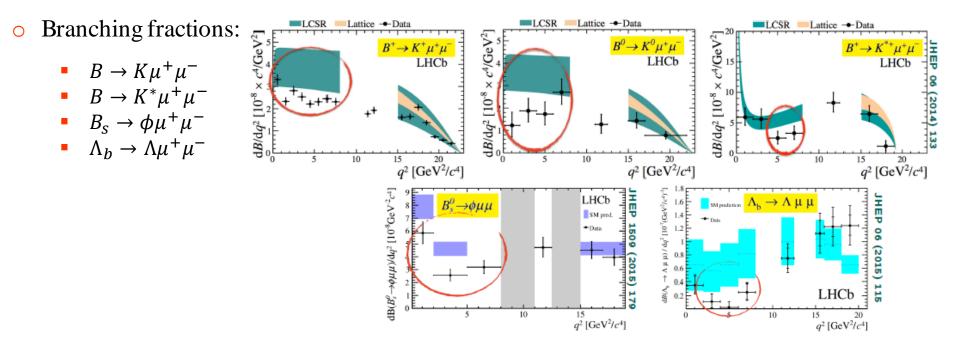


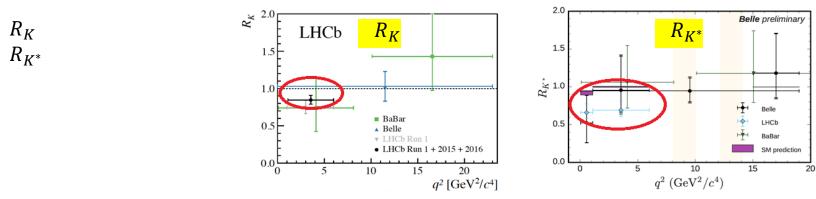
$B \rightarrow K^* \mu^+ \mu^-$: hadronic effects or new physics

Siavash Neshatpour

Lyon University, IP2I


Based on Phys. Rev. D 102, 055001 (2020)

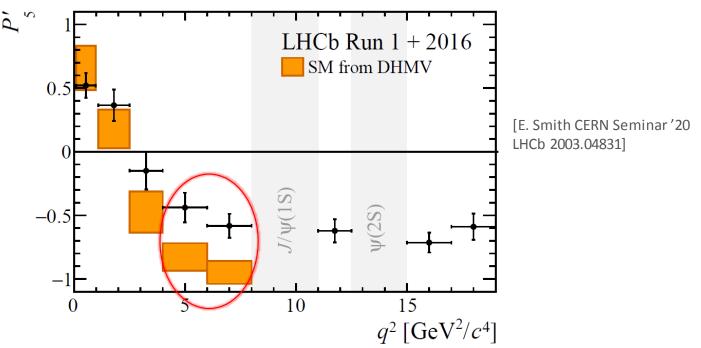
In collaboration with T. Hurth, N. Mahmoudi


GDR-InF annual workshop

Rare **B**-decay anomalies

Several deviations ("anomalies") with respect to the SM predictions in $b \rightarrow s\ell\ell$ measurements

• Lepton flavour violating ratios:



Siavash Neshatpour

Angular observables of $B \rightarrow K^* \mu^+ \mu^-$

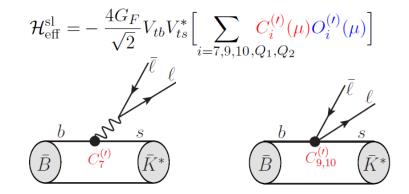
Several deviations ("anomalies") with respect to the SM predictions in $b \rightarrow s\ell\ell$ measurements

- Long standing anomaly in the $B \to K^* \mu^+ \mu^-$ angular observable $P'_5 / S_5 (= P'_5 \times \sqrt{F_L(1 F_L)})$
 - 2013 LHCb (1 fb⁻¹)
 - 2016 LHCb (3 fb⁻¹)
 - 2020 LHCb (4.7 fb⁻¹)

> $2.5\sigma \& 2.9\sigma$ local tension in P'_5 with the respect SM predictions (DHMV)

deviations in other angular observables/bins

Theory framework: exclusive mode $B o K^* \ell^+ \ell^-$

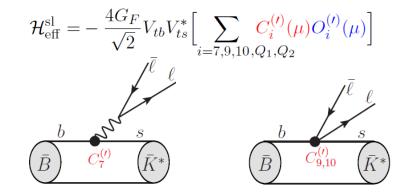

Effective Hamiltonian for $b \to s\ell^+\ell^-$ transitions: $\mathcal{H}_{eff} = \mathcal{H}_{eff}^{had} + \mathcal{H}_{eff}^{sl}$

$$\mathcal{H}_{\text{eff}}^{\text{had}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \Big[\sum_{i=1\dots6} C_i(\mu) O_i(\mu) + C_8(\mu) O_8(\mu) \Big] \qquad \qquad \mathcal{H}_{\text{eff}}^{\text{sl}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \Big[\sum_{i=7,9,10,Q_1,Q_2} C_i^{(\prime)}(\mu) O_i^{(\prime)}(\mu) \Big] \Big] \qquad \qquad \qquad \mathcal{H}_{\text{eff}}^{\text{sl}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \Big[\sum_{i=7,9,10,Q_1,Q_2} C_i^{(\prime)}(\mu) O_i^{(\prime)}(\mu) \Big] = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \Big[\sum_{i=7,9,10,Q_1,Q_2} C_i^{(\prime)}(\mu) O_i^{(\prime)}(\mu) \Big] = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \Big[\sum_{i=7,9,10,Q_1,Q_2} C_i^{(\prime)}(\mu) O_i^{(\prime)}(\mu) \Big] = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \Big[\sum_{i=7,9,10,Q_1,Q_2} C_i^{(\prime)}(\mu) O_i^{(\prime)}(\mu) \Big] = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \Big[\sum_{i=7,9,10,Q_1,Q_2} C_i^{(\prime)}(\mu) O_i^{(\prime)}(\mu) \Big] = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \Big[\sum_{i=7,9,10,Q_1,Q_2} C_i^{(\prime)}(\mu) O_i^{(\prime)}(\mu) \Big] = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \Big[\sum_{i=7,9,10,Q_1,Q_2} C_i^{(\prime)}(\mu) O_i^{(\prime)}(\mu) \Big] = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \Big[\sum_{i=7,9,10,Q_1,Q_2} C_i^{(\prime)}(\mu) O_i^{(\prime)}(\mu) \Big] = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \Big[\sum_{i=7,9,10,Q_1,Q_2} C_i^{(\prime)}(\mu) O_i^{(\prime)}(\mu) \Big] = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \Big[\sum_{i=7,9,10,Q_1,Q_2} C_i^{(\prime)}(\mu) O_i^{(\prime)}(\mu) \Big] = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \Big[\sum_{i=7,9,10,Q_1,Q_2} C_i^{(\prime)}(\mu) O_i^{(\prime)}(\mu) \Big] = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \Big[\sum_{i=7,9,10,Q_1,Q_2} C_i^{(\prime)}(\mu) O_i^{(\prime)}(\mu) O_i^{(\prime)}(\mu) \Big] = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \Big[\sum_{i=7,9,10,Q_1,Q_2} C_i^{(\prime)}(\mu) O_i^{(\prime)}(\mu) O_i^{(\prime)}(\mu) \Big] = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \Big[\sum_{i=7,9,10,Q_1,Q_2} C_i^{(\prime)}(\mu) O_i^{(\prime)}(\mu) O_i^{(\prime)}(\mu)$$

Theory framework: exclusive mode $B \rightarrow K^* \ell^+ \ell^-$

Effective Hamiltonian for $b \to s\ell^+\ell^-$ transitions: $\mathcal{H}_{eff} = \mathcal{H}_{eff}^{had} + \mathcal{H}_{eff}^{sl}$

$$\mathcal{H}_{\text{eff}}^{\text{had}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \Big[\sum_{i=1\dots6} C_i(\mu) O_i(\mu) + C_8(\mu) O_8(\mu) \Big]$$


factorisable contributions: 7 independent form factors $\tilde{V}_{\pm,0}, \tilde{T}_{\pm,0}, \tilde{S}$

[Khodjamirian et al. '10, Bharucha et al. '15, Gubernari et al. '18]

