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Recommended reading

• Kaplan [nucl-th/0510023]


• Rothstein [hep-ph/0308266] 


• Manohar [1804.05863] 

General education

Also my lecture notes from 2017 uploaded on the indico page 

http://arxiv.org/abs/nucl-th/0510023
http://arxiv.org/abs/hep-ph/0308266


Recommended reading

Specific EFTs

• EFT for superconductors: Polchinski [hep-th/9210046]


• EFT for heavy mesons: Grinstein [hep-ph/9411275]


• EFT for binary inspirals: Goldberger [hep-ph/07101129]


• EFT for low-energy QCD: Pich [1804.05664] 


• EFT for nuclei: Van Kolck [1902.03141]


• … 

http://arxiv.org/abs/hep-th/9210046


Illustrated Philosophy of EFT
Lecture 1



Scale in physical problems

= 10−10 m = 10−2 m

ρ, p, T, s

At small scales,  
the degrees of freedom of gas 

are positions and velocities  
of its component atoms

At large scales,  
the useful degrees of freedom  
are its macroscopic properties 

like density, pressure,  
temperature, or entropy



Scale in microscopic problems

X-ray photons see 
the atomic structure 

and scatter on  
the orbiting electrons

=
1

meα

Lower-energy photons 
see atoms as neutral objects 

which are basically transparent

=
10

meα

γ

Visible light photon

(that’s how the universe becomes transparent to photons right after recombination)



Scale in particle theory

Consider a theory of a light particle φ  
interacting with a heavy particle H

φ

φ

H

φ

φ

φ

φ

φ

φ

H

φ

φ

x1 x2

At small scales, |x1-x2| << 1/mH,  
propagation of the heavy particle H 

leaves an imprint in the  
correlation function of the light particle φ 

At large scales, |x1-x2| >> 1/mH,  
propagation of the heavy particle H 

can be approximated by  
a contact  self-interaction  

of the light particle φ

P(x1, x2) ∼ exp(−mH |x1 − x2 | )

mH ∼ ΔE ≪
1

|x1 − x2 |
∼

1
Δt

⇒ ΔEΔt ≪ 1 mH ∼ ΔE ≫
1

|x1 − x2 |
∼

1
Δt

⇒ ΔEΔt ≫ 1



Scale in particle theory
φ

φ

H

φ

φ

φ

φ

φ

φ

• Propagation of heavy particle H with mass mH is suppressed at distance scale above 
its inverse mass


• Processes probing  distance scales >> 1/mH, equivalently for energies << mH, cannot  
resolve the propagation of H


• Then, intuitively, exchange of heavy particle H between light particles φ should be 
indistinguishable from a contact interaction of φ  


• In other words, the effective theory describing  φ interactions should be well 
approximated by a local Lagrangian, that is, by a polynomial in φ and its derivatives 

This is the generic way how the effective theory description arise in particle physics,  
which will be repeated in all the examples that follow 



Illustration #1

Fermi EFT
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Fermi EFT
In the SM, weak interactions are mediated by W and Z bosons:

ℒSM ⊃
gL

2
[ν̄eγρeL + ν̄μγρμL]W+

ρ + h . c .
i

gL

2
γρPL

i
gL

2
γρPL

e

νe

Wρ

In this theory, calculate muon decay

νμ

Wρ

μ

Wρ −i
ημν

p2 − m2
WTree-level amplitude:

ℳ =
g2

L

2
ū(k2)γρPLu(p1)

1
q2 − m2

W
ū(k4)γρPLv(k3)

νμ

W−

μ−

ν̄e

e−

p1

k2

k3

k4

q = p1 − k2
u(p) and v(p) are spinor wave functions 

for particles and anti-particles



Tree-level amplitude:

ℳ =
g2

L

2
ū(k2)γρPLu(p1)

1
q2 − m2

W
ū(k4)γρPLv(k3)

νμ

W−

μ−

ν̄e

e−

p1

k2

k3

k4q = p1 − k2

But kinematics of muon decay puts the constraint q2 ≲ m2
μ ≪ m2

W

For all practical purpose one can thus approximate

ℳ = −
g2

L

2m2
W

ū(k2)γρPLu(p1)ū(k4)γρPLv(k3) + 𝒪(q2/m4
W)

This approximate amplitude can be equally well obtained from the effective Lagrangian 

ℒeff ⊃ −
g2

L

2m2
W

(ν̄μγρμL)(ēLγρνe) + h . c .

νμ

μ νe

e

−i
g2

L

2m2
W

[γρPL][γρPL]

Fermi EFT

The Lagrangian coefficient here is called  
the Wilson coefficient in this context



Interlude

EFT and path integrals



ZUV[Jϕ, JH] = ∫ [Dϕ][DH]exp [i∫ d4x (ℒUV(ϕ, H) + Jϕϕ + JHH)]
The generating functional in the UV theory of light fields φ and heavy fields H 

The generating functional in the EFT of light fields φ

ZEFT[Jϕ] = ∫ [Dϕ]exp [i∫ d4x (ℒEFT(ϕ) + Jϕϕ)]

EFT and path integrals
Integrating out heavy particles is particularly transparent  using the path integral formulation 

of QFT, because then it’s literally integrating over the heavy fields…

Matching consists in imposing the condition

ZEFT[Jϕ] = ZUV[Jϕ,0]
At leading order (tree-level), the field configurations contributing to the path integral  

are the ones that extremize the action: 

ZUV[Jϕ,0] = ∫ [Dϕ]exp [i∫ d4x (ℒUV(ϕ, Hcl(ϕ)) + Jϕϕ)]

Hence

that is, Hcl(φ) solves the classical equations of motion in the UV Lagrangian

ℒEFT(ϕ) = ℒUV(ϕ, Hcl(ϕ))

0 =
δS
δH

|H=Hcl(ϕ)



Previously we obtained the effective Lagrangian by matching amplitudes.   
Let us now apply the path integral trick, instead.   

Namely, we integrate out the heavy field directly at the Lagrangian level,  
by solving its equations of motion and plug the solution back into the Lagrangian

ℒUV ⊃ − W+
ρ ( □ − m2

W)W−
ρ +

gL

2
[ν̄eγρeL + ν̄μγρμL]W+

ρ + h . c .

