
(neutrino masses, dark matter, inflation, baryon asymmetry).  There are also 
some theoretical hints for new physics (strong CP problem, flavor hierarchies, 
gauge coupling unification, naturalness problem)


• But there isn’t one model or class of models that is strongly preferred, at this 
moment. We need to keep an open mind on many possible forms of new physics 
that may show up in experiment. This requires a model-independent approach


• Currently, the leading model-independent tool to parametrize the possible 
effects of heavy new physics is effective field theory 

Motivation to go beyond the Standard Model



EFT approach to BSM

ℒSM = −
1
4 ∑

V∈B,Wi,Ga

VμνVμν + ∑
f∈q,u,d,l,e

if̄γμDμ f

−(ūYuqH + d̄YdH†q + ēYeH†l + h . c . )
+DμH†DμH + μ2

HH†H − λ(H†H)2

ℒEFT = ℒSM + ΔℒBSM

In the EFT approach, we assume that the particle spectrum is that of the SM, 
in some energy regime between the weak scale and the cutoff Λ, where Λ >> mZ .    

Known SM 
Lagrangian

All possible interactions 
between the SM fields 
not present in the SM

Remains to choose some power counting to organize ΔLBSM in a systematic expansion 



Two mathematical formulations for effective theories with SM spectrum

Linearly realized 
electroweak symmetry

Non-linearly realized 
electroweak symmetry

SU(3)C x SU(2)L x U(1)Y SU(3)C x U(1)em

In general, the two formulations lead to two distinct effective theories 

Linear vs non-linear

SMEFT HEFT

125 GeV Higgs boson

Goldstone bosons 
eaten by W and Z U = exp ( iπaσa

v )

⊂

H =
1

2 ( iG1 + G2

v + h + iG3)
U → LUR† h → hH → LH

L ∈ SU(2)L R ∈ U(1)Y

v ≈ 246 GeV
Higgs VEV Expansion 

parameter
v ≈ 246 GeV



SMEFT HEFT

HEFT: no correlations between self-couplingsSMEFT: Predicts correlations between self-couplings 
as long as Λ >> v 

In the SM 
self-coupling  

completely fixed…

…but they can be deformed by BSM effects 

ℒSM ⊃ m2 |H |2 − λ |H |4

→ −
1
2

m2
hh2 −

m2
h

2v
h3 −

m2
h

8v2
h4

ℒSMEFT ⊃ −
m2

h

2v
(1 + δλ3)h3 −

m2
h

8v2
(1 + δλ4)h4 −

λ5

v
h5 −

λ6

v2
h6

ℒHEFT ⊃ − c3
m2

h

2v
h3 − c4

m2
h

8v2
h4 −

c5

v
h5 −

c6

v2
h6 + …ℒSMEFT = ℒSM −

c6

Λ2
|H |6 + 𝒪(Λ−4)

δλ3 =
2c6v4

m2
hΛ2

, δλ4 =
12c6v4

m2
hΛ2

, λ5 =
3c6v2

4Λ2
, λ6 =

c6v2

8Λ2

Linear vs non-linear: Higgs self-couplings



• SMEFT and HEFT lead to a vastly different 
phenomenology at the electroweak scale


• Choosing SMEFT or HEFT implicitly entails an 
assumption about a class of BSM theories that we want 
to characterize


• SMEFT is appropriate to describe BSM theories which 
can be parametrically decoupled, that is to say, where the 
mass scale of the new particles depends on a free 
parameter(s) that can be taken to infinity


• Conversely, HEFT is appropriate to describe non-
decoupling BSM theories, where the masses of the new 
particles vanish in the limit v→0  

Linear vs non-linear



Example: cubic Higgs deformation

Consider a toy EFT model where Higgs cubic (and only that) deviates from the SM

V(h) =
m2

h

2
h2 +

m2
h

2v (1+Δ3) h3 +
m2

h

8v2
h4

ℒ = ℒSM−Δ3
m2

h

2v
h3

This EFT belongs to  the HEFT but not SMEFT parameter space 



HEFT = Non-analytic Higgs potential

V(h) =
m2

h

2
h2 +

m2
h

2v (1+Δ3) h3 +
m2

h

8v2
h4

Given a Lagrangian for Higgs boson h, one can always uplift 
it to a manifestly SU(2)xU(1) invariant form by replacing h → 2H†H − v

V(H) =
m2

h

8v2 (2H†H − v2)2 + Δ3
m2

h

2v ( 2H†H − v)
3

(1)

(2)

After this replacement, Higgs potential contains terms non-analytic at H=0

(1) and (2) are equal in the unitary gauge H →
1

2 ( 0
v + h)

Thus, (1) and (2) describe the same physics



Non-analytic Higgs potential

V(H) =
m2

h

8v2 (2H†H − v2)2 + Δ3
m2

h

2v ( 2H†H − v)
3

H =
1

2 ( iG1 + G2

v + h + iG3)

In the unitary gauge, the Higgs potential looks totally healthy and renormalizable…

Away from the unitary gauge,  it becomes clear that the Higgs potential contains  
non-renormalizable interactions suppressed only by the EW scale v

V ⊃ Δ3
m2

h

2v ( (h + v)2 + G2 − v)
3

V ⊃ Δ3
3m2

h

4v
G2h2

h + v
+ 𝒪(G4) = Δ3

3m2
h

4
G2

∞

∑
n=2

( −h
v )

n

+ 𝒪(G4)

Going away from the unitary gauge:

G2 ≡ ∑
i

G2
i



 Multi-Higgs production

Expanded potential contains interactions

Amplitudes for multi-Higgs production in W/Z boson fusion are only 
suppressed by  the scale v and do not decay with growing energy, 

leading to unitarity loss at some scale right above v

VLVL → n × hConsider VBF production of n ≥ 2 Higgs bosons: 

leading to interaction vertices with  
arbitrary number of Higgs bosons

V ⊃ = Δ3
3m2

h

4
G2

∞

∑
n=2

( −h
v )

n

VL

VL

ℳ(GG → h…h
⏟

n

) ∼ Δ3
n!m2

h

vn

By the equivalence theorem,  
at high energies the same as GG → n × h



S matrix unitarity

implies relation between forward scattering amplitude,  
and elastic and inelastic production cross sections

Equation is “diagonalized” after  
initial and final 2-body state are projected into partial waves

symmetry factor 
for n-body final state

Unitarity primer

This can be rewritten as the Argand circle equation

independently whether the particles are identical or not. The partial wave amplitudes
al are the matrix element of the T operator in that basis:

hE 0, ~p0, l0,m0|T |E, ~p, l,mi = (2⇡)4�3(~p� ~p0)�(E � E 0)�ll0�mm0 al(s). (2.14)

Note that by the Wigner theorem al must be independent of the spin projection m.
The two bases are related by a linear transformation. Consider the center of mass

frame with the direction of the first momentum given by
~k
1

|~k
1

|
= n̂ ⌘ (sin ✓ cos�, sin ✓ sin�, cos ✓).

Such a state can be expressed in the other basis using the spherical harmonics:

|~k
1

~k
2

i = 4
p
2⇡

p
S
2

�
1� 4m2

s

�
1/4

X

lm

Ylm(✓,�)|
p
s, 0, l,mi, (2.15)

where S
2

= 1/2! if |~k
1

~k
2

i contains two identical particles, and S
2

= 1 otherwise.
The pre-factor here ensures the normalization in Eq. (2.13) given Eq. (2.11). UsingR
d⌦Y ⇤

l0m0(✓,�)Ylm(✓,�) = �ll0�mm0 we can invert Eq. (2.15):

|ps, 0, l,mi =
p
S
2

⇣
1� 4m2

s

⌘
1/4

4
p
2⇡

Z
d⌦Y ⇤

lm(✓,�)|~k1~k2i. (2.16)

Given Eq. (2.15), the 2-to-2 elastic amplitude can be expressed by the partial wave
amplitude as

M(~p
1

~p
2

! ~k
1

~k
2

) =
8⇡

S
2

p
1� 4m2/s

1X

l=0

(2l + 1)Pl(cos ✓)al(s). (2.17)

where ✓ is the angle between ~p
1

and ~k
1

. The other way around:

al(s) =
S
2

16⇡

r
1� 4m2

s

Z
1

�1

d cos ✓Pl(cos ✓)M(s, cos ✓), (2.18)

where I used
R
1

�1

d cos ✓Pl(cos ✓)Pl0(cos ✓) =
2

2l+1

�ll0 . It follows that the unit a operator
on the subspace of fixed

p
s can be written in terms of the partial wave states as

1 =
X

l,m

|ps, 0, l,mihps, 0, l,m|+
X

n>2

Sn

Z
d⇧̃

1

. . . d⇧̃n|k1 . . . knihk1 . . . kn|. (2.19)

We can also write the amplitude for a transition between a particular partial wave and
a n-particle state normalized as in Eq. (2.3):

M(
p
s, 0, l,m ! {n}) =

p
1� 4m2/s

p
S
2

4
p
2⇡

Z
d⌦Ylm(⌦)M(k

1

k
2

! {n}). (2.20)

The unitarity condition in Eq. (2.7) evaluated for the in state |E, 0, l,mi becomes:

2Im al = |al|2 +
X

n2inel.

Sn

Z
d⇧n|M(E, 0, l,m ! {n})|2. (2.21)

4

2Imℳ(p1p2 → p1p2) = S2 ∫ dΠ2 |ℳelastic(p1p2 → k1k2) |2 + ∑ Sn ∫ dΠn |ℳinelastic(p1p2 → k1…kn) |2

2Imal = a2
l + ∑ Sn ∫ dΠn |ℳinelastic

l |2

(Real)2 + (Imal − 1)2 = R2
l , R2

l = 1 − ∑ Sn ∫ dΠn |ℳinelastic
l |2



 implies constraints on both  
elastic and inelastic amplitudes

Unitarity primer

Argand circle equation

Re(al)

Im(al)
Argand circle shrinks  

 in the presence of 
 inelastic channels

1

1

2

0

(Real)2 + (Imal − 1)2 = R2
l , R2

l = 1 − ∑ Sn ∫ dΠn |ℳinelastic
l |2

|Real | ≤ 1

∑ Sn ∫ dΠn |ℳinelastic
l |2 ≤ 1

Often used

Often forgotten



Unitarity constraints on inelastic channels

∞

∑
n=2

1
n! ∫ dΠn |ℳ(GG → hn) |2 =

∞

∑
n=2

1
n!

Vn( s) |ℳ(GG → hn) |2 ≲ 𝒪(1)

Unitarity (strong coupling) constraint on inelastic multi-Higgs production 

Volume of phase space 
 in the massless limit: Vn( s) = ∫ dΠn =

sn−2

2(n − 1)!(n − 2)!(4π)2n−3
∼

sn−2

(n!)2(4π)2n

In a fundamental theory,  
2 → n amplitude must decay as 1/sn/2-1  

in order to maintain unitarity up to arbitrary high scales   

Process Unitarity limit
2 → 2 1
2 → 3 1/s1/2

2 → 4 1/s
… …



Unitarity constraints on HEFT

Λ ≲ (4πv)log1/2 ( 4πv
mh |Δ3 |1/2 )

In model with deformed Higgs cubic, multi-Higgs amplitude do not decay with energy 
leading to unitarity loss at a finite value of energy 

ℳ(GG → h…h
⏟

n

) ∼ Δ3
n!m2

h

vn

𝒪(1) ≳
∞

∑
n=2

1
n!