Theory framework: exclusive mode $B \rightarrow K^* \ell^+ \ell^-$

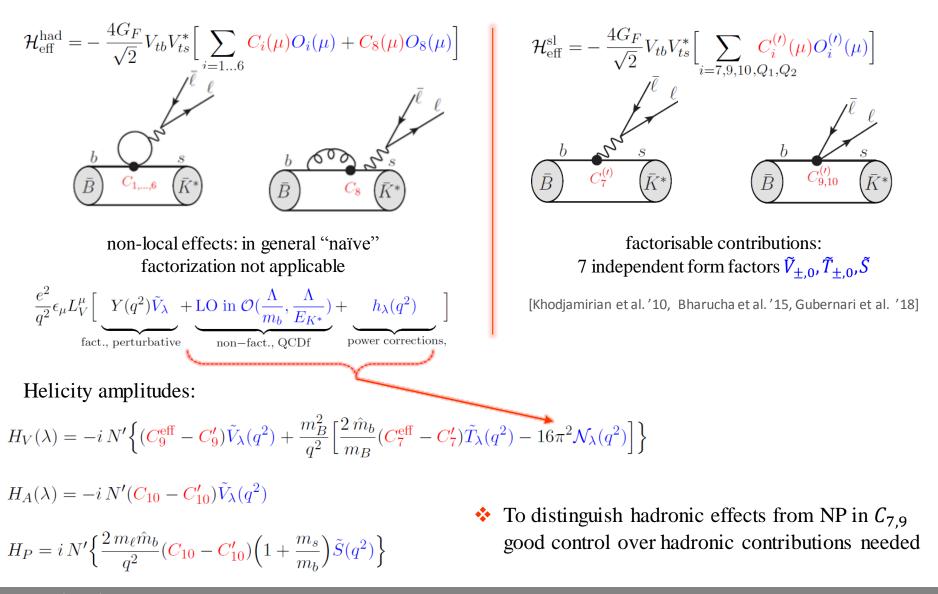
Effective Hamiltonian for $b \to s\ell^+\ell^-$ transitions: $\mathcal{H}_{eff} = \mathcal{H}_{eff}^{had} + \mathcal{H}_{eff}^{sl}$

$$\mathcal{H}_{\text{eff}}^{\text{had}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \Big[\sum_{i=1\dots6} C_i(\mu) O_i(\mu) + C_8(\mu) O_8(\mu) \Big]$$

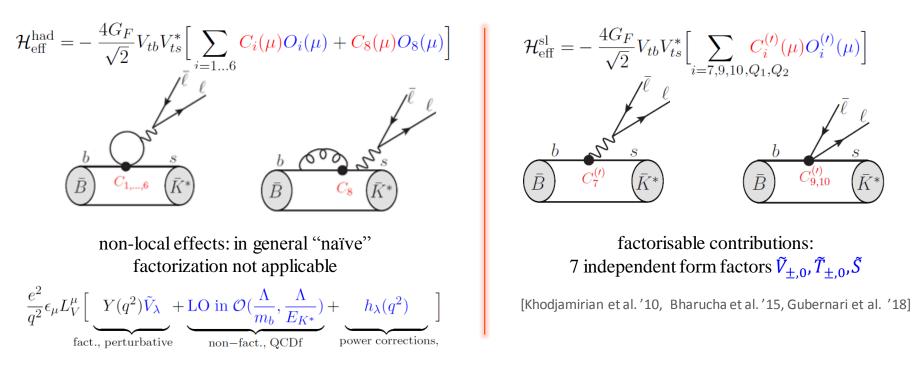
factorisable contributions: 7 independent form factors $\tilde{V}_{\pm,0}, \tilde{T}_{\pm,0}, \tilde{S}$

[Khodjamirian et al. '10, Bharucha et al. '15, Gubernari et al. '18]

Helicity amplitudes:


$$H_V(\lambda) = -i \, N' \Big\{ (C_9 - C_9') \tilde{V}_{\lambda}(q^2) + \frac{m_B^2}{q^2} \Big[\frac{2 \, \hat{m}_b}{m_B} (C_7^{\text{eff}} - C_7') \tilde{T}_{\lambda}(q^2) \Big] \Big\}$$

 $H_A(\lambda) = -i N' (C_{10} - C'_{10}) \tilde{V}_{\lambda}(q^2)$


$$H_P = i N' \left\{ \frac{2 m_\ell \hat{m}_b}{q^2} (C_{10} - C'_{10}) \left(1 + \frac{m_s}{m_b} \right) \tilde{S}(q^2) \right\}$$

Theory framework: exclusive mode $B o K^* \ell^+ \ell^-$

Effective Hamiltonian for $b \to s\ell^+\ell^-$ transitions: $\mathcal{H}_{eff} = \mathcal{H}_{eff}^{had} + \mathcal{H}_{eff}^{sl}$

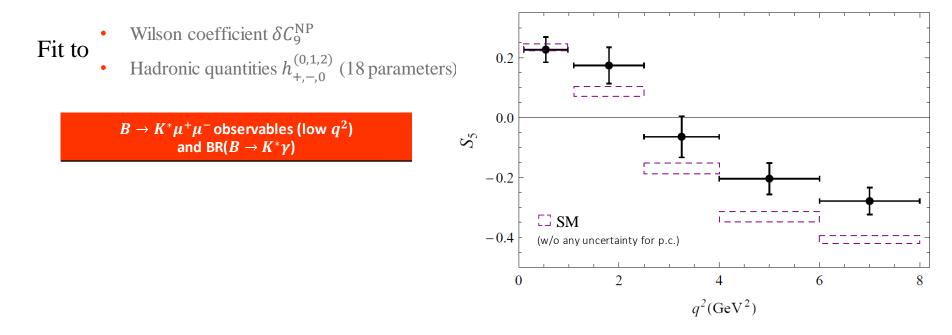
Effective Hamiltonian for $b \to s\ell^+\ell^-$ transitions: $\mathcal{H}_{eff} = \mathcal{H}_{eff}^{had} + \mathcal{H}_{eff}^{sl}$

Calculated for low q^2 at LO in QCD factorisation [Beneke et al. '01 & '04], but higher powers are unknown

- partial calculation with LCSR and dispersion relations [Khodjamirian et al. 1006.4945]
- recent progress exploiting analyticity of amplitudes [Bobeth et al. 1707.07305] & ongoing work by van Dyk et al.

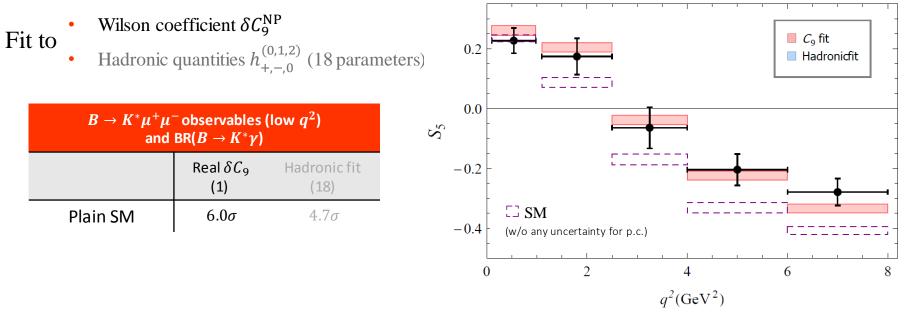
See talk by M. Bordone

Power corrections often "guesstimated"


Significance of tensions in $B \to K^* \mu^+ \mu^-$ angular observables depends on the choice of "guesstimate" made for the size of the power corrections (h_{λ})

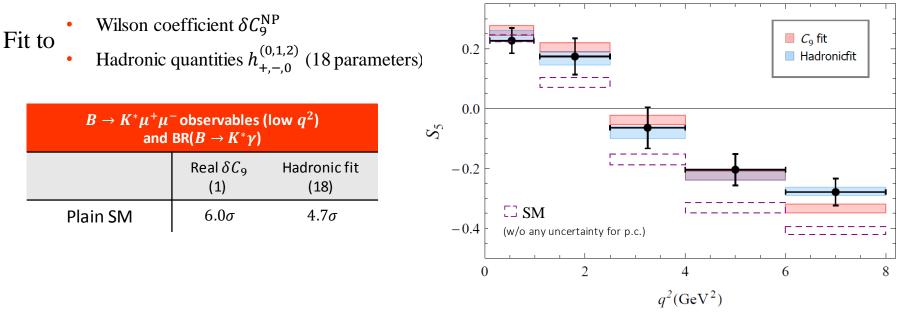
Instead of making assumptions on the size of the power corrections h_{λ} , they can be parameterised by a general ansatz (compatible with the analyticity structure): [Jäger, Camalich, 1412.3183], [Ciuchini et al. 1512.07157] $h_{\pm,[0]} = \left[\sqrt{q^2} \times\right] \left(h_{\pm,[0]}^{(0)} + q^2 h_{\pm,[0]}^{(1)} + q^4 h_{\pm,[0]}^{(2)}\right)$

