Electric Dipole Moments

M.J. Ramsey-Musolf

- T.D. Lee Institute & Shanghai Jiao Tong Univ.
- UMass-Amherst

My pronouns: he/him/his

GDR-InF Workshop October 12, 2020

The Search for an EDM: Why Physicists Should Care

- Theorists think it's interesting
- It's something we can do
- It addresses fundamental Q's

EDM's & Fundamental Questions

- Do the fundamental laws of nature violate CP beyond the known CKM CPV ?
- Why does the Universe contain more matter than anti-matter ?
- What is the mass scale associated with Beyond the Standard Model Physics ?
- Is BSM physics perturbative or strongly coupled ?

Themes for This Talk

- EDMs provide powerful "tabletop" probe of high energy and/or early universe fundamental physics
- Searches with multiple, complementary systems are essential
- The theoretical interpretation of EDMs entails a rich and challenging interplay of physics at multiple scales
- Significant discoveries are possible, while limits yield tremendous insight
- This is an area of exciting opportunities and challenges for both experiment and theory

Outline

- I. EDM Basics & the BSM context
- II. Experimental Situation
- III. Theoretical Interpretation
- **IV. BSM Implications**
- V. Outlook

References

- Engel, MJRM, van Kolck: Prog. Part. Nucl. Phys. 71 (2013) 21 [arXiv:1303.2371]
- Pospelov & Ritz, Ann. Phys. 318 (2005) 119 [hep-ph/0504231]
- Chupp & MJRM, Phys. Rev. C91 (2015) 035502 [arXiv:1407.1064]
- Morrissey & MJRM, New J. Phys. 14 (2012) 125003 [arXiv: 1206.2942]
- Flambaum & Ginges, Phys. Rept. 397 (2004) 63 [physics/0309054]
- Chupp, Fierlinger, MJRM, Singh [1710.02504]

I. EDM Basics & The BSM Context

$$v_{EDM} = -\frac{d\vec{S}\cdot\vec{E}}{h}$$

8

J=1/2, relativistic particles

F_A: Anapole ff

P Violating

Non-relativistic diamagnetic systems

What is an EDM? Non-relativistic diamagnetic systems

What is an EDM? Non-relativistic diamagnetic systems

What is an EDM? Non-relativistic diamagnetic systems

 $d_n \sim (10^{-16} \text{ e cm}) \times \theta_{QCD} + d_n^{CKM}$

$$d_n \sim (10^{-16} \text{ e cm}) \times \theta_{QCD} + d_n^{CKM}$$

 $d_n^{CKM} = (1 - 6) \times 10^{-32} \text{ e cm}$
C. Seng arXiv: 1411.1476

$d \sim (10^{-16} \text{ e cm}) \times (\upsilon / \Lambda)^2 \times \sin \phi \times y_f F$

$$d \sim (10^{-16} \text{ e cm}) \times (v / \Lambda)^2 \times \text{sin}\phi \times y_f F$$

CPV Phase: large enough for baryogenesis ?

$$d \sim (10^{-16} \text{ e cm}) \times (v / \Lambda)^2 \times \sin \phi \times y_f F$$

BSM mass scale: TeV ? Much higher ?

v = 246 GeVHiggs vacuum expectation value $\Lambda > 246 \text{ GeV}$ Mass scale of BSM physics

$$d \sim (10^{-16} \text{ e cm}) \times (\upsilon / \Lambda)^2 \times \sin \phi \times |y_f F|$$

BSM dynamics: perturbative? Strongly coupled?

y_f Fermion f Yukawa coupling
 F Function of the dynamics

- Baryon asymmetry
- High energy collisions
- EDMs

Cosmic Frontier Energy Frontier Intensity Frontier

II. Experimental Situation

EDMs: New CPV?

System	Limit (e cm)*	SM CKM CPV	BSM CPV
¹⁹⁹ Hg	7.4 x 10 ⁻³⁰	10 ⁻³³	10 ⁻²⁹
ThO	1.1 x 10 ⁻²⁹ **	10 ⁻³⁸ *	10 ⁻²⁸
n	1.8 x 10 ⁻²⁶	10 ⁻³¹	10 ⁻²⁶

* 95% CL ** e⁻ equivalent

* e⁻ equivalent from C_S

EDMs: New CPV?