−( □ − m2
W)W−

ρ +
gL

2
[ν̄eγρeL + ν̄μγρμL] = 0e.o.m:

solution: W−
ρ =

gL

2
( □ − m2

W)−1[ν̄eγρeL + ν̄μγρμL]

Starting point:

(Non-local) Effective Lagrangian:

ℒeff =
g2

L

2 [ēLγρνe + μ̄Lγρνμ]( □ − m2
W)−1[ν̄eγρeL + ν̄μγρμL]

Leading (local) Effective Lagrangian:

ℒeff = −
g2

L

2m2
W

[ēLγρνe + μ̄Lγρνμ][ν̄eγρeL + ν̄μγρμL] + 𝒪( 1
m4

W
)

1
□ − m2

W
= −

1
m2

W
−

□
m4

W
−

□2

m6
W

− …

Fermi EFT



Important comment: effective Lagrangian is systematically improvable.  
Previously, we truncated the effective Lagrangian at order (1/mW)2 . 

However, nothing stops us from going to higher orders in 1/mW.

(Non-local) Effective Lagrangian:

ℒeff =
g2

L

2 [ēLγρνe + μ̄Lγρνμ]( □ − m2
W)−1[ν̄eγρeL + ν̄μγρμL]

Leading and subleading effective Lagrangian:

ℒeff = −
g2

L

2m2
W

[ēLγρνe + μ̄Lγρνμ][ν̄eγρeL + ν̄μγρμL]

−
g2

L

2m4
W

[ēLγρνe + μ̄Lγρνμ] □ [ν̄eγρeL + ν̄μγρμL] + …

Effective Lagrangian is organized as a systematic expansion in powers of 1/mW.   
The user decides at which order in 1/mW the effective Lagrangian is truncated,  

depending on the accuracy of the calculations they want to achieve 

Fermi EFT



Every EFT carries  
the seeds of its own destruction

(Mark Twain) 

ν̄μ

μ−

ν̄e

e−

p1

p2

k3

k4

Consider a scattering rather than a decay process   

ℒeff ⊃ −
g2

L

2m2
W

(ν̄μγρμL)(ēLγρνe) + h . c .

ℳ = −
g2

L

2m2
W

v̄(p2)γρPLu(p1)ū(k3)γρPLv(k4)

By dimensional analysis, for s >> µ2, the amplitude behaves as   

ℳ ∼
g2

L

m2
W

s

This clashes with unitarity for   s ∼ Λmax where

Λmax =
4πmW

gL
∼ 1.5 TeV

Λmax is the maximum cutoff scale from the consistency viewpoint of the EFT 
In reality, the true cutoff Λ=mW is lower, which can be traced to the fact that  

the UV completion (the Standard Model) is weakly coupled

s = (p1 + p2)2

Fermi EFT



• EFT can be a great and simple tool to study low-energy consequences of more complete 
theories as long as E<<Λ, where E is the characteristic energy scale of the process of 
interest, and Λ is the mass scale of the UV theory (in our example Λ=mW).


• EFT is organized in an expansion in powers of 1/Λ, and is systematically improvable, 
that is to say, we can choose at which order we truncate the expansion depending on 
the required precision 


• EFT predicts correlations between rates of different processes (in our example,  
processes related by crossing symmetry, but it is less trivial in other examples)


• Every EFT has necessarily a limited validity range. It stops making sense as a 
perturbative theory above energies of order Λmax = 4 π Λ/g, where g is the coupling 
strength in the UV theory. Note that Λmax is always larger than the true cutoff Λ.    


• As one approaches  E = Λ from the EFT side, higher-dimensional operators become 
more and more relevant, and expansion in 1/Λ becomes impractical.  For E ∼ Λ, 
resonances in the UV theory can be resolved and the EFT description becomes useless 

Summary and lessons learned:

Fermi EFT



Interlude

Dimensional analysis



Dimensional analysis

• Effective Lagrangians by construction must contain infinite number of 
terms. Therefore any useful EFT comes with a set of power counting 
rules which allow one to organize the Lagrangian in a consistent 
expansion and single out the most relevant terms 


• Relativistic effective theories are obtained by integrating out heavy 
fields H with mass of order Λ, and the inverse of the latter provides a 
natural expansion parameter to organize the effective Lagrangian. 


• The effective Lagrangian is then organized according to canonical 
dimensions of its interactions terms, where the powers of the mass scale 
multiplying each term are identified with Λ. The observables computed 
fare then expanded  in  E/Λ where E is the typical energy scale of the 
experiment   


• Warning: different power counting rules may apply to non-relativistic 
theories, or relativistic systems with one heavy component (such as e.g. 
B-mesons), or to theories with non-linearly realized symmetry. These 
cases will be discussed later.  



To isolate UV and IR limits, 
consider rescaling of 
spacetime coordinates

ξ→0 is zooming in on small distances (UV limit)

ξ→∞ is zooming in on large distances (IR limit)

Since path integral is dominated by kinetic terms

to easily compare the original and rescaled actions 


it is convenient normalize the kinetic terms canonically 

Dimensional analysis



Mass term is relevant operator: it gets more important in IR

Quartic coupling is marginal operator: it is (approximately) the same

in UV and in IR

Higher dimensional interactions (for d+n>4) are irrelevant operators: they get 
less important in IR

Power counting in relativistic EFT, determining the importance of various 
interactions, can be organized based on canonical dimension of interactions 

Dimensional analysis



Relativistic field theory

Dimensional analysis



Illustration #2

Euler-Heisenberg EFT
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Euler-Heisenberg EFT
Consider effective theory for photons propagating in vacuum with Eγ << 2me ≈ 1 MeV

• At these energies all charged particles are integrated out, hence the effective 
Lagrangian must be a function of only the photon field Aµ 

• Photons are massless, so the only explicit mass scale in this construction is the EFT 
cutoff scale  Λ  

• Gauge and Lorentz invariance requires the effective Lagrangian to be a function of 
the field strength Fµν and its derivatives 

ℒeff = ℒ(Fμν, F̃μν, ∂μ, Λ) Fμν = ∂μAν − ∂νAμ

F̃μν =
1
2

ϵμναβFαβ

We will build the effective Lagrangian as an expansion in 1/Λ 

ℒeff = Λ2ℒD=2 + ℒD=4 +
1

Λ2
ℒD=6 +

1
Λ4

ℒD=8 + …

Here D denotes the canonical dimension of each term  
(no odd dimensions because [Fµν]=2, and derivatives must always come in pairs)



Euler-Heisenberg EFT

D=2: Fμμ = F̃μμ = 0 No possible invariants thus

ℒeff = Λ2ℒD=2 + ℒD=4 +
1

Λ2
ℒD=6 +

1
Λ4

ℒD=8 + …

D=4: FμνFμν

ℒD=2 = 0

One invariant

ℒD=4 = −
1
4

FμνFμν the numerical coefficient is pure convention,  
except for the sign, which is required  

to avoid ghost instability

F̃μνF̃μν = FμνFμν

FμνF̃μν

D=6: Again, no non-trivial invariants! Hence ℒD=6 = 0

FμνFνρFρμ = 0 = FμνFνρF̃ρμ = …

is a total derivative

∂μ∂νFμν = 0

ℒD=6 = cFμν □ Fμν can be eliminated by the change of variables Aμ → Aμ +
2c
Λ2

□ Aμ

Fμν∂αFμα∂βFνβ = 0

Non-trivial interactions between photons can arise only at order 1/ Λ4 in the EFT! 