 \Rightarrow NP effects in C_9 are embedded in the hadronic contributions [A. Arbey, T. Hurth, F. Mahmoudi, SN, 1806.02791] Due to the embedding, fits to NP and hadronic contributions can be compared with the Wilks' test


Instead of making assumptions on the size of the power corrections h_{λ} , they can be parameterised by a general ansatz (compatible with the analyticity structure): [Jäger, Camalich, 1412.3183], [Ciuchini et al. 1512.07157] $h_{\pm,[0]} = \left[\sqrt{q^2} \times\right] \left(h_{\pm,[0]}^{(0)} + q^2 h_{\pm,[0]}^{(1)} + q^4 h_{\pm,[0]}^{(2)}\right)$

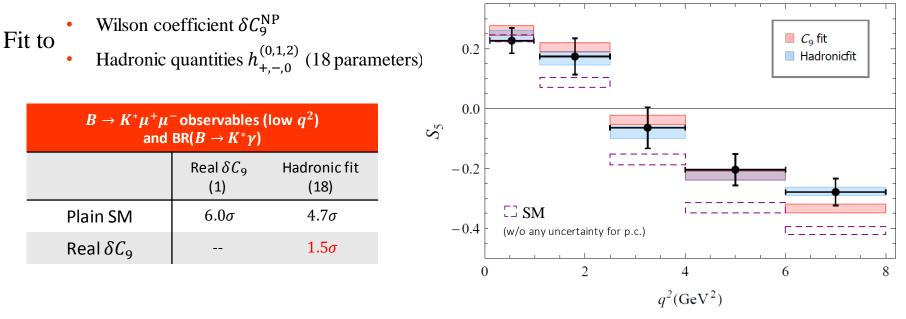
 \Rightarrow NP effects in C_9 are embedded in the hadronic contributions [A. Arbey, T. Hurth, F. Mahmoudi, SN, 1806.02791] Due to the embedding, fits to NP and hadronic contributions can be compared with the Wilks' test

Instead of making assumptions on the size of the power corrections h_{λ} , they can be parameterised by a general ansatz (compatible with the analyticity structure): [Jäger, Camalich, 1412.3183], [Ciuchini et al. 1512.07157] $h_{\pm,[0]} = \left[\sqrt{q^2} \times\right] \left(h_{\pm,[0]}^{(0)} + q^2 h_{\pm,[0]}^{(1)} + q^4 h_{\pm,[0]}^{(2)}\right)$

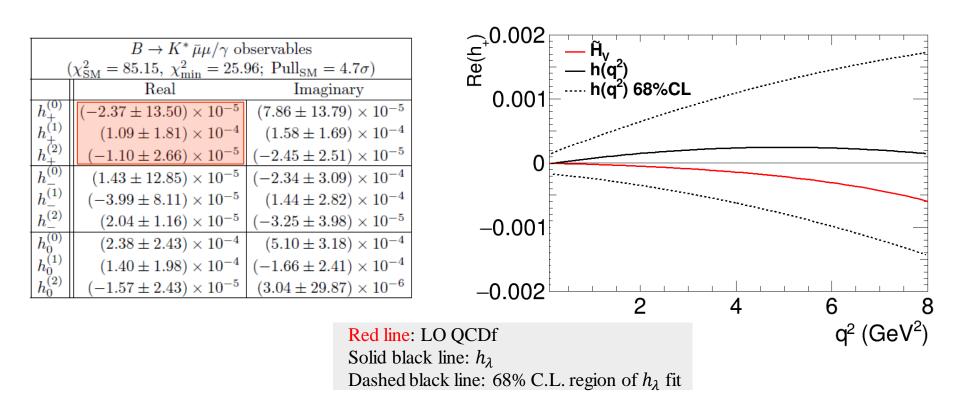

 \Rightarrow NP effects in C_9 are embedded in the hadronic contributions [A. Arbey, T. Hurth, F. Mahmoudi, SN, 1806.02791] Due to the embedding, fits to NP and hadronic contributions can be compared with the Wilks' test

Fit to δC_9 improves description of the data with 6σ compared to the SM (w/o any uncertainty for p.c.)

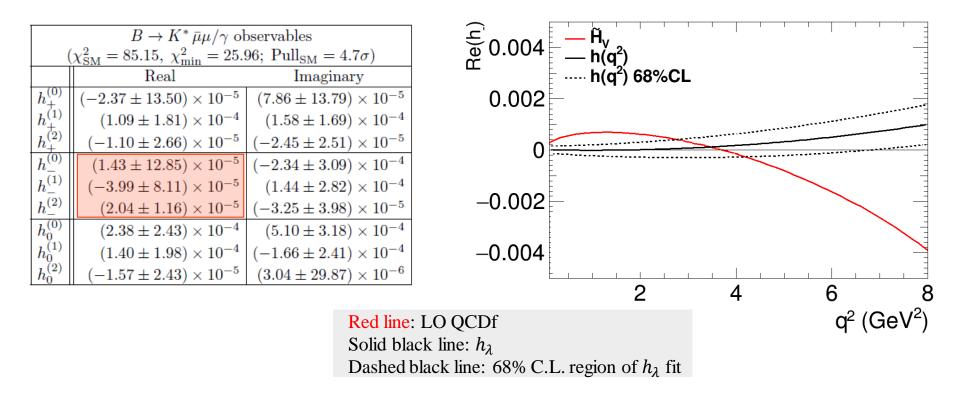
Instead of making assumptions on the size of the power corrections h_{λ} , they can be parameterised by a general ansatz (compatible with the analyticity structure): [Jäger, Camalich, 1412.3183], [Ciuchini et al. 1512.07157] $h_{\pm,[0]} = \left[\sqrt{q^2} \times\right] \left(h_{\pm,[0]}^{(0)} + q^2 h_{\pm,[0]}^{(1)} + q^4 h_{\pm,[0]}^{(2)}\right)$


 \Rightarrow NP effects in C_9 are embedded in the hadronic contributions [A. Arbey, T. Hurth, F. Mahmoudi, SN, 1806.02791] Due to the embedding, fits to NP and hadronic contributions can be compared with the Wilks' test

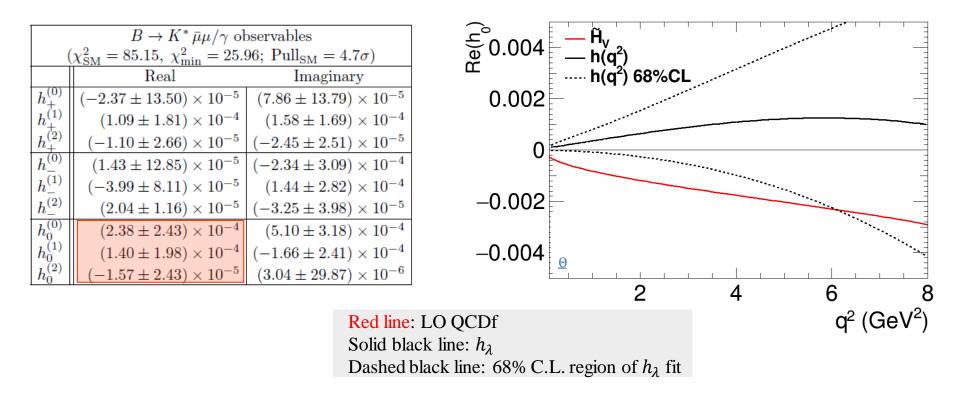
- Fit to δC_9 improves description of the data with 6σ compared to the SM (w/o any uncertainty for p.c.)
- Hadronic fit also describes the data well