Vn( s) |ℳ(GG → hn) |2 ∼
∞

∑
n=2

1
n!

sn−2

(n!)2(4π)2n
Δ2

3
(n!)2m4

h

v2n
∼

Δ2
3m4

h

s2
exp[ s

(4πv)2 ]

∞

∑
n=2

1
n!

Vn( s) |ℳ(GG → hn) |2 ≲ 𝒪(1)Unitarity equation

Our amplitude

Unless Δ3 is unobservably small, unitarity loss happens at the scale 4 π v ~ 3 TeV  ! 



• EFT with non-linearly realized electroweak symmetry (aka HEFT) is 
equivalent to EFT with linearly realized electroweak symmetry but whose 
Lagrangian is a non-polynomial function of the Higgs field that is non-
analytic at H=0 


• This non-analyticity leads to explosion of multi-Higgs amplitudes at the 
scale 4 π v . For this reason, the validity regime of HEFT is limited below 
the scale of order  4 π v ~ 3 TeV 


• HEFT is useful to approximate BSM theories where new particles’ masses 
vanish in the limit v → 0, e.g. SM + a 4th generation of chiral fermions 


• On the other hand, an EFT with linearly realized electroweak symmetry 
and the Lagrangian polynomial in the Higgs field (aka SMEFT) is useful to 
approximate BSM theories where new particles’ masses  do not vanish in 
the limit v → 0, and thus can be parametrically larger than the 
electroweak scale, e.g. SM + vector-like fermions


• In the following we forget HEFT and focus on SMEFT 

Linear vs non-linear summary



SMEFT

Assumptions:  
1) At energies E < Λ  no other degrees of freedom than those of the SM 
2) Masses of BSM particles entering at the scale Λ do not vanish in the limit v → 0     

Known SM   
Lagrangian Higher-dimensional 

SU(3)C x SU(2)L x U(1)Y invariant  
interactions added to the SM

ℒSMEFT = ℒSM +
1
Λ

ℒD=5 +
1

Λ2
ℒD=6 +

1
Λ3

ℒD=7 +
1

Λ4
ℒD=8 + …

Then we can organize the EFT as an expansion in 1/Λ,  
where each term is a linear combination of SU(3)xSU(2)xU(1) invariant operators 

of  a given canonical dimension D  

At each order we should include a complete and non-redundant set of operators 
eventually subject to some additional global symmetries



• In a sense, the future of particle physics is 
about determining the Wilson coefficients of 
all these higher-dimensional operators


• More optimistically, probing an operator 
suppressed by the scale Λ corresponds, in a 
way,  to performing an experiment at an 
experiment at the energy scale Λ. The 
exciting point is that in many cases Λ >> TeV, 
thus we are not limited by the LHC reach in 
exploring high energies! 


• EFT language does not describe all possible 
form of new physics. However it is a very 
universal language that allows us to 
systematize our thinking and better plan and  
design future experiments 

M. González-Alonso

Summary

SMEFT as a useful framework / tool: 
Efficiency; 
Meaning of SM tests. 
Model-indep. but not assumption indep.! 

LHC bounds (on some interactions!) are very strong,  
but they come with a series of caveats.  
 
[If the applicability of the EFT bounds becomes too  
involved, then the initial motivation is lost…]

Quadratic

Linear

SMEFT



• At dimension 5, the only operators one can construct are the so-called Weinberg 
operators, which break the lepton number


• After electroweak symmetry breaking they give rise to Majorana mass terms for 
the SM (left-handed) neutrinos


• Neutrino oscillation experiments strongly suggest that these operators are present  
(unless neutrino masses are of the Dirac type)

ℒSMEFT = ℒSM +
1
Λ

ℒD=5 +
1

Λ2
ℒD=6 +

1
Λ3

ℒD=7 +
1

Λ4
ℒD=8 + …

cij

Λ
(LiH)(LjH) + h . c . → cij

v2

Λ
νiνj + h . c .

SMEFT at dimension-5

H → (
0

v/ 2)
Li → (νi

ei)

This is a huge success of SMEFT: corrections to the SM Lagrangian predicted 
at the leading order in the EFT expansion, are indeed observed in experiment!



SMEFT at dimension-5

ℒSMEFT ⊃ cij
v2

Λ
νiνj + h . c .

Neutrino masses or most likely in the 0.01 eV - 0.1 eV ballpark  
 (while the lightest neutrino may even be massless)

Dimension-5 interactions are special because they violate lepton number L.  
If we assume that the mass scale of new particles with L-violating interactions  is ΛL,  

and there is also L-conserving new physics at the scale Λ << ΛL , then the expansion is  

ℒSMEFT = ℒSM +
1
Λ

ℒD=5 +
1

Λ2
ℒD=6 +

1
Λ3

ℒD=7 +
1

Λ4
ℒD=8 + …

It follows that Λ /cij ~ 1015 GeV 

One problem now:

If this is really the correct expansion, then we will never see any other effects  
of higher-dimensional operators, except possibly of baryon-number violating ones :/ 