ℒeff = −
1
4

FμνFμν +
1

Λ4
ℒD=8 + …

Euler-Heisenberg EFT

D=8: The most general non-redundant Lagrangian at D=8 is 

ℒD=8 = c1(FμνFμν)2 + c2(FμνF̃μν)2 + c3(FμνFμν)(FαβF̃αβ)

FμαFανFμβFβν =
1
4

(FμνFμν)2 +
1
2

(FμνF̃μν)2

Other possible structures can be shown to be redundant,  
that is they can be eliminated or expressed by the three above. E.g.  

The high-school version of the same Lagrangian:

ℒD=8 = 4c1( ⃗E 2 − ⃗B 2)2 + 16c2( ⃗E ⃗B )2 + 8c3( ⃗E 2 − ⃗B 2)( ⃗E ⃗B )



Euler-Heisenberg EFT
ℒeff = −

1
4

FμνFμν +
1

Λ4 {c1(FμνFμν)2 + c2(FμνF̃μν)2 + c3(FμνFμν)(FαβF̃αβ)} + …

This Lagrangian defines a completely healthy and consistent quantum field theory 
with quartic (and possibly higher-point) self-interactions between photons.

Scattering amplitudes can be calculated in a systematic expansion in 1/ Λ4   .  E.g.

The only difference between this effective  theory and a renormalizable QFT  
is that counterterms of order 1/ Λn  , also with n>4,  are generated at loop level,  

thus these higher-order terms have to be added to the Lagrangian  
if we require precision beyond the 1/ Λ4 order      

ℳ(γ+γ+γ+γ+) = 8
c1 − c2 + ic3

Λ4 [s2 + t2 + u2]
ℳ(γ+γ+γ−γ−) = 8

c1 + c2

Λ4
s2

ℳ(γ−γ−γ−γ−) = 8
c1 − c2 − ic3

Λ4 [s2 + t2 + u2]

s = (p1 + p2)2

t = (p1 + p3)2

s = (p1 + p4)2

p1
p2

p3p4

μ1 μ2

μ3μ4

32ic1

Λ4 (pμ2
1 pμ1

2 − p1p2ημ1μ2)(pμ4
3 pμ3

4 − p3p4ημ3μ4) + (2 ↔ 3) + (2 ↔ 4)

+
32ic2

Λ4 (…) +
32ic3

Λ4 (…)

Note that a non-zero c3  
violates parity!



Euler-Heisenberg EFT

ℒeff = −
1
4

FμνFμν +
1

Λ4 {c1(FμνFμν)2 + c2(FμνF̃μν)2 + c3(FμνFμν)(FαβF̃αβ)} + …

• This is the effective theory of light at low energies (UV, visible, IR, microwaves, radio) at the 
leading non-trivial order


• The quartic photon interaction terms in this EFT lead to non-linear field equations for the 
electromagnetic field. Thus, electrodynamics is really non-linear, and the superposition principle 
they taught you in school is not exactly true! 


• One potentially observable effect  of the D=8 terms is the so-called vacuum birefringence, that 
is rotation of light polarization propagating in vacuum  in strong magnetic field. This effect was 
possibly observed in 2016 in a neutron star light. 


• Another potentially observable effect is light-by-light scattering.  This has been routinely 
observed in colliders, however at higher energies where this EFT is no longer valid.


• In the absence of new physics, the ordinary QED is the UV completion of this EFT, in which 
case the cutoff Λ can be identified with 2me. However, in the presence of light axions or light 
milli-charged particles, this may no longer be the case. 


• The Wilson coefficients c1, c2, c3 can be calculated theoretically by matching this EFT to its UV 
completion, e.g. QED. However, I’m not aware of a systematic experimental measurement of 
these Wilson coefficients.   A future such  measurement will be a non-trivial result, as some 
unknown light particles could in principle contribute to it, along with the electron and other SM 
charged particles 

Scattered comments:



Interlude

ℏ counting



• We expect that a higher-dimensional operator with the canonical dimension D depends 
on the mass scale Λ in UV theory as 1/Λ(D-4). But, in general we do not know how their 
Wilson coefficients depend on couplings of UV theory - that is a model dependent 
question


• However, there are general rules that in some cases allow us to estimate the coupling 
dependence


• To this end, a useful trick is to restore explicitly ℏ in action.

 ℏ counting

Z ∼ ∫ Dϕ exp[i
S
ℏ ]

While the action is dimensionless in natural units,  
it caries the dimension [S] = ℏ1 if the Planck constant ℏ≠1 is restored 

ΔxΔp ∼ ℏ ⇒ [L] =
ℏ

[E]

In natural units ℏ=1 distance is inverse of energy 
But the two are not equivalent and are instead  

related by the Planck constant if ℏ≠1 is restored   



 ℏ counting
Consider now a generic action for a scalar field 

S
ℏ

∼
1
ℏ ∫ d4x[(∂μϕ)2 − m2ϕ2 − Cn,k∂kϕn]

ϕ → ℏ1/2ϕEliminate ℏ from the action via the field redefinition

S
ℏ

∼ ∫ d4x[(∂μϕ)2 − m2ϕ2 − ℏn/2−1Cn,k∂kϕn]
Now each coupling secretly carries a power of ℏ,  

which only depends on the number of fields in the vertex: [Cn,k] = ℏ1−n/2

e.g.

[C3,k] = ℏ−1/2

[C4,k] = ℏ−1

…
Moreover, one can proved that each loop comes with another 
factor of  ℏ  (in original variables, each propagator brings ℏ, each 
vertex brings 1/ℏ, thus each diagram comes with the power of ℏ 
equal to: N(propagotors)-N(vertices) = N(loops)-1
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Euler-Heisenberg EFT

ℒeff = −
1
4

FμνFμν +
1

Λ4 {c1(FμνFμν)2 + c2(FμνF̃μν)2 + c3(FμνFμν)(FαβF̃αβ)} + …

This Lagrangian describes the effective theory of light at low energies  
(UV, visible, IR, microwaves, radio) at the leading order beyond the Maxwell approximation

γ
γ
γ

γ

In its validity regime, it is also appropriate to describe vacuum birefringence,  
 photon-photon scattering at low energies, and more