System	Limit (e cm) [*]	SM CKM CPV	BSM CPV
¹⁹⁹ Hg	7.4 x 10 ⁻³⁰	10 ⁻³³	10 ⁻²⁹
ThO	1.1 x 10 ⁻²⁹ **	10 ⁻³⁸ *	10 ⁻²⁸
n	1.8 x 10 ⁻²⁶	10 ⁻³¹	10 ⁻²⁶

* 95% CL ** e⁻ equivalent

* e⁻ equivalent from C_S

Mass Scale Sensitivity

EDMs: New CPV?

System	Limit (e cm) [*]	SM CKM CPV	BSM CPV
¹⁹⁹ Hg	7.4 x 10 ⁻³⁰	10 ⁻³³	10 ⁻²⁹
ThO	1.1 x 10 ⁻²⁹ **	10 ⁻³⁸ *	10 ⁻²⁸
n	1.8 x 10 ⁻²⁶	10 ⁻³¹	10 ⁻²⁶

* 95% CL ** e⁻ equivalent

* e⁻ equivalent from C_S

Not shown: muon

Why Multiple Systems ?

Why Multiple Systems ?

Multiple sources & multiple scales

II. Theoretical Interpretation

Effective Operators: The Elevator

$$\mathcal{L}_{\mathrm{CPV}} = \mathcal{L}_{\mathrm{CKM}} + \mathcal{L}_{\bar{\theta}} + \mathcal{L}_{\mathrm{BSM}}^{\mathrm{eff}}$$

$$\mathcal{L}_{ ext{BSM}}^{ ext{eff}} = rac{1}{\Lambda^2} \sum_i lpha_i^{(n)} O_i^{(6)}$$

30

+...

Effective Field Theory

Effective Field Theory

Effective Field Theory

35

Operator Classification

Pure Gauge	Gauge-Higgs		Gauge-Higgs-Fermion	
$\left[Q_{\widetilde{G}} \mid f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho} \right]$	$Q_{arphi \widetilde{G}}$	$\varphi^{\dagger} \varphi \widetilde{G}^{A}_{\mu \nu} G^{A \mu \nu}$	Q_{uG}	$(\bar{Q}\sigma^{\mu\nu}T^A u)\widetilde{\varphi}G^A_{\mu\nu}$
$Q_{\widetilde{W}} \varepsilon^{IJK} \widetilde{W}^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$	$Q_{\varphi \widetilde{W}}$	$\varphi^{\dagger} \varphi \widetilde{W}^{I}_{\mu u} W^{I \mu u}$	Q_{dG}	$(\bar{Q}\sigma^{\mu u}T^{A}d)\varphiG^{A}_{\mu u}$
	$Q_{arphi \widetilde{B}}$	$arphi^\dagger arphi \widetilde{B}_{\mu u} B^{\mu u}$	Q_{fW}	$(\bar{F}\sigma^{\mu u}f)\tau^{I}\Phi W^{I}_{\mu u}$
	$Q_{arphi \widetilde{W}B}$	$\varphi^\dagger \tau^I \varphi \widetilde{W}^I_{\mu\nu} B^{\mu\nu}$	Q_{fB}	$(\bar{F}\sigma^{\mu\nu}f)\Phi B_{\mu\nu}$