However, it is possible that there is more than one mass scale of new physics

ℒSMEFT = ℒSM +
1

ΛL
ℒD=5 +

1
Λ2

ℒD=6 +
1

Λ3
L

ℒD=7 +
1

Λ4
ℒD=8 + …



SMEFT at dimension-6

ℒSMEFT = ℒSM +
1

ΛL
ℒD=5 +

1
Λ2

ℒD=6 +
1

Λ3
L

ℒD=7 +
1

Λ4
ℒD=8 + …

The fields Gz and G± do not correspond to new physical degrees of freedom (they

kinetically mix with the massive gauge bosons and can be gauged away). From now

on until Chapter 5 I will work in the unitary gauge and set G± = 0 = Gz. The

scalar field h corresponds to a scalar particle called the Higgs boson. Its mass can be

expressed by the parameters of the Higgs potential as

m2
h = 2µ2

H = 2�v2. (2.19)

2.2 Dimension-6 operators

Bosonic CP-even

OH (H†H)3

OH⇤ (H†H)⇤(H†H)

OHD

��H†DµH
��2

OHG H†H Ga
µ⌫G

a
µ⌫

OHW H†HW i
µ⌫W

i
µ⌫

OHB H†H Bµ⌫Bµ⌫

OHWB H†�iHW i
µ⌫Bµ⌫

OW ✏ijkW i
µ⌫W

j
⌫⇢W k

⇢µ

OG fabcGa
µ⌫G

b
⌫⇢G

c
⇢µ

Bosonic CP-odd

O
H eG H†H eGa

µ⌫G
a
µ⌫

O
HfW H†H fW i

µ⌫W
i
µ⌫

O
H eB H†H eBµ⌫Bµ⌫

O
HfWB

H†�iH fW i
µ⌫Bµ⌫

OfW ✏ijkfW i
µ⌫W

j
⌫⇢W k

⇢µ

O eG fabc eGa
µ⌫G

b
⌫⇢G

c
⇢µ

Table 2.2: Bosonic D=6 operators in the Warsaw basis.

We turn to discussing operators with canonical dimensions D=6 in Eq. (2.1).

Their importance for characterizing low-energy e↵ects of heavy particles has been

recognized long ago, see e.g. [21, 35]. More recently, advantages of using a complete

and non-redundant set of operators have been emphasized. The point is that seem-

ingly di↵erent higher-dimensional operators can have the same e↵ect on on-shell am-

plitudes of the SM particles. This is the case if the operators can be related by using

equations of motion, integration by parts, field redefinitions, or Fierz transformations.
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This leads to non-trivial and often counter-intuitive relations between operators. For

example, by using equations of motion one can establish equivalence between purely

bosonic operators, and a linear combination of 2- and 4-fermionic operators! Thus,

starting from the set of all distinct D=6 operators that can be constructed from the

SM fields, a number of these operators will be redundant as they are equivalent to

linear combinations of other operators. The redundant operators can be removed to

simplify the EFT description, and to establish an unambiguous map from observables

to the EFT Wilson coe�cients. A minimal, non-redundant set of operators is called

a basis.

Yukawa

[O†
eH ]IJ H†HecIH

†`J

[O†
uH ]IJ H†HucI

eH†qJ

[O†
dH ]IJ H†HdcIH

†qJ

Vertex

[O(1)
H`]IJ i¯̀I �̄µ`JH† !DµH

[O(3)
H`]IJ i¯̀I�i�̄µ`JH†�i !DµH

[OHe]IJ iecI�µē
c
JH

† !DµH

[O(1)
Hq]IJ iq̄I �̄µqJH† !DµH

[O(3)
Hq]IJ iq̄I�i�̄µqJH†�i !DµH

[OHu]IJ iucI�µū
c
JH

† !DµH

[OHd]IJ idcI�µd̄
c
JH

† !DµH

[OHud]IJ iucI�µd̄
c
JH̃

†DµH

Dipole

[O†
eW ]IJ ecI�µ⌫H

†�i`JW i
µ⌫

[O†
eB]IJ ecI�µ⌫H

†`JBµ⌫

[O†
uG]IJ ucI�µ⌫T

a eH†qJ Ga
µ⌫

[O†
uW ]IJ ucI�µ⌫

eH†�iqJ W i
µ⌫

[O†
uB]IJ ucI�µ⌫

eH†qJ Bµ⌫

[O†
dG]IJ dcI�µ⌫T

aH†qJ Ga
µ⌫

[O†
dW ]IJ dcI�µ⌫H̄

†�iqJ W i
µ⌫

[O†
dB]IJ dcI�µ⌫H

†qJ Bµ⌫

Table 2.3: Two-fermion D=6 operators in the Warsaw basis. The flavor indices are
denoted by I, J . For complex operators (OHud and all Yukawa and dipole operators)
the corresponding complex conjugate operator is implicitly included.

Because of a humungous number of D=6 operators, and because establishing

equivalence between operators may be time consuming, identifying a basis is not a
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(R̄R)(R̄R)

Oee ⌘(ec�µēc)(ec�µēc)

Ouu ⌘(uc�µūc)(uc�µūc)

Odd ⌘(dc�µd̄c)(dc�µd̄c)

Oeu (ec�µēc)(uc�µūc)

Oed (ec�µēc)(dc�µd̄c)

Oud (uc�µūc)(dc�µd̄c)

O0
ud (uc�µT aūc)(dc�µT ad̄c)

(L̄L)(R̄R)

O`e (¯̀̄�µ`)(ec�µēc)

O`u (¯̀̄�µ`)(uc�µūc)

O`d (¯̀̄�µ`)(dc�µd̄c)

Oeq (ec�µēc)(q̄�̄µq)

Oqu (q̄�̄µq)(uc�µūc)

O0
qu (q̄�̄µT aq)(uc�µT aūc)

Oqd (q̄�̄µq)(dc�µd̄c)

O0
qd (q̄�̄µT aq)(dc�µT ad̄c)