This is the effective theory underlying the physics of light sabers



Euler-Heisenberg EFT

ℏ counting applied to the D=8 Euler-Heisenberg Lagrangian

ℒeff = −
1
4

FμνFμν +
1

Λ4 {c1(FμνFμν)2 + c2(FμνF̃μν)2 + c3(FμνFμν)(FαβF̃αβ)} + …

[ci] = ℏ−1

Let e be a cubic coupling in the UV completion,  
e.g. the electromagnetic coupling in the QED [e] = ℏ−1/2

It follows

ci ∼ e2 if this Wilson coefficient is generated at tree level 

ci ∼
e4

16π2
if this Wilson coefficient is generated at 1-loop level 

ci ∼
e2n+2

(16π2)n
if this Wilson coefficient  is generated at n-loops 

[Cn,k] = ℏ1−n/2 here, n=4 thus

In particular
γ

γ γ

γ
H

γ

γ γ

γ
H



Euler-Heisenberg EFT

ℒeff = −
1
4

FμνFμν +
1

Λ4 {c1(FμνFμν)2 + c2(FμνF̃μν)2 + c3(FμνFμν)(FαβF̃αβ)} + …

ci ∼ e2 if this Wilson coefficient is generated at tree level 

ci ∼
e4

16π2
if this Wilson coefficient is generated at 1-loop level 

γ

γ γ

γ
H

γ

γ γ

γ
H

γ
H

Doesn’t exist 
in QED !

γ

γ

H

H

Does exist 
in QED !

Thus, in QED

ci

Λ4
∼

e4

16π2m4
e

=
α2

m4
e

Moreover,  c3=0 in QED, 
due to parity conservation



Euler-Heisenberg EFT
QED UV completion

ℒUV ⊃ iψ̄γμ∂μψ − meψ̄ψ + eAμψ̄γμψ

Thus, integrating out the electron at one-loop level yields:

c1

Λ4
=

α2

90m4
e

,
c2

Λ4
=

7α2

360m4
a

,
c3

Λ4
= 0

In this example, the UV completion of our effective theory is a renormalizable theory,  
which could in principle be valid to very high energy scales  

+reversed  
fermion line

ℳEFT(γ+γ+γ+γ+) = 8
c1 − c2 + ic3

Λ4 [s2 + t2 + u2]
ℳEFT(γ+γ+γ−γ−) = 8

c1 + c2

Λ4
s2

ℳEFT(γ−γ−γ−γ−) = 8
c1 − c2 − ic3

Λ4 [s2 + t2 + u2]

ℳUV(γ+γ+γ+γ+) = −
α2

15m4
e

[s2 + t2 + u2] + 𝒪(m−6
e )

ℳUV(γ+γ+γ−γ−) =
11α2

45m4
e

s2 + 𝒪(m−6
e )

ℳUV(γ−γ−γ−γ−) = −
α2

15m4
e

[s2 + t2 + u2] + 𝒪(m−6
e )



Euler-Heisenberg EFT

ALP  UV completion

ℒUV ⊃
1
2

(∂μa)2 −
m2

a

2
a2 +

a
fa {gFμνFμν + g̃FμνF̃μν}

Integrating out the axion at tree-level:

c1

Λ4
=

g2

2f 2
am2

a
,

c2

Λ4
=

g̃2

2f 2
am2

a
,

c3

Λ4
=

gg̃
f 2

am2
a

In this example, the usual power counting, Λ~ma, is disrupted, because  
 the UV completion of an effective theory is itself an effective theory  

and contains other mass parameters than ma

Λ = fama

Note that

γ

γ γ

γ
a



Interlude

Analyticity constraints



Analyticity constraints

However, assuming the UV theory is causal, Poincaré invariant, and local 
one can surprisingly find additional constraints on the Wilson coefficients 

From the low-energy point of view, the Wilson coefficients are arbitrary,  
within perturbativity limits

d2Mforward(s)
s2

|s→0 > 0

Given ℳEFT(X1X2 → X1X2) = M(s, t, u)

Mforward(s) = M(s,0, − s)and

Proof using dispersion relations



Euler-Heisenberg EFT

ℳ(γ+γ+ → γ+γ+) = ℳ(γ+γ+γ−γ−) = 8
c1 + c2

Λ4
s2 ⇒ c1 + c2 > 0

Applying this to the Euler-Heisenberg effective Lagrangian

One can actually get stronger bounds, by considering amplitude  
in the linear polarization basis

ℳforward(γxγx → γxγx) =
16c1

Λ4
s2 ⇒ c1 > 0

ℳforward(γxγy → γxγy) =
16c2

Λ4
s2 ⇒ c2 > 0

Of course, this bound is respected in our examples

cALP
1

Λ4
=

g2

2f 2
am2

a
> 0,

cALP
2

Λ4
=

g̃2

2f 2
am2

a
> 0

cQED
1

Λ4
=

α2

90m4
e

> 0,
cQED

2

Λ4
=

7α2

360m4
a

> 0

ℳEFT(γ+γ+γ+γ+) = 8
c1 − c2 + ic3

Λ4 [s2 + t2 + u2]
ℳEFT(γ+γ+γ−γ−) = 8

c1 + c2

Λ4
s2

ℳEFT(γ−γ−γ−γ−) = 8
c1 − c2 − ic3

Λ4 [s2 + t2 + u2]



Euler-Heisenberg EFT
Summary and lessons learned

• Symmetries of a low-energy system often determine the structure of the effective 
theory at leading orders, up to a few unknown numerical parameters


• Furthermore, dimensional analysis and hbar counting often fixes the parameteric 
dependence of these Wilson coefficients on the UV parameters, up to O(1) coefficients


• Furthermore squared, in some case even the sign of the Wilson coefficients is fixed, 
given some plausible assumptions about the UV theory   


• The EFT Lagrangian can be used for perturbative calculations of low-energy scattering 
amplitudes.  But it is also a useful tool to work out subtle effects of classical field 
configurations



Illustration #3

Fermi EFT, again



1 GeV

5 GeV

γ,g,νi,e,μ,τ + u, d, s, c  

2 GeV

γ,νi,e,μ + hadrons  

γ,νi,e,μ + pions and kaons 
100 MeV

γ,g,νi,e,μ,τ + u, d, s, c, b  

100 GeV

Standard Model

1 MeV
γ,νi,e

γ,νi

?



ℒUV ⊃ − W+
ρ ( □ − m2

W)W−
ρ +

gL

2
{[ν̄eγρeL + VudūLγρdL]W+

ρ + h . c . }

−( □ − m2
W)W−

ρ +
gL

2
[ν̄eγρeL + VudūLγρdL] = 0e.o.m:

solution: W−
ρ =

gL

2
( □ − m2

W)−1[ν̄eγρeL + VudūLγρdL] ≈ −
gL

2m2
W

[ν̄eγρeL + VudūLγρdL]

Starting point:

Leading effective 4-fermion interactions:

ℒeff ⊃ −
g2

L

2m2
W

[ēLγρνe + Vudd̄LγρuL][ν̄eγρeL + VudūLγρdL] ⊃ −
2Vud

v2
(ēLγρνe)(ūLγρdL)

Fermi EFT, again
Consider low-energy interactions between light quarks and leptons 

v ≡
2mW

gL
≈ 246 GeV

SM CKM element



ℒeff ⊃ −
2Vud

v2
(ēLγρνe)(ūLγρdL) + h . c .