Weinberg 3 gluon
Pure Gauge		Gauge-Higgs		Gauge-Higgs-Fermion		
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{arphi \widetilde{G}}$	$\varphi^{\dagger} \varphi \widetilde{G}^{A}_{\mu \nu} G^{A \mu \nu}$	Q_{uG}	$(\bar{Q}\sigma^{\mu\nu}T^A u)\widetilde{\varphi}G^A_{\mu\nu}$	
$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$Q_{\varphi \widetilde{W}}$	$\varphi^{\dagger}\varphi\widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{dG}	$(\bar{Q}\sigma^{\mu u}T^Ad)\varphiG^A_{\mu u}$	
		$Q_{arphi \widetilde{B}}$	$arphi^\dagger arphi \widetilde{B}_{\mu u} B^{\mu u}$	Q_{fW}	$(\bar{F}\sigma^{\mu\nu}f)\tau^{I}\Phi W^{I}_{\mu\nu}$	
		$Q_{arphi \widetilde{W}B}$	$\varphi^\dagger \tau^I \varphi \widetilde{W}^I_{\mu\nu} B^{\mu\nu}$	Q_{fB}	$(\bar{F}\sigma^{\mu\nu}f)\Phi B_{\mu\nu}$	

Quark chromo-EDM

Pure Gauge		Gauge-Higgs		Gauge-Higgs-Fermion		
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{arphi \widetilde{G}}$	$\varphi^{\dagger}\varphi\widetilde{G}^{A}_{\mu u}G^{A\mu u}$	Q_{uG}	$(\bar{Q}\sigma^{\mu\nu}T^A u)\widetilde{\varphi}G^A_{\mu\nu}$	
$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$Q_{arphi \widetilde{W}}$	$\varphi^{\dagger}\varphi\widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{dG}	$(\bar{Q}\sigma^{\mu u}T^Ad)\varphiG^A_{\mu u}$	
		$Q_{arphi \widetilde{B}}$	$\varphi^{\dagger} \varphi \widetilde{B}_{\mu \nu} B^{\mu \nu}$	Q_{fW}	$(\bar{F}\sigma^{\mu u}f)\tau^{I}\Phi W^{I}_{\mu u}$	
		$Q_{arphi \widetilde{W}B}$	$\varphi^\dagger \tau^I \varphi \widetilde{W}^I_{\mu\nu} B^{\mu\nu}$	Q_{fB}	$(\bar{F}\sigma^{\mu\nu}f)\Phi B_{\mu\nu}$	

Fermion EDM

Semileptonic: atomic & molecular EDMs

Nonleptonic: hadronic EDMs & Schiff moment

Wilson Coefficients: Summary

$\delta_{\!f}$	fermion EDM	(3)
$\widetilde{\delta}_q$	quark CEDM	(2)
$C_{\widetilde{G}}$	3 gluon	(1)
C _{quqd}	non-leptonic	(2)
C _{lequ, ledq}	semi-leptonic	(3)
$oldsymbol{C}_{arphi$ ud	induced 4f	(1)

12 total + $\overline{\theta}$

light flavors only (e,u,d)

Wilson Coefficients: Summary

$\delta_{\!f}$	fermion EDM	(3)	
$\widetilde{oldsymbol{\delta}}_q$	quark CEDM	(2)	
$C_{\widetilde{G}}$	3 gluon	(1)	
C _{quqd}	non-leptonic	(2)	
C _{lequ, ledq}	semi-leptonic	(3)	
$m{C}_{arphi$ ud	induced 4f	(1)	

12 total + $\overline{\theta}$ light flavors only (e,u,d)Complementary searches needed

Effective Field Theory

Energy Scale

Effective Field Theory

$$\mathcal{L}_{N\pi}^{\text{PVTV}} = -2\bar{N} \left(\bar{d}_{0} + \bar{d}_{1}\tau_{3} \right) S_{\mu}N v_{\nu}F^{\mu\nu} + \bar{N} \left[\bar{g}_{\pi}^{(0)} \tau \cdot \pi + \bar{g}_{\pi}^{(1)}\pi^{0} + \bar{g}_{\pi}^{(2)} \left(3\tau_{3}\pi^{0} - \tau \cdot \pi \right) \right] N + \bar{C}_{1}\bar{N}N \,\partial_{\mu} \left(\bar{N}S^{\mu}N \right) + \bar{C}_{2}\bar{N}\tau N \cdot \partial_{\mu} \left(\bar{N}S^{\mu}\tau N \right) + \cdots$$