(L̄L)(L̄L)

O`` ⌘(¯̀̄�µ`)(¯̀̄�µ`)

Oqq ⌘(q̄�̄µq)(q̄�̄µq)

O0
qq ⌘(q̄�̄µ�iq)(q̄�̄µ�iq)

O`q (¯̀̄�µ`)(q̄�̄µq)

O0
`q (¯̀̄�µ�i`)(q̄�̄µ�iq)

(L̄R)(L̄R)

Oquqd (ucqj)✏jk(dcqk)

O0
quqd (ucT aqj)✏jk(dcT aqk)

O`equ (ec`j)✏jk(ucqk)

O0
`equ (ec�̄µ⌫`j)✏jk(uc�̄µ⌫qk)

O`edq (¯̀̄ec)(dcq)

Table 2.4: Four-fermion D=6 operators in the Warsaw basis. Flavor indices are
suppressed here to reduce the clutter. The factor ⌘ is equal to 1/2 when all flavor
indices are equal (e.g. in [Oee]1111), and ⌘ = 1 otherwise. For each complex operator
the complex conjugate should be included.

be more easily linked to collider observables such as (di↵erential) cross sections and

decay widths.

Deriving collider predictions in an EFT with higher-dimensional operators involves

several subtleties that need to be taken into account.

• In the SM, the electroweak parameters gL, gY , v are customarily determined

from input observables: the electromagnetic coupling constant ↵, the Z boson

mass mZ , and the muon lifetime ⌧µ. In the presence of D=6 operators the

SM relations between the input observables and the Lagrangian parameters

can be distorted. For example, the bosonic operator OHD contributes to the

16



From operators to observables

Two kinds of effects

New interactions

not present in 

SM Lagrangian

Corrections to 

strength of 


SM interactions



New interactions

e . g .
1

Λ2
|H |6 →

h6

8Λ2
+

3vh5

4Λ2
+ …

h

h

h

h

h

h

e . g .
1

Λ2
|H |2 Wi

μνWi
μν →

2v
Λ2

hW+
μνW−

μν + …

 1. New vertices

2. New Lorentz structures

in particular, violation of  
global symmetries of the SM e . g .

1
Λ2

ucdcucec

in addition to 
h
v

2m2
WW+

μ W−
μ present in the SM

in particular, violation of  CP e . g .
1

Λ2
ϵijkWi

μνW
j
νρW̃k

ρμ → −
3i sin θW

2Λ2
W+

μνW−
νρF̃ρμ + …



Modified interaction strength

There are 3 ways higher-dimensional operators may modify SM interaction strength 

1. Directly: after electroweak symmetry breaking, an operator contributes to a 
gauge or Yukawa interaction already present in the SM 

2. Indirectly: after electroweak symmetry breaking, an operator contributes to the 
kinetic term of a SM field, thus effectively shifting the strength of all 
interactions of that field 

3. Stealthily: after electroweak symmetry breaking, an operator contributes to an 
experimental observable from which some SM parameter is extracted



Modified interaction strength: directly

Example:
i

Λ2
ēRγμeR(H†DμH − DμH†H)

After electroweak symmetry breaking i(H†DμH − DμH†H) → −
v2

2
g2

L + g2
YZμ + …

icHe

Λ2
ēRγμeR(H†DμH − DμH†H) → − cHe

v2 g2
L + g2

Y

2Λ2
ēRγμeRZμ

This adds up to the  
weak interaction in the SM g2

L + g2
Y(T3

f − sin2 θWQf + δgZf)f̄γμ fZμ

δgZe
R = − cHe

v2

2Λ2
Thus cHe can be constrained, e.g.,  

form LEP-1 Z-pole data



Modified interaction strength: indirectly

Example: (H†H) □ (H†H)
This contributes to the kinetic term of the Higgs boson

cH□

Λ2
(H†H) □ (H†H) → −

cH□v2

Λ2
(∂μh)2

Together with the SM kinetic term:

ℒSMEFT ⊃
1
2

(∂μh)2(1 −
2cH□v2

Λ2 )
To restore canonical normalization, we need to rescale the Higgs boson field:

h → h(1 +
cH□v2

Λ2 )
This restore canonical normalization of the Higgs boson field,  

up to terms of order 1/Λ4, which we ignore here



h → h(1 +
cH□v2

Λ2 )
Modified interaction strength: indirectly

After this rescaling, the dimension-6 contributio  
vanishes from the Higgs boson kinetic term

However, it resurfaces in all Higgs boson couplings present in the SM !

h
v [2m2

WW+
μ W−

μ + m2
ZZμZμ] →

h
v (1 +

cH□v2

Λ2 )[2m2
WW+

μ W−
μ + m2

ZZμZμ]
h
v

mf f̄ f →
h
v (1 +

cH□v2

Λ2 )mf f̄ f

Hence, the Higgs boson interaction strength predicted by the SM is universally shifted

LHC measurements of the Higgs signal strength provide a bound on the Wilson coefficient

cH□v2

Λ2
= 0.09 ± 0.11

or, equivalently
cH□

Λ2
=

1
(820GeV)2

± 1
(740GeV)2

Higgs measurements only probe new physics scale of order a TeV



Modified interaction strength: stealthily

cHD

Λ2
|H†DμH |2 →

cHDv2

2Λ2

(g2
L + g2

Y)v2

8
ZμZμ + …

|H†DμH |2Consider the dimension-6 operator

After electroweak symmetry breaking:

Thus it modifies the  Z boson mass: m2
Z =

(g2
L + g2

Y)v2

4 (1 +
cHDv2

2Λ2 )
We have this very precise O(10-4) measurement of the Z boson mass 

mZ = (91.1876 ± 0.0021) GeV

From which we find the very stringent constraint

|cHD |
Λ2

≤
1

(26 TeV)2



|cHD |
Λ2

≤
1

(26 TeV)2

Modified interaction strength: stealthily

cHD

Λ2
|H†DμH |2 →

cHDv2

2Λ2

(g2
L + g2

Y)v2

8
ZμZμ + …

|H†DμH |2Consider the dimension-6 operator

After electroweak symmetry breaking:

Thus it modifies the  Z boson mass: m2
Z =

(g2
L + g2

Y)v2

4 (1 +
cHDv2

2Λ2 )
We have this very precise O(10-4) measurement of the Z boson mass 

mZ = (91.1876 ± 0.0021) GeV

From which we find the very stringent constraintNo!