Fermi EFT, again

This interaction leads to beta decays, in particular to the neutron decay

d → ue−ν̄e ⇒ n → pe−ν̄e

Amplitude for the latter process is 

M(n → pe−ν̄e) = −
2Vud

v2
⟨pe−ν̄e | (ēLγρνe)(ūLγρdL) |n >

= −
2Vud

v2
⟨e−ν̄e | (ēLγρνe) |0 > ⟨p | (ūLγρdL) |n >

= −
2Vud

v2 (ū(pe)γρPLv(pν))⟨p | (ūLγρdL) |n >

= −
Vud

v2 (ū(pe)γρPLv(pν)){⟨p | (ūγρd) |n > − ⟨p | (ūγργ5d) |n > }

PL ≡
1 − γ5

2

where u(p), v(p) are the usual spinor wave functions for particle and antiparticles



M(n → pe−ν̄e) = −
Vud

v2 (ū(pe)γρPLv(pν)){⟨p | (ūγρd) |n > − ⟨p | (ūγργ5d) |n > }
Fermi EFT, again

Due to strong QCD interaction, the quark matrix element cannot be calculated perturbatively 

However, with the input from dimensional analysis and QCD (approximate) symmetries 
they can be reduced to a few unknowns,  

which can be subsequently calculated on the lattice or using phenomenological models 

⟨p | (ūγρd) |n > = ū(pp)[gV(q2)γρ +
g̃TV(q2)

2mn
σρνqν +

g̃S(q2)
2mn

qρ]u(pn)

⟨p | (ūγργ5d) |n > = ū(pp)[gA(q2)γρ +
g̃TA(q2)

2mn
σρνqν +

g̃P(q2)
2mn

qρ]γ5u(pn)

q ≡ pn − pp

Lorentz invariance + Parity of QCD  implies



M(n → pe−ν̄e) = −
Vud

v2 (ū(pe)γρPLv(pν)){⟨p | (ūγρd) |n > − ⟨p | (ūγργ5d) |n > }
Fermi EFT, again

⟨p | (ūγρd) |n > = gVū(pp)γρu(pn) + 𝒪(q)
⟨p | (ūγργ5d) |n > = gAū(pp)γργ5u(pn) + 𝒪(q)

q ≡ pn − pp

For beta decay processes, and especially for neutron decay, recoil is much smaller than 
nucleon mass. Therefore at the leading order one can approximate

where gV=gV(0) and gA=gA(0) are now numbers, called the vector and axial charges 

 Furthermore, in the isospin symmetric gV=1, because the quark current is the isospin current 
One can prove that departures of gV from one are second order in isospin breaking, thus tiny 

M(n → pe−ν̄e) = −
Vud

v2 (ū(pe)γρPLv(pν)){ū(pp)γρu(pn) − gAū(pp)γργ5u(pn) + 𝒪(q)}
All in all



Fermi EFT, again

ℒeff ⊃ −
Vud

v2
(ēLγρνe){(p̄γρn) − gA(p̄γργ5n)} + h . c. + 𝒪( q

mn )

M(n → pe−ν̄e) = −
Vud

v2 (ū(pe)γρPLv(pν)){ū(pp)γρu(pn) − gAū(pp)γργ5u(pn) + 𝒪(q)}
ℒUV ⊃ −

2Vud

v2
(ēLγρνe)(ūLγρdL) + h . c .

The non-perturbative parameter gA  appearing in this matching  
has to be calculated on the lattice or measured  in experiment

Matching

as our n→p e ν  amplitude can be obtained from this effective Lagrangian

Lattice

gA = 1.271 ± 0.013

Experiment

gA = 1.27536 ± 0.00041



• Matching of the Wilson coefficients cannot always be 
calculated analytically if the UV theory is strongly coupled at 
the matching scale


• In those cases, it pays off to use the arguments based on 
symmetries and dimensional analysis, to reduce the number 
of unknown parameters in the EFT


• The remaining unknown parameters can be taken from the 
lattice, phenomenological models, or from experiment 

Nucleaon EFT
Summary and lesson learned



Illustration #4

Schrödinger EFT



1 GeV

5 GeV

γ,g,νi,e,μ,τ + u, d, s, c  

2 GeV

γ,νi,e,μ + hadrons  

γ,νi,e,μ + pions and kaons 
100 MeV

γ,g,νi,e,μ,τ + u, d, s, c, b  

100 GeV

Standard Model

1 MeV
γ,νi,e

γ,νi



• For energies close to particle’s mass, that is at small 
momenta |k|<<m, a quantum theory has qualitatively different 
properties than for E>>m. In particular, there is no particle 
production, and one can well ignore the existence of anti-
particles.


• In the presence of long range forcers there are also 
qualitatively new phenomena appearing, such as the 
Sommerfeld enhancement or Coulomb bound state 
formation. 


• While it is perfectly possible to use the usual relativistic QFT 
in this regime, there are advantages of using a simplified 
description where high-energy modes of the quantum field 
are integrated out 

Schrödinger EFT

Ek ≡ k2 + m2 ≈ m, ↔ |k | ≪ m



Schrödinger EFT
Consider a relativistic complex scalar field:

The quantum field contains creation/annihilation operators for both particles and anti-particles:

ℒ ⊃ |∂μϕ |2 − m2 |ϕ |2

ϕ = ∫
d3k

(2π)32Ek
(ake−ikx + b†

k eikx), [ak, a†
k′�] = [bk, b†

k′�] = (2π)32Ekδ3(k − k′ �)

It is convenient to change variables such that particles and anti-particles are separated:

ψ =
eimt

2
[ ̂E1/2ϕ + i ̂E−1/2∂tϕ]

ψ c =
eimt

2
[ ̂E1/2ϕ† + i ̂E−1/2∂tϕ†]

̂E ≡ m2 − ∇2

ψ = ∫
d3k

(2π)3 2Ek
ake−i(Ek−m)teikx

ψc = ∫
d3k

(2π)3 2Ek
bke−i(Ek−m)teikx

In the new variables:

particle field

antiparticle field

k = (Ek, k)