$$\mathcal{L}_{N\pi}^{\text{PVTV}} = -\frac{2\bar{N}\left(\bar{d}_{0} + \bar{d}_{1}\tau_{3}\right)S_{\mu}N v_{\nu}F^{\mu\nu}}{+\bar{N}\left[\bar{g}_{\pi}^{(0)}\tau \cdot \pi + \bar{g}_{\pi}^{(1)}\pi^{0} + \bar{g}_{\pi}^{(2)}\left(3\tau_{3}\pi^{0} - \tau \cdot \pi\right)\right]N} \\ + \bar{C}_{1}\bar{N}N \,\partial_{\mu}\left(\bar{N}S^{\mu}N\right) + \bar{C}_{2}\bar{N}\tau N \cdot \partial_{\mu}\left(\bar{N}S^{\mu}\tau N\right) + \cdots$$

Nucleon EDMs

Hadronic Matrix Element Challenge

$$d_{N} = \alpha_{N} \bar{\theta} + \left(\frac{v}{\Lambda}\right)^{2} \sum_{k} \beta_{N}^{(k)} (\operatorname{Im} C_{k})$$

$$\bar{g}_{\pi}^{(i)} = \lambda_{(i)} \bar{\theta} + \left(\frac{v}{\Lambda}\right)^{2} \sum_{k} \gamma_{(i)}^{(k)} (\operatorname{Im} C_{k})$$
Hadronic
matrix elements
$$d=6 \text{ operator}$$

$$coefficients$$

How well can we compute the β , γ , λ , ... ?

Hadronic Matrix Elements

					_	
	Param	Coeff	Best value ^a	Range		
	$\bar{ heta}$	$lpha_n lpha_p$	0.002 0.002	(0.0005-0.004) (0.0005-0.004)		
	Im C _{qG}	$egin{smallmatrix} eta_n^{uG} \ eta_n^{dG} \ eta_n^{dG} \end{split}$	$\begin{array}{l} 4\times10^{-4}\\ 8\times10^{-4}\end{array}$	$(1-10) \times 10^{-4}$ $(2-18) \times 10^{-4}$		Hadronic
	$ ilde{d}_q$	$e ilde{ ho}_n^u \\ e ilde{ ho}_n^d$	-0.35 -0.7	-(0.09 - 0.9) -(0.2 - 1.8)		Uncertaint
_	$ ilde{\delta}_q$	$e \tilde{\zeta}_n^u \\ e \tilde{\zeta}_n^d$	$\frac{8.2 \times 10^{-9}}{16.3 \times 10^{-9}}$	$(2-20) \times 10^{-9}$ $(4-40) \times 10^{-9}$		
Progress: LANL LQCD	Im C _{qy}	$egin{array}{c} eta_n^{u\gamma} \ eta_n^{d\gamma} \ eta_n^{d\gamma} \end{array}$	$0.4 imes 10^{-3} \ -1.6 imes 10^{-3}$	$(0.2 - 0.6) \times 10^{-3}$ -(0.8 - 2.4) × 10^{-3}		
	d_q	$ ho_n^u ho_n^d$	-0.35 1.4	(-0.17)-0.52 0.7-2.1		
	δ_q	ζ_n^u ζ_n^d	$8.2 imes 10^{-9} \ -33 imes 10^{-9}$	$\begin{array}{c} (4-12)\times 10^{-9} \\ -(16-50)\times 10^{-9} \end{array}$		
	C _Ĝ	$\beta_n^{\tilde{G}}$	$2 imes 10^{-7}$	$(0.2-40) imes 10^{-7}$		
	Im C _{φud}	$\beta_n^{\varphi u d}$	$3 imes 10^{-8}$	$(1-10) \times 10^{-8}$		
	$\operatorname{Im} C_{quqd}^{(1,8)}$	β_n^{quqd}	40×10^{-7}	$(10 - 80) \times 10^{-7}$		
	$\operatorname{Im} C_{eq}^{(-)}$	$g_{\rm S}^{(0)}$	12.7	11-14.5		
Engel, R-M, van Kolck:	$\operatorname{Im} C_{eq}^{(+)}$	g _S ⁽¹⁾	0.9	0.6-1.2		52

