The n2EDM project: a new measurement of the neutron EDM at the PSI

G. Ban, J. Chen, D. Goupillière, T. Lefort, Y. Lemière, O. Naviliat, and <u>W. Sáenz</u>

Laboratoire de physique corpusculaire, Caen

GDR-InF annual workshop

Outlook

- Motivation
- Neutron EDM
- Measurement principle
- n2EDM project
- A novel UCN gaseous detector
- Final remarks and perspectives

Motivation

Permanent electric dipole moments (EDM) violate P, T and CP symmetries!

$$\hat{\mathcal{H}} = \vec{d} \cdot \vec{E} = d\vec{S} \cdot \vec{E}$$

$$\mathcal{P}\{\hat{\mathcal{H}}\} = d\vec{S} \cdot (-\vec{E}) = -\hat{\mathcal{H}}$$
$$\mathcal{T}\{\hat{\mathcal{H}}\} = d(-\vec{S}) \cdot \vec{E} = -\hat{\mathcal{H}}$$

Motivation

Permanent electric dipole moments (EDM) violate P, T and CP symmetries!

12-10-2020

$$\hat{\mathcal{H}} = \vec{d} \cdot \vec{E} = d\vec{S} \cdot \vec{E}$$

$$\mathcal{P}\{\hat{\mathcal{H}}\} = d\vec{S} \cdot (-\vec{E}) = -\hat{\mathcal{H}}$$
$$\mathcal{T}\{\hat{\mathcal{H}}\} = d(-\vec{S}) \cdot \vec{E} = -\hat{\mathcal{H}}$$

CP violation assuming CPT conserved

EDMs would be new source of CP violation explaining baryogenesis imbalance (Sakharov conditions)

[A. D. Sakharov. JETP Letters, 5:24-27, 1967.]

Neutron EDM

- SM predictions in electroweak sector out of reach
- neutron EDM as a probe of SM extensions

Neutron EDM

Measurement principle

Measurement principle

Energy levels in E // B and E//B configurations:

Problem reduced to measuring the neutron Larmor frequency

 $\nu_{\parallel, \not\parallel} = \left| \frac{\gamma_n}{2\pi} B \right| \pm \frac{d_n}{\pi \hbar} \left| E \right|$

(Ramsey interferometry)

Measurement principle

Energy levels in E // B and E//B configurations:

Problem reduced to measuring the neutron Larmor frequency

$$\nu_{\parallel, \ddagger} = \left| \frac{\gamma_n}{2\pi} B \right| \pm \frac{d_n}{\pi \hbar} \left| E \right|$$

- > If $d_n = 10^{-26}$ e cm, E = 15 kV/cm and B = 1 μ T
- Control of B-field is crucial!!!

$$\frac{\frac{d_n}{\pi\hbar}|E|}{\left|\frac{\gamma_n}{2\pi}B\right|} \approx 2 \times 10^{-9}$$

Ultra-cold neutrons (UCN)

- $K_{\rm ucn} < V_{\rm F} \sim 200 \text{ neV} \rightarrow \text{Total}$ reflection
- UCN storage = longer measurements

PSI UCN source:

- Neutrons from proton (600 MeV, 2.2 mA) spallation of lead
- Cooling down using D₂O and sD₂

Paul Scherrer Institute

GDR-InF workshop 12-10-2020 Saenz W.

Best MSR in the world:

- \rightarrow residual field < 500 pT
- \rightarrow shielding factor: 10^5
- \rightarrow controlled volume: 1

m³

		nEDM 2016	n2EDM baseline
Statistical sensitivity	chamber diameter D	DLC & dPS 47 cm	DLC & dPS 80 cm
$\sigma_{d_n} = \frac{\hbar}{2E\alpha T\sqrt{N}}$	$N \text{ (per cycle)} \\ T \\ E \\ \alpha$	15'000 180 s 11 kV/cm 0.75	121'000 180 s 15 kV/cm 0.8
	$\sigma(f_n)$ per cycle	9.6 µHz	3.2 µHz
	$\sigma(d_n)$ per day	$11 \times 10^{-26} e \cdot cm$	$2.6 \times 10^{-26} e \cdot \mathrm{cm}$
	$\sigma(d_n)$ (final)	9.5 × 10 ⁻²⁷ $e \cdot \mathrm{cm}$	$1.1 \times 10^{-27} e \cdot \mathrm{cm}$
MSR UCN guides Switch Polarizing magnet Detectors	Coil systems Vacuum vessel Precession chambers I (Double-chamber a E // B and E//B mea imultaneously) Larger UCN storag	rrangement asured ge volume