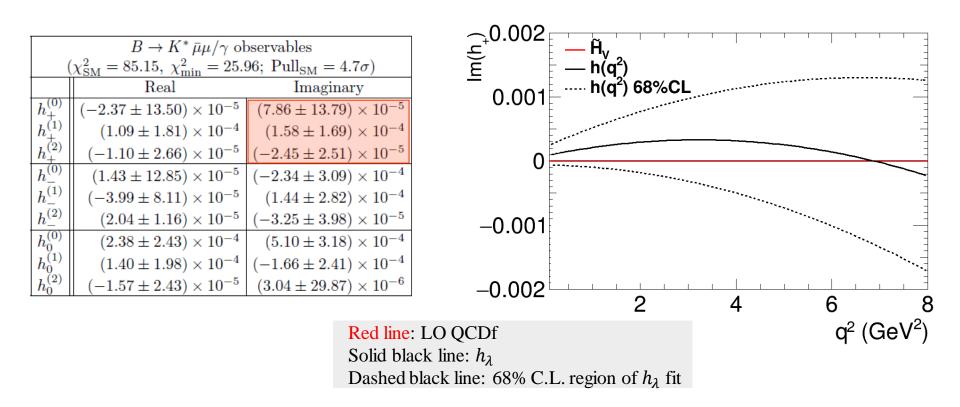

Instead of making assumptions on the size of the power corrections h_{λ} , they can be parameterised by a general ansatz (compatible with the analyticity structure): [Jäger, Camalich, 1412.3183], [Ciuchini et al. 1512.07157] $h_{\pm,[0]} = \left[\sqrt{q^2} \times\right] \left(h_{\pm,[0]}^{(0)} + q^2 h_{\pm,[0]}^{(1)} + q^4 h_{\pm,[0]}^{(2)}\right)$

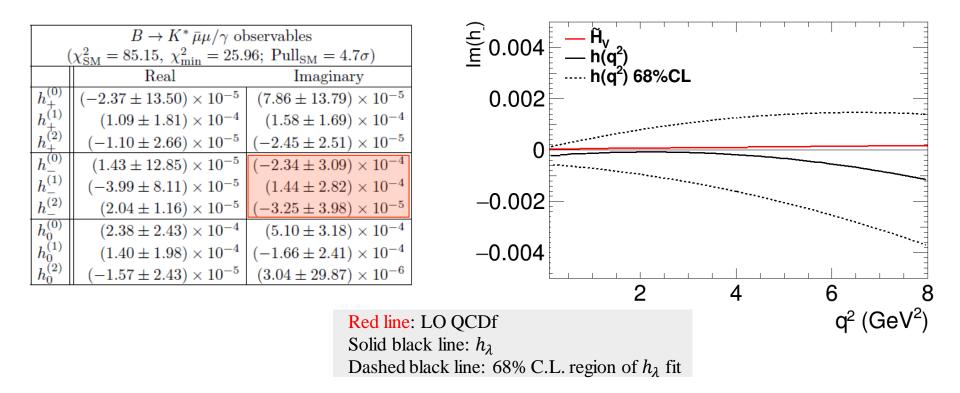
 \Rightarrow NP effects in C_9 are embedded in the hadronic contributions [A. Arbey, T. Hurth, F. Mahmoudi, SN, 1806.02791] Due to the embedding, fits to NP and hadronic contributions can be compared with the Wilks' test

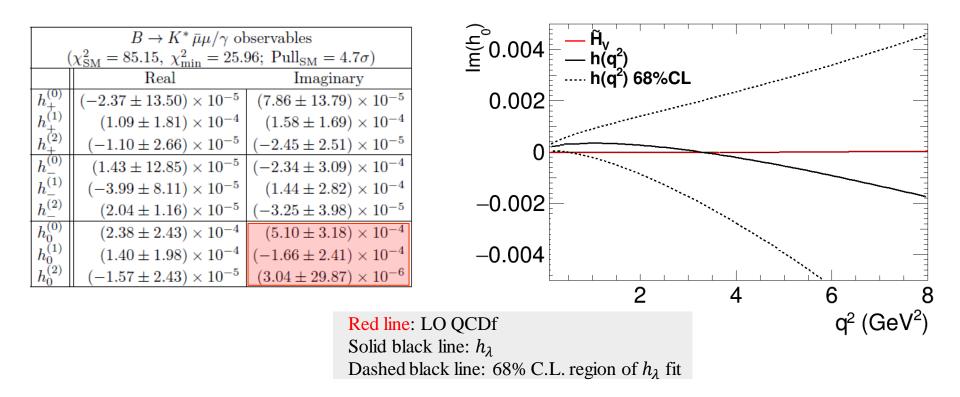


- Fit to δC_9 improves description of the data with 6σ compared to the SM (w/o any uncertainty for p.c.)
- Hadronic fit also describes the data well
- > Adding 17 more parameters compared to the NP in C_9 doesn't significantly improve the fit (~1.5 σ)


	$B \to K^* \bar{\mu} \mu / \gamma$ observables						
($(\chi^2_{\rm SM} = 85.15, \ \chi^2_{\rm min} = 25.96; \ {\rm Pull}_{\rm SM} = 4.7\sigma)$						
	Real	Imaginary					
$h_{+}^{(0)}$	$(-2.37 \pm 13.50) \times 10^{-5}$	$(7.86 \pm 13.79) \times 10^{-5}$					
$h^{(1)}_{\pm}$	$(1.09 \pm 1.81) \times 10^{-4}$	$(1.58\pm 1.69)\times 10^{-4}$					
$h_{+}^{(2)}$	$(-1.10 \pm 2.66) \times 10^{-5}$	$(-2.45 \pm 2.51) \times 10^{-5}$					
$h_{-}^{(0)}$	$(1.43 \pm 12.85) \times 10^{-5}$	$(-2.34 \pm 3.09) \times 10^{-4}$					
$h_{-}^{(1)}$	$(-3.99\pm8.11) imes10^{-5}$	$(1.44 \pm 2.82) \times 10^{-4}$					
$h_{-}^{(2)}$	$(2.04 \pm 1.16) \times 10^{-5}$	$(-3.25 \pm 3.98) \times 10^{-5}$					
$h_{0}^{(0)}$	$(2.38 \pm 2.43) \times 10^{-4}$	$(5.10 \pm 3.18) \times 10^{-4}$					
$h_0^{(1)}$	$(1.40 \pm 1.98) \times 10^{-4}$	$(-1.66 \pm 2.41) \times 10^{-4}$					
$h_0^{(2)}$	$(-1.57 \pm 2.43) \times 10^{-5}$	$(3.04 \pm 29.87) \times 10^{-6}$					


> h_{λ} compatible with zero at 1σ level


> h_{λ} compatible with zero at 1σ level


> h_{λ} compatible with zero at 1σ level

> h_{λ} compatible with zero at 1σ level

> h_{λ} compatible with zero at 1σ level

> h_{λ} compatible with zero at 1σ level

A (minimal) description of hadronic contributions with fewer free parameters

$$h_{\lambda}(q^2) = -\frac{\tilde{V}_{\lambda}(q^2)}{16\pi^2} \frac{q^2}{m_B^2} \Delta C_9^{\lambda, \text{PC}} \qquad \text{for each helicity } (\lambda = +, -, 0) \text{ a different } \Delta C_9^{\text{PC}} \rightarrow \text{three real (six complex) parameters}$$

➢ If NP in C₉ is the favoured scenario, the three different fitted helicities should give the same value
 ⇒ Can work as a null test for NP

A (minimal) description of hadronic contributions with fewer free parameters

$$h_{\lambda}(q^2) = -\frac{\tilde{V}_{\lambda}(q^2)}{16\pi^2} \frac{q^2}{m_B^2} \Delta C_9^{\lambda, \text{PC}}$$

for each helicity ($\lambda = +, -, 0$) a different ΔC_9^{PC}

 \rightarrow three real (six complex) parameters

➢ If NP in C₉ is the favoured scenario, the three different fitted helicities should give the same value
 ⇒ Can work as a null test for NP