Effective Field Theory

Schiff Theorem

The Theorem

Classical picture: nonacceleration of neutral non-rel system The EDM of a neutral system will vanish if:

- Constituents are nonrelativistic
- Constituents are point-like
- Interactions are electrostatic

Classical picture: nonacceleration of neutral non-rel system The EDM of a neutral system will vanish if:

- Constituents are nonrelativistic
- Constituents are point-like
- Interactions are electrostatic

Paramagnetic systems w/ large Z: e⁻ are highly relativistic

Classical picture: nonacceleration of neutral non-rel system The EDM of a neutral system will vanish if:

- Constituents are nonrelativistic
- Constituents are point-like
- Interactions are electrostatic

Diamagnetic atoms w/ large A: nuclei are large $r \sim (1 \text{ fm}) \times A^{1/3}$

Classical picture: nonacceleration of neutral non-rel system The EDM of a neutral system will vanish if:

- Constituents are nonrelativistic
- Constituents are point-like
- Interactions are electrostatic

St'd Model magnetic interactions, BSM e-q interactions,...

Paramagnetic Systems: *d*_e

Electron EDM Interactions

Electron EDM: Heavy Atoms

62

Electron EDM: Polar Molecules

Electron experiences enhanced E_{int} as due to much smaller E_{ext}

Diamagnetic Atoms

Classical picture: nonacceleration of neutral non-rel system The EDM of a neutral system will vanish if:

- Constituents are nonrelativistic
- Constituents are point-like
- Interactions are electrostatic

Diamagnetic atoms w/ large A: nuclei are large $r \sim (1 \text{ fm}) \times A^{1/3}$

PVTV Nuclear Moments

EDMs of diamagnetic atoms (¹⁹⁹Hg)

Nuclear Schiff Moment

Nuclear Schiff Moment

Nuclear Enhancements

Schiff moment, MQM,...

Nuclear polarization: mixing of opposite parity states by $H^{TVPV} \sim 1 / \Delta E$

EDMs of diamagnetic atoms (¹⁹⁹Hg)

Nuclear Schiff Moment

Nuclear Enhancements: Octupole Deformation

Calculated ²²⁵Ra density

Opposite parity states mixed by H^{TVPV}

Nuclear polarization: mixing of opposite parity states by $H^{TVPV} \sim 1 / \Delta E$

EDMs of diamagnetic atoms (¹⁹⁹Hg)

Nuclear Schiff Moment: Pion Exchange

$$S = a_0 g \,\bar{g}_{\pi}^{(0)} + a_1 g \,\bar{g}_{\pi}^{(1)} + a_2 g \,\bar{g}_{\pi}^{(2)}$$

Nuclear Schiff Moment: Pion Exchange

Nuclear many-body computations
$$\begin{aligned} S &= a_0 g \, \bar{g}_{\pi}^{(0)} + a_1 g \, \bar{g}_{\pi}^{(1)} + a_2 g \, \bar{g}_{\pi}^{(2)} \\ \bar{g}_{\pi}^{(i)} &= \lambda_{(i)} \, \bar{\theta} + \left(\frac{v}{\Lambda}\right)^2 \sum_{k} \gamma_{(i)}^{(k)} \, (\operatorname{Im} C_k)
\end{aligned}$$

Non-perturbative hadronic computations

Nuclear Matrix Elements

Nucl.	Best value				
	<i>a</i> 0	<i>a</i> ₁	<i>a</i> ₂		
¹⁹⁹ Hg ¹²⁹ Xe ²²⁵ Ra	0.01 -0.008 -1.5	± 0.02 -0.006 6.0	0.02 -0.009 -4.0		
Range					
<i>a</i> ₀		<i>a</i> ₁	<i>a</i> ₂		
0.005-0.05 -0.005-(-0.05) -1-(-6)		-0.03-(+0.09) -0.003-(-0.05) 4-24	0.01-0.06 -0.005-(-0.1) -3-(-15)		
IV. BSM Implications

Specific Illustrations: "Portals"

Where is BSM CPV hiding ?