ψ = ∫
d3k

(2π)3 2Ek
ake−i(Ek−m)teikx

ψ c = ∫
d3k

(2π)3 2Ek
bke−i(Ek−m)teikx

Schrödinger EFT
New fields satisfy non-local equations of motion:

i ·ψ = ( ̂E − m)ψ, i ·ψc = ( ̂E − m)ψc

These can be obtained from the non-local Lagrangian

Note that the particle and anti-particle fields do not mix at the quadratic level

ℒ ⊃ iψ̄ ·ψ − ψ̄( ̂E − m)ψ + iψ̄c ·ψc − ψ̄c( ̂E − m)ψc

̂E ≡ m2 − ∇2 = m −
∇2

2m
−

∇4

2m3
+ …

Up to this point we only changed variables to a non-local and non-manifestly Lorentz-invariant  
description, without adding or removing any physics content 

Non-relativistic theory is obtained by expanding this Lagrangian in powers of spatial derivatives

ℒ ⊃ iψ̄ ·ψ + ψ̄
∇2

2m
ψ + iψ̄c ·ψc + ψ̄c ∇2

2m
ψc + 𝒪(∇4)

In this approximation fields satisfy local (Schrödinger) equations:

i ·ψ = −
∇2

2m
ψ, i ·ψ c = −

∇2

2m
ψ c



Schrödinger EFT
Same story for a relativistic real scalar field: ℒ ⊃

1
2

(∂μϕ)2 −
m2

2
ϕ2

ψ =
eimt

2
[ ̂E1/2ϕ + i ̂E−1/2∂tϕ] = ∫

d3k
(2π)3 2Ek

ake−i(Ek−m)teikx

Non-relativistic field

Non-relativistic Lagrangian ℒ ⊃ iψ̄ ·ψ + ψ̄
∇2

2m
ψ + 𝒪(∇4)

Inverse transformation

ϕ =
1

2
̂E−1/2[e−imtψ + eimtψ̄]

Relativistic field

ϕ = ∫
d3k

(2π)32Ek
(ake−ikx + a†

k eikx), [ak, a†
k′�] = (2π)32Ekδ3(k − k′ �)

We traded a real scalar field φ for a complex field ψ   
The U(1) symmetry of the complex field is interpreted as the global particle number 



Schrödinger EFT

Consider now cubic interactions ℒ ⊃
1
2

(∂μϕ)2 −
m2

2
ϕ2−m κ ϕ3

ϕ =
1

2
̂E−1/2[e−imtψ + eimtψ̄] =

1

2m
[e−imtψ + eimtψ̄] + 𝒪(∇2)

Express this interaction in terms of non-relativistic variables:

At the lowest, non-derivative order we find

−mκϕ3 → −
κm

(2m)3/2 [e−3imtψ3 + e−imtψ2ψ̄ + h . c . ]
What the heck is this???

Actually, the non-relativistic theory is telling us something interesting,  
namely that to understand the non-relativistic dynamics of a scalar field  

we should first integrate out its high-frequency modes



Schrödinger EFT
Expand the non-relativistic field into frequency modes: ψ(x, t) = ∑

n

ψn(x, t)ei m n t

Assumption: the fields ψn(x,t) are slowly varying  |∂tψn | ≪ m |ψn |

Take a small time interval t ∈ [0,
2π
m ] in which we can ignore time evolution of  ψn(x,t)

ℒ ⊃ iψ̄ ·ψ + ψ̄
∇2

2m
ψ −

κm
(2m)3/2 [e−3imtψ3 + 3e−imtψ2ψ̄ + h . c . ]

L ≡ ∫
2π/m

0
dtℒ ⊃

2π
m {∑

n

ψ̄n(−nm+
∇2

2m )ψn −
κm

(2m)3/2 [3ψ̄3ψ̄2
0 + 6ψ̄1 |ψ0 |2 + 3ψ̄−1ψ2

0 + h . c . ]}
Modes with n different from zero effectively have a large “mass”,  

which suppresses their contribution to the path integral. Integrate them out! 

Integrating over that time interval:

0

(n)

0

00

0 0

00



Schrödinger EFT
L ⊃

2π
m {∑

n

ψ̄n( − nm +
∇2

2m )ψn −
κm

(2m)3/2 [3ψ̄3ψ̄2
0 + 6ψ̄1 |ψ0 |2 + 3ψ̄−1ψ2

0 + h . c . ]}
Equations of motion for the high-frequency modes

ψ1 = −6
κ

(2m)3/2
|ψ0 |2 + 𝒪(∇2)

ψ−1 = 3
κ

(2m)3/2
ψ2

0 + 𝒪(∇2)

ψ3 = −
κ

(2m)3/2
ψ̄2

0 + 𝒪(∇2)

Plugging this solution back into L:

Leff ⊃
2π
m {ψ̄0

∇2

2m
ψ0 +

15κ2

4m2
|ψ0 |4 + 𝒪(∇2)}

Unfolding this into effective Lagrangian for the low-frequency mode:

ℒeff ⊃ ψ̄0
·ψ0 + ψ̄0

∇2

2m
ψ0+

15κ2

4m2
|ψ0 |4 +𝒪(∇2)



• There is no cubic self-interaction in the non-relativistic effective Lagrangian! 
The relativistic scalar cubic coupling translates to a quartic coupling in the 
relativistic theory 


• The same conclusion could be reached by calculating the  
φ φ→ φ φ scattering amplitude in the relativistic theory, and expanding it at 
low velocity  


• This is a broad conclusion about physics of many non-relativistic systems 
(e.g. scalar condensates in cosmology) - a relativistic cubic potential 
corresponds to an attractive quartic potential in the non-relativistic regime


• The deeper reason is that there cannot be particle-number changing 
interactions in a non-relativistic EFT


• Self-interaction corresponds to an irrelevant operator in a non-relativistic EFT

ℒUV ⊃
1
2

(∂μϕ)2 −
m2

2
ϕ2 − m κ ϕ3

Schrödinger EFT

ℒeff ⊃ ψ̄0
·ψ0 + ψ̄0

∇2

2m
ψ0 +

15κ2

4m2
|ψ0 |4



Interlude

Non-relativistic power counting



Scaling in non-relativistic theories

In usual non-relativistic theory 

quartic self-interaction is


irrelevant!

In a non-relativistic theory 

time and space are on different footing.

In order to keep kinetic terms invariant


they should be assigned different scaling dimensions

There are other non-relativistic systems (e.g. z=3 fixed point) where scaling is yet different  



• Non-relativistic effective Lagrangian can be build in a 
systematic expansion in ∇2/m2. 