	$B \to K^* \bar{\mu} \mu / \gamma$ observables					
$(\chi^2_{\rm SM} = 8$	$(\chi^2_{\rm SM} = 85.15, \ \chi^2_{\rm min} = 39.40; \ {\rm Pull}_{\rm SM} = 5.5\sigma)$					
	best fit value					
$\Delta C_9^{+,\mathrm{PC}}$	$(3.39 \pm 6.44) + i(-14.98 \pm 8.40)$					
$\Delta C_9^{-,\mathrm{PC}}$	$(-1.02 \pm 0.22) + i(-0.68 \pm 0.79)$					
$\Delta C_9^{0,\mathrm{PC}}$	$(-0.83 \pm 0.53) + i(-0.89 \pm 0.69)$					

Fitted parameters not the same for different helicities but in agreement with each other within 1σ

A (minimal) description of hadronic contributions with fewer free parameters

$$h_{\lambda}(q^2) = -\frac{\tilde{V}_{\lambda}(q^2)}{16\pi^2} \frac{q^2}{m_B^2} \Delta C_9^{\lambda, \text{PC}}$$

for each helicity ($\lambda = +, -, 0$) a different ΔC_9^{PC}

 \rightarrow three real (six complex) parameters

➢ If NP in C₉ is the favoured scenario, the three different fitted helicities should give the same value
 ⇒ Can work as a null test for NP

	$B \to K^* \bar{\mu} \mu / \gamma$ observables					
$(\chi^2_{\rm SM} = 8$	$(\chi^2_{\rm SM} = 85.15, \ \chi^2_{\rm min} = 39.40; \ {\rm Pull}_{\rm SM} = 5.5\sigma)$					
	best fit value					
$\Delta C_9^{+,\mathrm{PC}}$	$(3.39 \pm 6.44) + i(-14.98 \pm 8.40)$					
$\Delta C_9^{-,\mathrm{PC}}$	$(-1.02 \pm 0.22) + i(-0.68 \pm 0.79)$					
$\Delta C_9^{0,\mathrm{PC}}$	$(-0.83 \pm 0.53) + i(-0.89 \pm 0.69)$					

Fitted parameters not the same for different helicities but in agreement with each other within 1σ

Fit to only BR($B o K^* \gamma$) and $B o K^* \mu^+ \mu^-$ observables (low q^2)						
	Real δC_9 Hadronic fit;(1)Complex $\Delta C_9^{\lambda, PC}$ (6)					
Plain SM (0)	(6.0 <i>σ</i>)	(5.5 <i>σ</i>)				
Real δC_9 (1)		(1.8 σ)				

> Adding the hadronic parameters improve the fit with less than 2σ significance

Strong indication that the NP interpretation is a valid option, although the situation remains inconclusive

LHCb projections for $B \to K^* \mu^+ \mu^-$ with 14, 50 and 300 fb⁻¹ luminosity

Keeping present central values, the three benchmark points don't give acceptable fits (*p*-value ≈ 0)

We assume two extreme scenarios, adjusting the experimental data such that

 \Box Central value of fit to C_9 remains the same \Box Central values of the hadronic fit remain the same

LHCb projections for $B \to K^* \mu^+ \mu^-$ with 14, 50 and 300 fb⁻¹ luminosity

Keeping present central values, the three benchmark points don't give acceptable fits (*p*-value ≈ 0)

We assume two extreme scenarios, adjusting the experimental data such that

 \Box Central value of fit to C_9 remains the same \Box Central values of the hadronic fit remain the same

Central value of fit to C ₉ remains the same						
	14 fb	0 ⁻¹ (Syst.)	50 fb ⁻¹ (Syst./4)		300 fb ⁻¹ (Syst./4)	
	Real δC_9	Hadronic fit h_{λ}	Real δC_9	Hadronic fit h_{λ}	Real δC_9	Hadronic fit h_{λ}
Plain SM	8.1σ	5.1σ	15.1 <i>σ</i>	12.9 <i>o</i>	21.4σ	

> Very good fits for C_9 by construction

LHCb projections for $B \to K^* \mu^+ \mu^-$ with 14, 50 and 300 fb⁻¹ luminosity

Keeping present central values, the three benchmark points don't give acceptable fits (*p*-value ≈ 0)

We assume two extreme scenarios, adjusting the experimental data such that

 \Box Central value of fit to C_9 remains the same \Box Central values of the hadronic fit remain the same

Central value of fit to C ₉ remains the same						
	14 fb ⁻¹ (Syst.) 50 fb ⁻¹ (Syst./4)			300 fb ⁻¹ (Syst./4)		
	Real δC_9	Hadronic fit h_λ	Real δC_9	Hadronic fit h_λ	Real δC_9	Hadronic fit h_λ
Plain SM	8.1σ	5.1σ	15.1 <i>o</i>	12.9 <i>σ</i>	21.4σ	19.6 <i>o</i>

- > Very good fits for C_9 by construction
- \succ Good hadronic fits for all three benchmark points of this scenario, but no improvement compared to C_9
- → Uncertainties of most of the parameters of the hadronic fit become very large for higher luminosities indicating most of the 18 parameters are not needed to describe the data

LHCb projections for $B \to K^* \mu^+ \mu^-$ with 14, 50 and 300 fb⁻¹ luminosity

Keeping present central values, the three benchmark points don't give acceptable fits (*p*-value ≈ 0)

We assume two extreme scenarios, adjusting the experimental data such that

 \Box Central value of fit to C_9 remains the same \Box Central values of the hadronic fit remain the same

Central values of the hadronic fit is always the same						
	14 fb ⁻¹ (Syst.) 50 fb ⁻¹ (Syst./4)			300 fb ⁻¹ (Syst./4)		
	Real δC_9	Hadronic fit h_λ	Real δC_9	Hadronic fit h_λ	Real δC_9	Hadronic fit h_λ
Plain SM	7.9σ	7.9 <i>o</i>	14.6σ	22.5σ	18.9 <i>σ</i>	41.8σ

LHCb projections for $B \to K^* \mu^+ \mu^-$ with 14, 50 and 300 fb⁻¹ luminosity

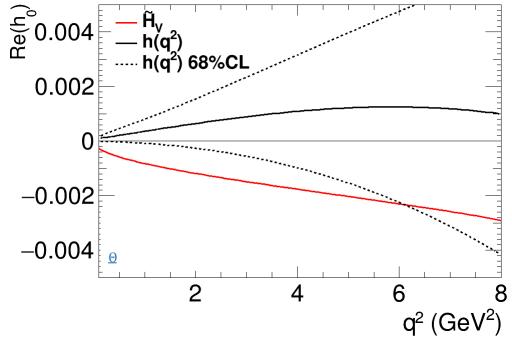
Keeping present central values, the three benchmark points don't give acceptable fits (*p*-value ≈ 0)

We assume two extreme scenarios, adjusting the experimental data such that

 \Box Central value of fit to C_9 remains the same \Box Central values of the hadronic fit remain the same

Central values of the hadronic fit is always the same						
	14 fb ⁻¹ (Syst.) 50 fb ⁻¹ (Syst./4) 300 fb ⁻¹ (Syst./4)				⁻¹ (Syst./4)	
	Real δC_9	Hadronic fit h_λ	Real δC_9	Hadronic fit h_λ	Real δC_9	Hadronic fit h_λ
Plain SM	7.9σ	7.9 <i>o</i>	14.6σ	22.5σ	18.9 <i>σ</i>	41.8σ
Real δC_9		4. 0σ		17.5 <i>σ</i>		37.4σ

→ Hadronic fit, gives an improvement with 4σ significance compared to fit to C_9 after Run 2 (14 fb⁻¹) but situation still remains inconclusive


> After first LHCb upgrade (50 fb^{-1}) conclusive judgment is possible

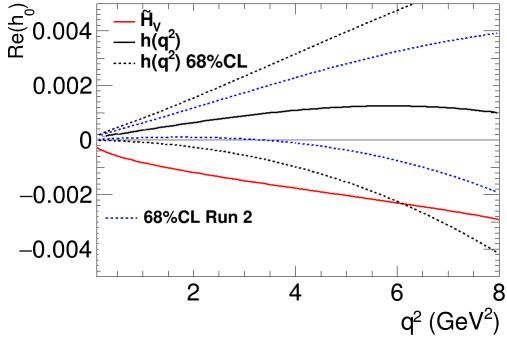
LHCb projections for $B \to K^* \mu^+ \mu^-$ with 14, 50 and 300 fb⁻¹ luminosity