The Higgs Portal

What is the CP Nature of the Higgs Boson ?

- Interesting possibilities if part of an extended scalar sector
- Two Higgs doublets ?

 $H
ightarrow H_1$, H_2

• New parameters:

 $tan \beta = \langle H_1 \rangle / \langle H_2 \rangle$ sin α_b

What is the CP Nature of the Higgs Boson ?

- Interesting possibilities if part of an extended scalar sector
- Two Higgs doublets ?

 $H
ightarrow H_1$, H_2

• New parameters:

Higgs Portal CPV: EDMs

CPV & 2HDM: Type II illustration

$$\lambda_{6.7} = 0$$
 for simplicity

Higgs Portal CPV: EDMs & LHC

CPV & 2HDM: Type II illustration

 $\lambda_{6.7} = 0$ for simplicity

EDM Complementarity

Paramagnetic Systems: Two Sources

Paramagnetic Systems: Two Sources

Paramagnetic Systems: Two Sources

Illustrative Example: Leptoquark Model

Illustrative Example: Leptoquark Model

Illustrative Example: Leptoquark Model

Electroweak Baryogenesis

Was Y_B generated in conjunction with electroweak symmetry-breaking?

Baryogenesis Scenarios

Energy Scale (GeV)

Baryogenesis Scenarios

Era of EWSB: $t_{univ} \sim 10 \text{ ps}$

EWBG: MSSM & Beyond

- Strong first order EWPT: LHC → Excluded for the MSSM → Possible w/ extensions (e.g., NMSSM)
- **CPV:** Sources same as in MSSM + possible additional

EDMs & EW Baryogenesis: MSSM+

Heavy sfermions: LHC consistent & suppress 1-loop EDMs

Sub-TeV EW-inos: LHC & EWB - viable but non-universal phases

EDMs & EW Baryogenesis: MSSM+

Heavy sfermions: LHC consistent & suppress 1-loop EDMs

Sub-TeV EW-inos: LHC & EWB - viable but non-universal phases

EDMs: What We May Learn

CPV for EWBG

Outlook

- EDMs provide powerful "tabletop" probe of high energy and/or early universe fundamental physics
- Searches with multiple, complementary systems are essential
- The theoretical interpretation of EDMs entails a rich and challenging interplay of physics at multiple scales
- Significant discoveries are possible, while limits yield tremendous insight
- This is an area of exciting opportunities for Intensity Frontier physics

Back Up Slides

The Top Quark Portal

CPV Top Quark Interactions?

- 3rd generation quarks often have a special role in BSM scenarios, given m_t >> all other m_f
- If BSM CPV exists, d_t may be enhanced
- Top EDMs difficult to probe experimentally
- Light fermion EDMs to the rescue !

CPV Top Quark Interactions?

Cordero-Cid et al '08, Kamenik et al '12, Cirigliano et al '16, Fuyuto & MRM in 1706.08548

Model-indep: independent SU(2)_L & U(1)_Y dipole operators: C_{tB} , $C_{tW} \rightarrow$ Tree level d_t & loop level d_e , $d_{light q}$

Induced d_e , d_{light quark}

Fuyuto & MRM '17 Fuyuto '19: Updated for new ThO

Dark Photon Portal

BSM Physics: Where Does it Live ?

Dark Photon Portal

New CPV ?

Dark Photon Portal

Thanks: K. Fuyuto

CPV Dark Photon

K. Fuyuto, X.-G. He, G. Li, MJRM 1902.XXXXX

CPV Dark Photon

CPV Dark Photon

Effective Field Theory

Effective Field Theory

Effective Field Theory

Energy Scale

Effective Field Theory

110

Effective Field Theory

Leptonic & SemileptonicCPV

EDMs of paramagnetic atoms & molecules (TI, ThO, HfF⁺...)

Semileptonic CPV

- (PS q) x (Scalar e⁻)
- (Tensor q) x (Tensor e⁻)

EDMs of diamagnetic atoms (Hg, Ra. Xe···)

Nuclear Schiff Moment