• Clever choice of variables may greatly facilitate derivation of 
the low-energy EFT Lagrangian


• In some cases,  EFT interactions become transparent after 
integrating out high-frequency modes of the field describing 
the light particle participating in the EFT

Schrödinger EFT
Summary and lessons learned



Illustration #5

Chiral Perturbation Theory



1 GeV

5 GeV

γ,g,νi,e,μ,τ + u, d, s, c  

2 GeV

γ,νi,e,μ + hadrons  

γ,νi,e,μ + pions and kaons 
100 MeV

γ,g,νi,e,μ,τ + u, d, s, c, b  

100 GeV

Standard Model

1 MeV
γ,νi,e

γ,νi



ChPT describes low energy interactions of 
pions. 


Underlying theory - QCD  - is known, but 
coefficients of EFT operators cannot be 
calculated analytically. 


Approximate symmetries inherited from QCD 
provide a method to write down possible pion 
interactions in a systematic expansion

Chiral perturbation theory



QCD has two nearly massless quarks: up and 
down. In massless limit, QCD Lagrangian has 
SU(2)LxSU(2)R symmetry corresponding to 
separate rotations of left-handed and right-
handed components 


This symmetry is explicitly and completely  
broken by quark masses


There’s even larger source of symmetry 
breaking due to QCD vacuum condensate,  
 <u u^c> = < d d^c>


This spontaneously breaks SU(2)LxSU(2)R down 
to diagonal SU(2) that rotates left-handed and 
right-handed quarks in the same way


Therefore, there should 3 light Goldstone 
boson states (identified with pions), 1 for each 
spontaneously broken generator of symmetry

Chiral perturbation theory

SU(2) SU(2)



Low energy theory of pions should inherit 
symmetries of QCD 


This means the theory should have non-linearly 
realized SU(2)LxSU(2)R symmetry such that 
diagonal (vector) part is linearly realized, and 
under axial part pions transform under shift 
symmetry


Effective Lagrangian can then be written in 
derivative expansion 


Lowest order term that one can write has 2 
derivatives. It describes kinetic terms of pions, 
but also infinite series of 2-derivative pion 
interaction terms


 These interactions can be tested in pion-pion 
scattering, which allows one to fit f≈93 MeV 

Chiral perturbation theory

π+ π-

π+ π-



ChPT theory can be extended to 4-derivative level. This produces 4-derivative 
interactions terms of pions, in addition to 2-derivative ones


By studying momentum dependence of pion scattering one can fit the parameters L1, 
L2, L3


Note that in this case 1-loop diagrams with 2-derivative vertices  have to included 
together with tree-level diagrams with 4-derivative vertices. In ChPT, derivative 
expansion is intimately tied to loop expansion. 

Chiral perturbation theory

π+ π-

π+ π-

π+ π-

π+ π-

p2

p2
p4

Table 4.3: Renormalized low-energy coupling constants Lr
i in units of 10−3

at the scale µ = Mρ [Bij+ 95a]. ∆1 = −1/8, ∆2 = 5/24.

Coefficient Empirical Value Γi

Lr
1 0.4 ± 0.3 3

32
Lr

2 1.35 ± 0.3 3
16

Lr
3 −3.5 ± 1.1 0

Lr
4 −0.3 ± 0.5 1

8
Lr

5 1.4 ± 0.5 3
8

Lr
6 −0.2 ± 0.3 11

144
Lr

7 −0.4 ± 0.2 0
Lr

8 0.9 ± 0.3 5
48

Lr
9 6.9 ± 0.7 1

4
Lr

10 −5.5 ± 0.7 −1
4

to be redundant. We will justify this statement in terms of field transfor-
mations. To that end let us consider another SU(3) matrix U ′(x) which is
related to U(x) by a field transformation of the form

U(x) = exp[iS(x)]U ′(x). (4.110)

Since both U and U ′ are SU(3) matrices, S(x) must be a Hermitian traceless
3× 3 matrix. We demand that U ′(x) satisfies the same symmetry properties
as U(x) (see Table 4.2),

U ′
G#→ VRU ′V †

L , U ′(x⃗, t)
P#→ U ′†(−x⃗, t), U ′

C#→ U ′T , (4.111)

from which we obtain the following conditions for S:

S
G#→ VRSV †

R, S(x⃗, t)
P#→ −U ′†(−x⃗, t)S(−x⃗, t)U ′(−x⃗, t), S

C#→ (U ′†SU ′)T .
(4.112)

The most general transformation is constructed iteratively in the momentum
and quark-mass expansion,

U = exp[iS2(x)]U (1)(x), U (1)(x) = exp[iS4(x)]U (2)(x), · · · , (4.113)

where the matrices S2n are of O(p2n), satisfy the properties of Eq. (4.112),
and have to be constructed from the same building blocks as the effective
Lagrangian.

118

(In units of 10^-3,  
at scale mρ)

Scherer, hep-ph/0210398



Operators that can be eliminated or traded for other by equations of motion are not 
included in effective Lagrangian 


This is because they are redundant - all their effect on on-shell amplitudes can be 
described by other terms


In this case, in the limit of massless pions, equation of motion is ☐U= 0, so the new 
term above does not contribute to on-shell amplitudes at all

Chiral perturbation theory

π+ π-

π+ π-

π+ π-

π+ π-

p2

p2
p4

?



It is often advantageous to work with EFT even when matching with 
UV theory cannot be calculated. Then one needs to write down all 
possible non-redundant interaction terms consistent with EFT 
symmetries in some systematic expansion, and determine their 
coefficients from experiment


EFT is not renormalizable, therefore it formally has infinite number 
of parameter. However, at a fixed order in EFT expansion it is 
renormalizable. As soon as  all coefficients are fixed at a given  
order from experiment, other observables can be predicted at that 
order 

Chiral perturbation theory

Lessons learned:



Illustration #6

Einstein EFT



1 GeV

5 GeV

γ,g,νi,e,μ,τ + u, d, s, c  

2 GeV

γ,νi,e,μ + hadrons  

γ,νi,e,μ + pions and kaons 
100 MeV

γ,g,νi,e,μ,τ + u, d, s, c, b  

100 GeV

Standard Model

1 MeV
γ,νi,e

γ,νi

?