Keeping present central values, the three benchmark points don't give acceptable fits (*p*-value ≈ 0)

We assume two extreme scenarios, adjusting the experimental data such that

 \Box Central value of fit to C_9 remains the same \Box Central values of the hadronic fit remain the same

→ Hadronic fit, gives an improvement with 4σ significance compared to fit to C_9 after Run 2 (14 fb⁻¹) but situation still remains inconclusive


> After first LHCb upgrade (50 fb⁻¹) conclusive judgment is possible

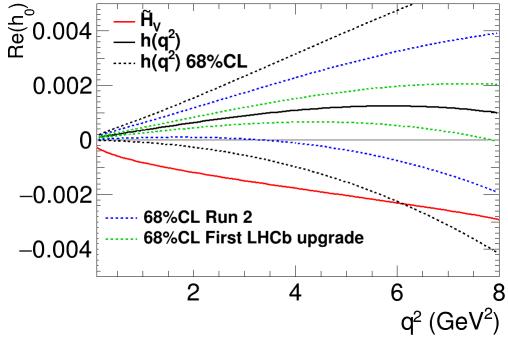
LHCb projections for $B \to K^* \mu^+ \mu^-$ with 14, 50 and 300 fb⁻¹ luminosity

Keeping present central values, the three benchmark points don't give acceptable fits (*p*-value ≈ 0)

We assume two extreme scenarios, adjusting the experimental data such that

 \Box Central value of fit to C_9 remains the same \Box Central values of the hadronic fit remain the same

→ Hadronic fit, gives an improvement with 4σ significance compared to fit to C_9 after Run 2 (14 fb⁻¹) but situation still remains inconclusive


> After first LHCb upgrade (50 fb⁻¹) conclusive judgment is possible

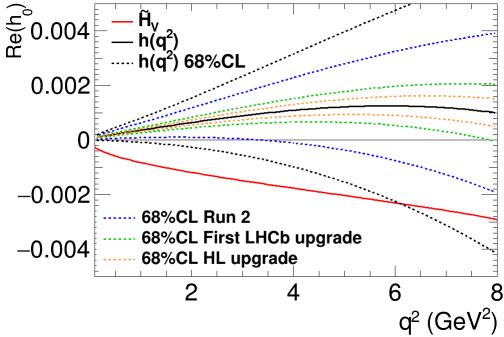
LHCb projections for $B \to K^* \mu^+ \mu^-$ with 14, 50 and 300 fb⁻¹ luminosity

Keeping present central values, the three benchmark points don't give acceptable fits (*p*-value ≈ 0)

We assume two extreme scenarios, adjusting the experimental data such that

 \Box Central value of fit to C_9 remains the same \Box Central values of the hadronic fit remain the same

→ Hadronic fit, gives an improvement with 4σ significance compared to fit to C_9 after Run 2 (14 fb⁻¹) but situation still remains inconclusive


- > After first LHCb upgrade (50 fb⁻¹) conclusive judgment is possible
 - \hookrightarrow fitted parameters no longer consistent with zero at 1σ level

LHCb projections for $B \to K^* \mu^+ \mu^-$ with 14, 50 and 300 fb⁻¹ luminosity

Keeping present central values, the three benchmark points don't give acceptable fits (*p*-value ≈ 0)

We assume two extreme scenarios, adjusting the experimental data such that

 \Box Central value of fit to C_9 remains the same \Box Central values of the hadronic fit remain the same

→ Hadronic fit, gives an improvement with 4σ significance compared to fit to C_9 after Run 2 (14 fb⁻¹) but situation still remains inconclusive

- > After first LHCb upgrade (50 fb⁻¹) conclusive judgment is possible
 - \hookrightarrow fitted parameters no longer consistent with zero at 1σ level

Global analysis of $b \to s\ell^+\ell^-$ observables

Global analysis of $b \rightarrow s$ transitions

Considering all the relevant data on $b \rightarrow s$ transitions

(117 observables)

- R_K, R_{K^*}
- BR $(B_{s.d} \rightarrow \mu^+ \mu^-)$
- BR $(B_s \rightarrow e^+e^-)$
- BR($B \to X_s \mu^+ \mu^-$)
- BR($B \rightarrow X_s e^+ e^-$)
- BR $(B \to K^* e^+ e^-)$
- BR $(B \to K^{*+}\mu^+\mu^-)$
- $B_s \to \phi \mu^+ \mu^-$: BR, ang. obs.
- $B^{0(+)} \to K^{0(+)} \mu^+ \mu^-$: BR, ang. obs.
- $B \to K^{*0} \mu^+ \mu^-$: BR, ang. obs.
- $\Lambda_b \to \Lambda \mu^+ \mu^-$: BR, ang. obs.

Considering all the relevant data on $b \rightarrow s$ transitions

(117 observables)

- R_K, R_{K^*}
- BR $(B_{s.d} \to \mu^+ \mu^-)$
- BR $(B_s \rightarrow e^+e^-)$
- BR($B \rightarrow X_s \mu^+ \mu^-$)
- BR($B \rightarrow X_s e^+ e^-$)
- BR $(B \to K^* e^+ e^-)$
- BR $(B \to K^{*+}\mu^+\mu^-)$
- $B_s \to \phi \mu^+ \mu^-$: BR, ang. obs.
- $B^{0(+)} \to K^{0(+)} \mu^+ \mu^-$: BR, ang. obs.
- $B \to K^{*0} \mu^+ \mu^-$: BR, ang. obs.
- $\Lambda_b \to \Lambda \mu^+ \mu^-$: BR, ang. obs.

All observables ($\chi^2_{\rm SM} = 157.3$)						
	b.f. value	$\chi^2_{\rm min}$	$\mathrm{Pull}_\mathrm{SM}$			
δC_9	-0.94 ± 0.14	126.8	5.5σ			
δC_9^{μ}	-0.93 ± 0.13	115.2	6.5σ			
δC_9^e	0.84 ± 0.26	145.5	3.4σ			
δC_{10}	0.20 ± 0.22	156.4	0.9σ			
δC_{10}^{μ}	0.51 ± 0.17	146.4	3.3σ			
δC_{10}^e	-0.78 ± 0.23	144.3	3.6σ			
$\delta C^{\mu}_{\rm LL}$	-0.53 ± 0.10	125.4	5.6σ			
$\delta C_{\rm LL}^e$	0.43 ± 0.13	144.8	3.5σ			

Computations performed using SuperIso public program

(assuming 10% error for p.c.)

Considering all the relevant data on $b \rightarrow s$ transitions

(117 observables)

- R_K, R_{K^*}
- BR $(B_{s.d} \rightarrow \mu^+ \mu^-)$
- BR $(B_s \rightarrow e^+e^-)$
- BR($B \to X_s \,\mu^+\mu^-$)
- BR($B \rightarrow X_s e^+ e^-$)
- BR $(B \to K^* e^+ e^-)$
- BR $(B \to K^{*+}\mu^+\mu^-)$
- $B_s \to \phi \mu^+ \mu^-$: BR, ang. obs.
- $B^{0(+)} \to K^{0(+)} \mu^+ \mu^-$: BR, ang. obs.
- $B \to K^{*0} \mu^+ \mu^-$: BR, ang. obs.
- $\Lambda_b \to \Lambda \mu^+ \mu^-$: BR, ang. obs.

All observables ($\chi^2_{\rm SM} = 157.3$)				
	b.f. value	$\chi^2_{\rm min}$	$\operatorname{Pull}_{\mathrm{SM}}$	
δC_9	-0.94 ± 0.14	126.8	5.5σ	
δC_9^{μ}	-0.93 ± 0.13	115.2	6.5σ	
δC_9^e	0.84 ± 0.26	145.5	3.4σ	
δC_{10}	0.20 ± 0.22	156.4	0.9σ	
δC_{10}^{μ}	0.51 ± 0.17	146.4	3.3σ	
δC_{10}^e	-0.78 ± 0.23	144.3	3.6σ	
$\delta C^{\mu}_{\rm LL}$	-0.53 ± 0.10	125.4	5.6σ	
$\delta C_{\rm LL}^e$	0.43 ± 0.13	144.8	3.5σ	

Computations performed using SuperIso public program

(assuming 10% error for p.c.)