Non!
Nein! Nie!

Нет!

Ni!



Modified interaction strength: stealthily

cHD

Λ2
|H†DμH |2 →

cHDv2

2Λ2

(g2
L + g2

Y)v2

8
ZμZμ + …

|H†DμH |2Consider the dimension-6 operator

After electroweak symmetry breaking:

Thus it modifies the Z boson mass: m2
Z =

(g2
L + g2

Y)v2

4 (1 +
cHDv2

2Λ2 )
We cannot use the Z-boson mass measurement to constrain new physics  

because, it is one of the  inputs to determine the electroweak parameters of the SM 

In the SM: GF =
1

2v2

α =
g2

Lg2
Y

4π(g2
L + g2

Y)

m2
Z =

(g2
L + g2

Y)v2

4

gL = 0.6485
gY = 0.3580
v = 246.22 GeV
with very small errors



Modified interaction strength: stealthily

|H†DμH |2 In the presence of our dimension-6 operators, the relation between 
electroweak couplings and observables is disrupted

GF =
1

2v2

α =
g̃2

Lg̃2
Y

4π(g̃2
L + g̃2

Y)

m2
Z =

(g̃2
L + g̃2

Y)v2

4

g̃L = 0.6485
g̃Y = 0.3580
v = 246.22 GeV

same as in the SM

GF =
1

2v2
α =

g2
Lg2

Y

4π(g2
L + g2

Y)
m2

Z =
(g2

L + g2
Y)v2

4 (1 +
cHDv2

2Λ2 )

A useful trick is to get rid of the dimension-6 pollution in the input equations 
by redefining the SM electroweak parameters 

gL → g̃L(1 −
cHDg2

Lv2

4(g2
L − g2

Y)Λ2 ) gY → g̃Y(1 +
cHDg2

Yv2

4(g2
L − g2

Y)Λ2 )

Now we cannot assign numerical values to the electroweak parameters, because they depend on cHD 

For the twiddle electroweak parameter, we can now assign numerical values



Z mass cannot be used to constrain new physics, because it was already used to set  
numerical values  for the twiddle electroweak  parameter

Modified interaction strength: stealthily

But new physics emerges now in other observables, e.g. in the W mass

mW =
gLv
2

=
g̃Lv
2 (1 −

cHDg2
Lv2

4(g2
L − g2

Y)Λ2 ) =
g̃Lv
2 (1 −

cHDg̃2
Lv2

4(g̃2
L − g̃2

Y)Λ2 )
We can now use the experimental measurement of  the W mass

mW = (80.379 ± 0.012) GeV

to constrain the Wilson coefficients

−
1

(7 TeV)2
≤

cHD

Λ2
≤ −

1
(12 TeV)2 at 1 sigma

Numerically very different constraint than what one would (incorrectly) obtain from Z mass!



Modified interaction strength: stealthily

Corollary: relation between Wilson coefficients and interaction strength in the 
Lagrangian depends on the input scheme

Electroweak FlavorSector

SM parameters gL gY v λ

Example 
Input GF α(0) mZ mh

λ A ρ η

Let us now discuss some classes of the observables from the CKM fit in the SM in Section 3.1

in more detail. Observables from non-leptonic decays in Eq. (3.3) involve a limited set of hadronic

matrix elements in the SM, which can be determined or eliminated thanks to additional observables

and symmetries. Beyond the SM, however, these observables involve a much wider set of hadronic

matrix elements that are currently not known and, in a general SMEFT context, cannot be related

to other hadronic quantities through flavour symmetries. A similar issue a↵ects ✏K , which can be

extracted from K ! ⇡⇡ decays only under specific assumptions about the weak amplitudes.

Concerning the semileptonic decays such as K ! ⇡`⌫, D ! K`⌫, or B ! ⇡`⌫, the rates

depend on form factors whose momentum dependence is usually extracted from the measurement

of the di↵erential distributions, which are themselves modified by BSM e↵ects. Thus in order to

use this information, a new BSM analysis of both di↵erential distribution and rate is required (see

e.g. Ref. [11]). This is in contrast to the leptonic decays, whose hadronic input is limited to decay

constants, well known from lattice QCD. In addition, semileptonic decays are often sensitive to a

larger set of BSM operators than leptonic decays, disfavouring semileptonic decays on the basis of

condition #3. Overall these arguments favor using leptonic as opposed to semileptonic decays as

our input observables.