Einstein EFT

We want to write down an EFT for a massless spin-2 particle, aka the graviton

For a massless spin-1 particle, QFT makes sense only in the presence of gauge invariance

Likewise, for a massless spin-2 particle, QFT makes sense only in the presence of  
general coordinate invariance  

Otherwise, there is no way a 10-component symmetric tensor hµν  
can describe 2 components of the massless graviton 

hμν(x)
Such a particle can be described by a real and symmetric tensor field

hμν(x) → gμν(x) ≡ ημν + hμν(x)

To implement the GC invariance, it is convenient to combine  
the graviton field with the Minkowski metric to write

and demand that gµν transform as a tensor under GC transformations

x → y ⇒ gμν →
dxα

dyμ

dxβ

dyν
gαβ



Einstein EFT

Let’s build an EFT out of gµν  according to the usual rules 

ℒEFT = Λ4ℒD=0(g) + Λ2ℒD=2(g) + Λ0ℒD=4(g) +
1

Λ2
ℒD=6(g) + …

At the leading order the only possible invariant under GC transformations is 

SEFT = ∫ d4xℒEFT

ℒD=0(g) = c0 −g
This is the cosmological constant. Phenomenologically, this term is non-zero but tiny,  

though no one understand why….  
It only plays a role at cosmological distance scale, so we ignore it in the following 



Einstein EFT

Let’s build an EFT out of gµν  according to the usual rules 

At the next-to-leading order the only possible invariant under GC transformations is 

ℒD=2(g) = c2 −gR

ℒEFT = Λ4ℒD=0(g) + Λ2ℒD=2(g) + Λ0ℒD=4(g) +
1

Λ2
ℒD=6(g) + …x

Let’s rename variables, trading c2 Λ2  for 1/2 (MPlanck)2   

ℒD=2(g) =
1
2

M2
Planck −gR

R = gμνRμν

Rμν = Rα
μαν

Rα
μνβ = ∂νΓα

μβ − ∂βΓα
μν + Γρ

μβΓα
ρν − Γρ

μνΓα
ρβ

Γμ
νρ =

1
2

gμα (∂ρgαν + ∂νgαρ − ∂αgνρ)



Einstein EFT
Let’s build an EFT out of gµν  according to the usual rules 

ℒEFT = Λ4ℒD=0(g) +
1
2

M2
Planck −gR + ℒD=4(g) +

1
M2

Planck
ℒD=6(g) + …x

ℒD=2(1 + h) = ℒ(2)
D=2 + ℒ(3)

D=2 + ℒ(4)
D=2 + …

Expanding the next-to-leading order term in powers of the graviton field:  

ℒ(2)
D=2 =

M2
Planck

4 [ 1
2

(∂ρhμν)2 −
1
2

(∂ρh)2 − (∂ρhμρ)2 + ∂μh∂ρhμρ]
This is the so-called Fierz-Pauli Lagrangian. Up to normalization,  

this is the unique ghost-free kinetic Lagrangian for a massless spin-2 particle 



Einstein EFT
Let’s build an EFT out of gµν  according to the usual rules 

ℒEFT = Λ4ℒD=0(g) +
1
2

M2
Planck −gR + ℒD=4(g) +

1
M2

Planck
ℒD=6(g) + …x

ℒD=2(1 + h) = ℒ(2)
D=2 + ℒ(3)

D=2 + ℒ(4)
D=2 + …

Expanding the next-to-leading order term in powers of the graviton field:  

ℒ(2)
D=2 =

M2
Planck

4 [ 1
2

(∂ρhμν)2 −
1
2

(∂ρh)2 − (∂ρhμρ)2 + ∂μh∂ρhμρ]
ℒ(3)

D=2 ∼ M2
Planckh3∂2

ℒ(4)
D=2 ∼ M2

Planckh4∂2

…

We have built a consistent interacting effective theory of a massless spin-2 particle 
This effective Lagrangian describes all known phenomenology of (pure) general relativity!

Kinetic terms

Cubic interactions

Quartic interactions
and so on



Einstein EFT
Let’s build an EFT out of gµν  according to the usual rules 

ℒEFT = Λ4ℒD=0(g) +
1
2

M2
Planck −gR + ℒD=4(g) +

1
M2

Planck
ℒD=6(g) + …x

ℒD=2(1 + h) = ℒ(2)
D=2 + ℒ(3)

D=2 + ℒ(4)
D=2 + …

Expanding the next-to-leading order term in powers of the graviton field:  

ℒ(2)
D=2 =

1
2

(∂ρh̃μν)2 −
1
2

(∂ρh̃)2 − (∂ρh̃μρ)2 + ∂μh̃∂ρh̃μρ

ℒ(3)
D=2 ∼

1
MPlanck

h̃3∂2

ℒ(4)
D=2 ∼

1
M2

Planck
h̃4∂2

…

Canonically normalized kinetic terms

Cubic interactions

Quartic interactions
and so on

Canonical normalization: hμν →
2

MPlanck
h̃μν

This is a consistent theory of quantum gravity, organized as an EFT expanded in inverse powers 
of the Planck scale. It is arguably the best EFT ever, 

because its validity range is the largest of known EFTs,  
spanning from very low-energies all the way to the Planck scale 

 

p1
p2

p3p4

μ1ν1 μ2ν2

μ3ν3μ4ν4

p1
p2

p3

μ1ν1 μ2ν2

μ3ν3



Einstein EFT
Let’s build an EFT out of gµν  according to the usual rules 

ℒEFT = Λ4ℒD=0(g) +
1
2

M2
Planck −gR + ℒD=4(g) +

1
M2

Planck
ℒD=6(g) + …x

ℒD=4(g) = −g(c1R2 + c2R2
μν + c3R2

μναβ) ?
Going to higher orders 

One can show that all these operators can be eliminated by using equations of motion, 
field redefinition, integration by parts ! 

ℒD=4(g) = 0Thus

First non-trivial  EFT corrections to general relativity arise at dimension-6,  
that is at 6-derivative level !   

This is arguably the best EFT ever, because corrections from higher-dimension operators  
are extremely suppressed 



Einstein EFT
Let’s build an EFT out of gµν  according to the usual rules 

ℒEFT = Λ4ℒD=0(g) +
1
2

M2
Planck −gR +

1
M2

Planck
ℒD=6(g) + …x

Going to higher orders 

ℒD=6(g) = c1CμναβCαβρσCρσμν + c2CμναβCαβρσC̃ρσμν

We do not know what is the  UV completion of this effective theory of gravity,  
so we do not know the numerical value coefficients c1 and c2.  

At this point, they parametrize our ignorance about nature. 
Maybe one day we will measure them experimentally,  

and that will give us a hint about the underlying, more fundamental  theory of gravity 



• Gravity is (to a large extent) like any other QFT, and can be treated 
by EFT methods. As usual, symmetry is the key to building the EFT. 


• Einstein Gravity is not only a good classical theory. It is a consistent 
EFT at a quantum level, describing a self-interacting massless 
spin-2 particle. The theory is valid  in the very broad energy regime 
up to the Planck scale


• Corrections from higher dimensional operators added to the 
Einstein-Hilbert Lagrangian are very small, because they are 
suppressed by many powers of the Planck scale.  At this point, they 
seem unobservable


• One key difference to previous examples is that we don’t know the 
Wilson coefficients of the higher-dimensional operators, because 
we don’t know the UV completion of gravity 

Einstein EFT
Summary and lessons learned