> Most favoured scenario is δC_9^{μ} followed by $\delta C_{LL}^{\mu} \left(\delta C_9^{\mu} = -\delta C_{10}^{\mu} \right)$, same hierarchy as pre 2020 LHCb

Considering all the relevant data on $b \rightarrow s$ transitions

(117 observables)

- R_K, R_{K^*}
- BR $(B_{s.d} \rightarrow \mu^+ \mu^-)$
- BR $(B_s \rightarrow e^+e^-)$
- BR($B \to X_s \,\mu^+\mu^-$)
- BR($B \rightarrow X_s e^+ e^-$)
- BR $(B \to K^* e^+ e^-)$
- BR $(B \to K^{*+}\mu^+\mu^-)$
- $B_s \to \phi \mu^+ \mu^-$: BR, ang. obs.
- $B^{0(+)} \to K^{0(+)} \mu^+ \mu^-$: BR, ang. obs.
- $B \to K^{*0} \mu^+ \mu^-$: BR, ang. obs.
- $\Lambda_b \to \Lambda \mu^+ \mu^-$: BR, ang. obs.

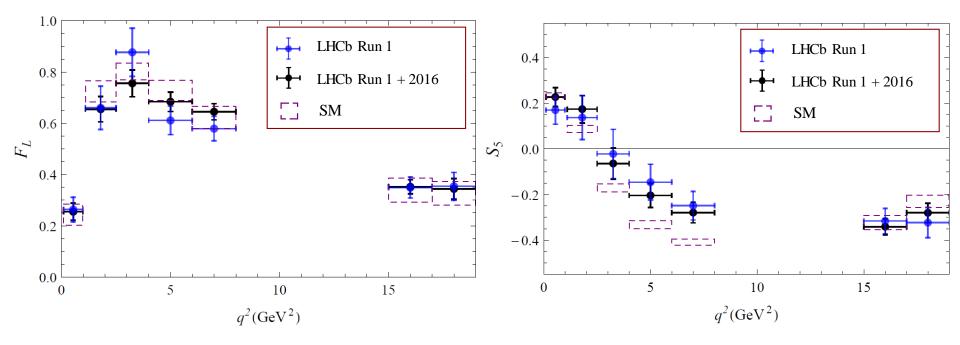
All observables ($\chi^2_{\rm SM} = 157.3$)				
	b.f. value	$\chi^2_{\rm min}$	$\operatorname{Pull}_{\mathrm{SM}}$	
δC_9	-0.94 ± 0.14	126.8	5.5σ	
δC_9^{μ}	-0.93 ± 0.13	115.2	6.5σ	
δC_9^e	0.84 ± 0.26	145.5	3.4σ	
δC_{10}	0.20 ± 0.22	156.4	0.9σ	
δC_{10}^{μ}	0.51 ± 0.17	146.4	3.3σ	
δC_{10}^e	-0.78 ± 0.23	144.3	3.6σ	
$\delta C^{\mu}_{\rm LL}$	-0.53 ± 0.10	125.4	5.6σ	
$\delta C_{\rm LL}^e$	0.43 ± 0.13	144.8	3.5σ	

Computations performed using SuperIso public program

(assuming 10% error for p.c.)

Most favoured scenario is δC_9^{μ} followed by $\delta C_{LL}^{\mu} \left(\delta C_9^{\mu} = -\delta C_{10}^{\mu} \right)$, same hierarchy as pre 2020 LHCb

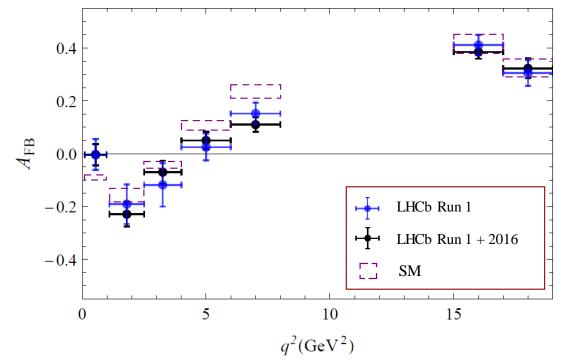
Significance have increased by $\sim 1\sigma$ for the most prominent scenarios compared to 2019


Fit to $B \to K^* \mu^+ \mu^-$ angular observables: Run 1 (3 fb⁻¹) compared to Run 1 + 2016 (4.7 fb⁻¹)

$B ightarrow K^* \mu^+ \mu^-$ angular observables				
	χ ² _{SM}	$\chi^2_{\min}(\delta C_9)$	$\operatorname{Pull}_{\operatorname{SM}}(\delta C_9)$	
Run 1	57.25	43.08	4.0σ	
Run 1 + 2016	81.07	52.27	5.4σ	

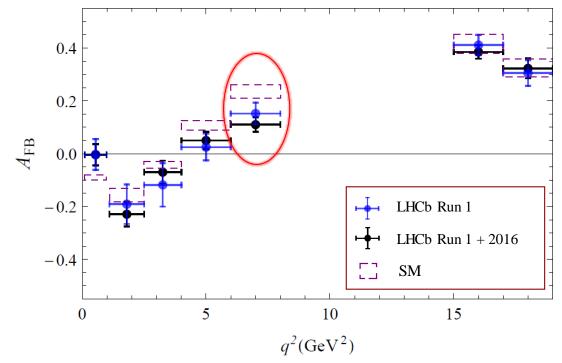
> Most favoured scenario is δC_9^{μ} followed by $\delta C_{LL}^{\mu} \left(\delta C_9^{\mu} = -\delta C_{10}^{\mu} \right)$, same hierarchy as pre 2020 LHCb

- > Significance have increased by $\sim 1\sigma$ for the most prominent scenarios compared to 2019
- ► Change in significance mainly due to the recent LHCb analysis of the $B \to K^* \mu^+ \mu^-$ angular observables with 4.7 fb⁻¹ (\rightarrow larger χ^2_{SM})


Fit to $B \rightarrow K^* \mu^+ \mu^-$ angular observables: Run 1 (3 fb⁻¹) compared to Run 1 + 2016 (4.7 fb⁻¹)

> Most favoured scenario is δC_9^{μ} followed by $\delta C_{LL}^{\mu} \left(\delta C_9^{\mu} = -\delta C_{10}^{\mu} \right)$, same hierarchy as pre 2020 LHCb

- > Significance have increased by $\sim 1\sigma$ for the most prominent scenarios compared to 2019
- ► Change in significance mainly due to the recent LHCb analysis of the $B \to K^* \mu^+ \mu^-$ angular observables with 4.7 fb⁻¹ (\rightarrow larger χ^2_{SM})
 - → smaller experimental uncertainties


Fit to $B \to K^* \mu^+ \mu^-$ angular observables: Run 1 (3 fb⁻¹) compared to Run 1 + 2016 (4.7 fb⁻¹)

> Most favoured scenario is δC_9^{μ} followed by $\delta C_{LL}^{\mu} \left(\delta C_9^{\mu} = -\delta C_{10}^{\mu} \right)$, same hierarchy as pre 2020 LHCb

- > Significance have increased by $\sim 1\sigma$ for the most prominent scenarios compared to 2019
- ≻ Change in significance mainly due to the recent LHCb analysis of the $B \to K^* \mu^+ \mu^-$ angular observables with 4.7 fb⁻¹ (→ larger χ^2_{SM})
 - ↔ smaller experimental uncertainties
 - \hookrightarrow further tensions

Fit to $B \to K^* \mu^+ \mu^-$ angular observables: Run 1 (3 fb⁻¹) compared to Run 1 + 2016 (4.7 fb⁻¹)

> Most favoured scenario is δC_9^{μ} followed by $\delta C_{LL}^{\mu} \left(\delta C_9^{\mu} = -\delta C_{10}^{\mu} \right)$, same hierarchy as pre 2020 LHCb

- > Significance have increased by $\sim 1\sigma$ for the most prominent scenarios compared to 2019
- ► Change in significance mainly due to the recent LHCb analysis of the $B \to K^* \mu^+ \mu^-$ angular observables with 4.7 fb⁻¹ (\rightarrow larger χ^2_{SM})
 - → smaller experimental uncertainties
 - \hookrightarrow further tensions