We can now determine the most appropriate observables for the determination of the CKM

parameters. Concerning observables sensitive (only) to �, condition #2 suggests to disfavour D

and Ds meson decays compared to K decays. The latter are measured with a better accuracy

and thus exhibit better sensitivity to �. One technical complication, however, arises due to the

dependence of the leptonic K decays on the decay constant fK+ , as its most recent determinations

rely on the “experimental” value of f⇡ from ⇡ ! µ⌫ to set the reference scale in the lattice

QCD calculations [38]. This reintroduces an SM assumption (i.e., that the pion leptonic decay is

completely dominated by SM contributions) that is not appropriate for a general analysis in the

SMEFT setup [11]. To avoid this complication, we take the ratio �(K ! µ⌫̄) to �(⇡ ! µ⌫̄) as

our input observable, as the lattice determinations of fK+/f⇡+ are free from this problem (and

known with higher accuracy). Concerning the parameter A, we may consider observables sensitive

to Vub, Vcb, Vtd, or Vts, while the highest sensitivity to ⇢̄ and ⌘̄ comes from Vub and Vtd. All in all,

the remaining observables satisfying our criteria and sensitive to these three CKM parameters are

B ! ⌧⌫ (for Vub), �Md (for Vtd), and �Ms (for Vts).

This leaves us with the following set of input observables that we consider optimal:

�(K ! µ⌫µ)/�(⇡ ! µ⌫µ), �(B ! ⌧⌫⌧ ), �Md, �Ms. (3.10)

These four observables indeed obey the criteria listed above. In Section 4 we will show that they

provide an accurate determination of the four Wolfenstein parameters fWj in the generic SMEFT

case, with only a moderate loss of accuracy compared the SM case. One should stress that our

choice is not set in stone, and some variations on the input observables are of course possible,

similarly to di↵erent input schemes used in EW precision physics. Furthermore, we emphasise that

the “optimal choice” may vary over time. For example, if the inclusive-vs-exclusive tensions for

b ! c or b ! u transitions disappear, or (theoretical or experimental) progress is achieved in some

11



Modified interaction strength
All of these effects: new vertices and Lorentz structures  

+ direct, indirect, and stealthy shifts of the SM interaction strength,   
often operate simultaneously

Example, Higgs interactions with gauge bosons in dimension-6 SMEFT: 

Important to properly evaluate all these effects, to correctly capture the correlations 
between various couplings predicted by SMEFT



This leads to non-trivial and often counter-intuitive relations between operators. For

example, by using equations of motion one can establish equivalence between purely

bosonic operators, and a linear combination of 2- and 4-fermionic operators! Thus,

starting from the set of all distinct D=6 operators that can be constructed from the

SM fields, a number of these operators will be redundant as they are equivalent to

linear combinations of other operators. The redundant operators can be removed to

simplify the EFT description, and to establish an unambiguous map from observables

to the EFT Wilson coe�cients. A minimal, non-redundant set of operators is called

a basis.

Yukawa

[O†
eH ]IJ H†HecIH

†`J

[O†
uH ]IJ H†HucI

eH†qJ

[O†
dH ]IJ H†HdcIH

†qJ

Vertex

[O(1)
H`]IJ i¯̀I �̄µ`JH† !DµH

[O(3)
H`]IJ i¯̀I�i�̄µ`JH†�i !DµH

[OHe]IJ iecI�µē
c
JH

† !DµH

[O(1)
Hq]IJ iq̄I �̄µqJH† !DµH

[O(3)
Hq]IJ iq̄I�i�̄µqJH†�i !DµH

[OHu]IJ iucI�µū
c
JH

† !DµH

[OHd]IJ idcI�µd̄
c
JH

† !DµH

[OHud]IJ iucI�µd̄
c
JH̃

†DµH

Dipole

[O†
eW ]IJ ecI�µ⌫H

†�i`JW i
µ⌫

[O†
eB]IJ ecI�µ⌫H

†`JBµ⌫

[O†
uG]IJ ucI�µ⌫T

a eH†qJ Ga
µ⌫

[O†
uW ]IJ ucI�µ⌫

eH†�iqJ W i
µ⌫

[O†
uB]IJ ucI�µ⌫

eH†qJ Bµ⌫

[O†
dG]IJ dcI�µ⌫T

aH†qJ Ga
µ⌫

[O†
dW ]IJ dcI�µ⌫H̄

†�iqJ W i
µ⌫

[O†
dB]IJ dcI�µ⌫H

†qJ Bµ⌫

Table 2.3: Two-fermion D=6 operators in the Warsaw basis. The flavor indices are
denoted by I, J . For complex operators (OHud and all Yukawa and dipole operators)
the corresponding complex conjugate operator is implicitly included.

Because of a humungous number of D=6 operators, and because establishing

equivalence between operators may be time consuming, identifying a basis is not a

14

The fields Gz and G± do not correspond to new physical degrees of freedom (they

kinetically mix with the massive gauge bosons and can be gauged away). From now

on until Chapter 5 I will work in the unitary gauge and set G± = 0 = Gz. The

scalar field h corresponds to a scalar particle called the Higgs boson. Its mass can be

expressed by the parameters of the Higgs potential as

m2
h = 2µ2

H = 2�v2. (2.19)

2.2 Dimension-6 operators

Bosonic CP-even

OH (H†H)3

OH⇤ (H†H)⇤(H†H)

OHD

��H†DµH
��2

OHG H†H Ga
µ⌫G

a
µ⌫

OHW H†HW i
µ⌫W

i
µ⌫

OHB H†H Bµ⌫Bµ⌫

OHWB H†�iHW i
µ⌫Bµ⌫

OW ✏ijkW i
µ⌫W

j
⌫⇢W k

⇢µ

OG fabcGa
µ⌫G

b
⌫⇢G

c
⇢µ

Bosonic CP-odd

O
H eG H†H eGa

µ⌫G
a
µ⌫

O
HfW H†H fW i

µ⌫W
i
µ⌫

O
H eB H†H eBµ⌫Bµ⌫

O
HfWB

H†�iH fW i
µ⌫Bµ⌫

OfW ✏ijkfW i
µ⌫W

j
⌫⇢W k

⇢µ

O eG fabc eGa
µ⌫G

b
⌫⇢G

c
⇢µ

Table 2.2: Bosonic D=6 operators in the Warsaw basis.