A novel UCN gaseous detector

Requirements:

- High efficiency $\sigma_{d_n} \propto rac{1}{\sqrt{N_0}}$
- High counting rate capability (10⁵ Hz)
- Low sensitivity to gamma-rays
- Background identification

A novel UCN gaseous detector

Requirements:

- High efficiency $\sigma_{d_n} \propto rac{1}{\sqrt{N_0}}$
- High counting rate capability (10⁵ Hz)
- Low sensitivity to gamma-rays
- Background identification

GADGET detector developed by LPC (³He and CF₄ gas mixture):

1. UCN absorption

 $n + {}^{3}\text{He} \rightarrow p (0.57 \text{ MeV}) + t (0.19 \text{ MeV})$

- 2. CF_4 scintillation due to **p** and **t** ionization/excitation.
- 3. Light collection by 3 PM tubes

Gasses pressure dependency

Gasses pressure dependency

³He dependency

Edge events prevail @ high pressure!

Total counting rates

Gasses pressure dependency

Total counting rates

	$\sigma_{\rm ab} \ ({\rm barn})$	$\sigma_{\rm up} \ ({\rm barn})$
³ He	1777667(2333)	2000(133)
CF_4	14	3300(660)

³He <u>absorption</u> and CF₄ <u>upscattering</u> determine the UCN absorption probability

$$\mathcal{P}_{\rm ab}^{\rm tot}(P_{^{3}\rm He}, P_{\rm CF_{4}}) = \frac{P_{^{3}\rm He}\sigma_{\rm ab}}{P_{\rm CF_{4}}\sigma_{\rm up} + P_{^{3}\rm He}\sigma_{\rm ab}} \left[1 - \exp\left(-L/\lambda\right)\right]$$

Optimal operation condition:

- $CF_4 @ 400 \text{ mbar} \rightarrow Low upscattering$
- ³He @ 25 mbar \rightarrow High absorption

Final remarks and perspectives

- Baseline n2EDM setup under construction at PSI
- The design of the core components will be completed on 2021
- Largest components, the thermal enclosure and the magnetically shielded room already installed
- n2EDM experiment commissioning scheduled to 2022

Thank you

Sakharov conditions

Separated oscillatory fields method

Ramsey cycle:

- 1. Initial state: spin-up
- 2. pi/2 RF-pulse (~ 2 s)
- 3. Free precession (~ 100 s)
- . pi/2 coherent RF-pulse (~ 2 s)

- > When resonance is fulfilled ($v_{RF} = v_{Larmor}$) all spin-up states are inverted.
- ► If $\delta v = v_{\text{Larmor}} v_{\text{RF}} \neq 0$, a phase $\delta v T_{\text{free}}$ is accumulated in stage 3 and the spin inversion is hindered \rightarrow fringes pattern

Separated oscillatory fields method

- > When resonance is fulfilled ($v_{RF} = v_{Larmor}$) all spin-up states are inverted.
- If $\delta v = v_{Larmor} v_{RF} \neq 0$, a phase $\delta v T_{free}$ is accumulated in stage 3 and the spin inversion is hindered → fringes pattern

B-field control

Magnetometry

- Hg co-magnetometers , to correct for B linear drifts: $\sigma(B) \sim 30$ fT over 180 s
- Cs magnetometer array, to fine-tune B-field homogeneity

GDR-InF workshop 12-10-2020 Saenz W.

B₀ coil design

Field requirements over the precession chambers:

→ Magnitude and direction: $\mathbf{B}_0 = B_z \hat{\mathbf{z}}$, with $B_z = 1 \ \mu \mathsf{T}$ → Uniformity: $\sigma(B_z) = \sqrt{\langle (B_z - \langle B_z \rangle)^2 \rangle} < 170 \ \mathsf{pT}$ → To maintain UCN polarization

First comsol model of the B_0 coil and the MSR [P. Flaux PhD thesis]:

- Cubic solenoid (2121.6 m wire)
- Endcaps to improve field uniformity at the coil edges
- Strong coupling between the MSR and the coil

GDR-InF workshop

12-10-2020

Pulse shape analysis (PSA)

PSA based on *amplitude to charge/amplitude* ratio

 (a) total (~ 10^4)
 (b) noise $(13.9%)$
 (c) reg.A $(65.3%)$
 (d) Cherenkov (6.3%)

- Non UCN events account for **less than 1%**!
- 'edge' and 'reg.A' overlap -> need to discriminate <u>gamma-rays</u> from <u>edge events</u> OR use lead shielding

USSA: U-shape Simultaneous Spin Analyzer