Global analysis of $b \rightarrow s$ transitions: multi-dimensional fit

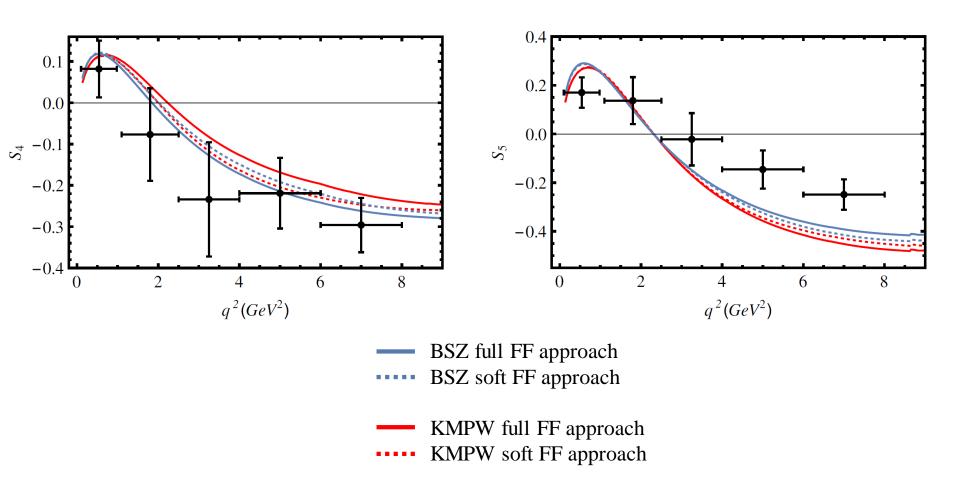
Using all the relevant data on $b \rightarrow s$ transitions

Multi-dimensional fit: $C_7, C_8, C_9^{\ell}, C_{10}^{\ell}, C_S^{\ell}, C_P^{\ell}$ + primed coefficients (20 d.o.f.)

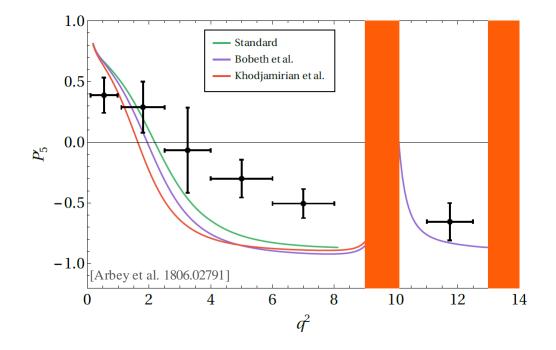
All observables with $\chi^2_{\rm SM} = 157.28$					
$(\chi^2_{\rm min} = 100.34; \text{Pull}_{\rm SM} = 4.3\sigma)$					
δ	7 ₇	δC_8			
0.05 =	± 0.03	-0.71 ± 0.43			
δ	0% 7	$\delta C_8'$			
-0.01	± 0.02	-0.09 ± 0.86			
δC_9^{μ}	δC_9^e	δC^{μ}_{10}	δC_{10}^e		
-1.11 ± 0.19	-6.69 ± 1.37	0.08 ± 0.25	3.97 ± 4.99		
$\delta C_9^{\prime\mu}$	$\delta C_9'^e$	$\delta C_{10}^{\prime\mu}$	$\delta C_{10}^{\prime e}$		
0.18 ± 0.35	1.84 ± 1.75	-0.13 ± 0.21	0.05 ± 5.01		
$C^{\mu}_{Q_1}$	$C^e_{Q_1}$	$C^{\mu}_{Q_2}$	$C^e_{Q_2}$		
-0.07 ± 0.12	-1.52 ± 0.98	-0.10 ± 0.14	-4.36 ± 1.46		
$C_{Q_1}^{\prime\mu}$	$C_{Q_1}^{\prime \mu} = C_{Q_1}^{\prime e}$		$C_{Q_2}^{\prime e}$		
0.05 ± 0.12	-1.40 ± 1.56	-0.17 ± 0.15	-4.33 ± 2.33		

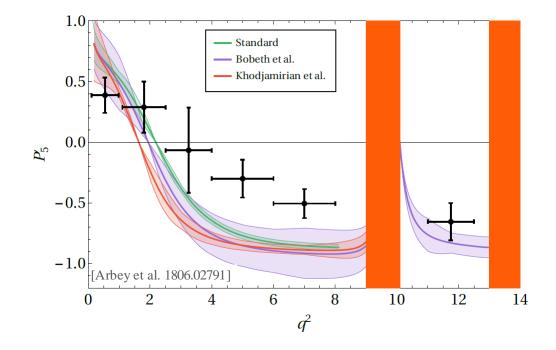
- > Significance of the fit has increased by $\sim 1\sigma$ compared to our 2019 fit
- Several Wilson coefficients in the electron sector were previously undetermined in the 20-dimension fit now all WC are constrained (some still weakly) \leftarrow updated upper bound on $B_s \rightarrow e^+e^-$ [LHCb 2003.03999]

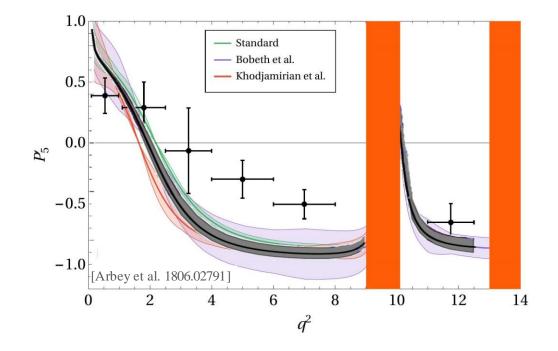
- Significance of tensions depend on assumptions for power corrections
- Statistical comparison favours NP, however situation remains inconclusive
- □ Future data (after the first LHC upgrade) can give strong indications whether NP better describe the anomalies or hadronic contributions
- □ Most favoured NP scenario still C_9^{μ} followed by C_{LL}^{μ} no change compared to pre-2020
- \Box Increase of ~1 σ for the favoured NP scenarios


Thank you!

Backup


Theory framework: exclusive mode $B o K^* \ell^+ \ell^-$


Effective Hamiltonian for $b \to s\ell^+\ell^-$ transitions: $\mathcal{H}_{eff} = \mathcal{H}_{eff}^{had} + \mathcal{H}_{eff}^{sl}$


$B \to K^* \bar{\mu} \mu / \gamma$ observables; low q^2 bins up to 8 GeV ²								
nr. of free parameters	$\begin{pmatrix} 1 \\ \\ \\ \delta C_9 \end{pmatrix}$	$\begin{pmatrix} 2 \\ \text{Real} \\ \delta C_7, \delta C_9 \end{pmatrix}$	$\begin{pmatrix} 2 \\ Comp. \\ \delta C_9 \end{pmatrix}$	$\begin{pmatrix} 4 \\ Comp. \\ \delta C_7, \delta C_9 \end{pmatrix}$	$\begin{pmatrix} 3 \\ { m Real} \\ \Delta C_9^{\lambda, { m PC}} \end{pmatrix}$	$\begin{pmatrix} 6 \\ Comp. \\ \Delta C_9^{\lambda, PC} \end{pmatrix}$	$\begin{pmatrix} 9\\ \text{Real}\\ h^{(0,1,2)}_{+,-,0} \end{pmatrix}$	$ \begin{pmatrix} 18 \\ {\rm Comp.} \\ h^{(0,1,2)}_{+,-,0} \end{pmatrix} $
0 (plain SM)	6.0σ	5.6σ	5.8σ	5.4σ	5.4σ	5.5σ	5.0σ	4.7σ
1 (Real δC_9)		0.5σ	1.5σ	1.2σ	0.6σ	1.8σ	1.1σ	1.5σ
2 (Real $\delta C_7, \delta C_9$)				1.4σ	—		1.3σ	1.6σ
2 (Comp. δC_9)				0.8σ		1.7σ		1.4σ
4 (Comp. $\delta C_7, \delta C_9$)		—		—	—		_	1.5σ
3 (Real $\Delta C_9^{\lambda, \text{PC}}$)						2.2σ	1.4σ	1.7σ
6 (Comp. $\Delta C_9^{\lambda, \text{PC}}$)				_				0.1σ
9 (Real $h_{+,-,0}^{(0,1,2)}$)								1.5σ

GDR-InF annual workshop, 30 Sept. 2020

GDR-InF annual workshop, 30 Sept. 2020