We turn to discussing operators with canonical dimensions D=6 in Eq. (2.1).

Their importance for characterizing low-energy e↵ects of heavy particles has been

recognized long ago, see e.g. [21, 35]. More recently, advantages of using a complete

and non-redundant set of operators have been emphasized. The point is that seem-

ingly di↵erent higher-dimensional operators can have the same e↵ect on on-shell am-

plitudes of the SM particles. This is the case if the operators can be related by using

equations of motion, integration by parts, field redefinitions, or Fierz transformations.
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(R̄R)(R̄R)

Oee ⌘(ec�µēc)(ec�µēc)

Ouu ⌘(uc�µūc)(uc�µūc)

Odd ⌘(dc�µd̄c)(dc�µd̄c)

Oeu (ec�µēc)(uc�µūc)

Oed (ec�µēc)(dc�µd̄c)

Oud (uc�µūc)(dc�µd̄c)

O0
ud (uc�µT aūc)(dc�µT ad̄c)

(L̄L)(R̄R)

O`e (¯̀̄�µ`)(ec�µēc)

O`u (¯̀̄�µ`)(uc�µūc)

O`d (¯̀̄�µ`)(dc�µd̄c)

Oeq (ec�µēc)(q̄�̄µq)

Oqu (q̄�̄µq)(uc�µūc)

O0
qu (q̄�̄µT aq)(uc�µT aūc)

Oqd (q̄�̄µq)(dc�µd̄c)

O0
qd (q̄�̄µT aq)(dc�µT ad̄c)

(L̄L)(L̄L)

O`` ⌘(¯̀̄�µ`)(¯̀̄�µ`)

Oqq ⌘(q̄�̄µq)(q̄�̄µq)

O0
qq ⌘(q̄�̄µ�iq)(q̄�̄µ�iq)

O`q (¯̀̄�µ`)(q̄�̄µq)

O0
`q (¯̀̄�µ�i`)(q̄�̄µ�iq)

(L̄R)(L̄R)

Oquqd (ucqj)✏jk(dcqk)

O0
quqd (ucT aqj)✏jk(dcT aqk)

O`equ (ec`j)✏jk(ucqk)

O0
`equ (ec�̄µ⌫`j)✏jk(uc�̄µ⌫qk)

O`edq (¯̀̄ec)(dcq)

Table 2.4: Four-fermion D=6 operators in the Warsaw basis. Flavor indices are
suppressed here to reduce the clutter. The factor ⌘ is equal to 1/2 when all flavor
indices are equal (e.g. in [Oee]1111), and ⌘ = 1 otherwise. For each complex operator
the complex conjugate should be included.

be more easily linked to collider observables such as (di↵erential) cross sections and

decay widths.

Deriving collider predictions in an EFT with higher-dimensional operators involves

several subtleties that need to be taken into account.

• In the SM, the electroweak parameters gL, gY , v are customarily determined

from input observables: the electromagnetic coupling constant ↵, the Z boson

mass mZ , and the muon lifetime ⌧µ. In the presence of D=6 operators the

SM relations between the input observables and the Lagrangian parameters

can be distorted. For example, the bosonic operator OHD contributes to the

16

Full set has 2499 distinct operators,  
including flavor structure and CP conjugates

Alonso et al 1312.2014, Henning et al 1512.03433

Warsaw Basis

Other options are the SILH basis,  
HISZ basis,  Higgs basis, …


though all of the above much less used



To square or not to square

ℒSMEFT = ℒSM +
1
Λ

ℒD=5 +
1

Λ2
ℒD=6 +

1
Λ3

ℒD=7 +
1

Λ4
ℒD=8 + …

Amplitude truncated at dimension 6: M = MSM +
1

Λ2
M6

Observables depend on amplitude squared:

|M |2 = |MSM |2 +
1

Λ2 (M6M̄SM + M̄6MSM)+
1

Λ4
|M6 |2

SM prediction dimension-6 correction Should I keep this???

Yes, if SM contribution is zero, as for example in flavor-violating Higgs decays 
Yes, if you can argue that dimension-8 contribution is suppressed wrt to dimension-6 squared 

Otherwise, no, except to evaluate you uncertainty due to higher orders in SMEFT. 



Beyond dimension-6 ?

When it makes sense to include operators with dimension higher than six,  
in a phenomenological analysis ?  

ℒSMEFT = ℒSM +
1
Λ

ℒD=5 +
1

Λ2
ℒD=6 +

1
Λ3

ℒD=7 +
1

Λ4
ℒD=8 + …

As of now: 
- The size of a SMEFT operator basis is known for any reasonable dimension DC 
- A concrete basis of operators has been constructed up to dimension 9



Beyond dimension-6 ?

ℒSMEFT = ℒSM +
1
Λ

ℒD=5 +
1

Λ2
ℒD=6 +

1
Λ3

ℒD=7 +
1

Λ4
ℒD=8 + …

Sometimes, a qualitatively new phenomenon arises at higher dimensions  

At tree level, light-by-light scattering  
receives contribution from dimension-8,  

which in some situations may compete with  
lower order loop contributions 

ℒD=8 ⊃ (BμνBμν)2 + …

Neutron-antineutron oscillations 
arise at dimension-9 ℒD=9 ⊃ ϵabcϵdef(d̄ad̄d)(qbqe)(qcqf ) + …

In all such cases however, you need to argue why you don’t expect  
any larger effects of new physics from operators of lower dimensions



Thank You


