
Precise Measurement of the $e^+e^- \rightarrow \pi^+\pi^-(\gamma)$ Cross Section with BaBar and the Muon g-2

Michel Davier (LAL – Orsay, BaBar Collaboration)

- the muon magnetic anomaly
- e^+e^- and (revisited) τ spectral functions

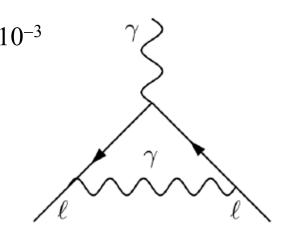
- test of the method: $e^+e^- \rightarrow \mu^+\mu^-(\gamma)$
- results on $e^+e^- \rightarrow \pi^+\pi^-(\gamma)$
- combination of all ee data
- discussion and perspectives

Lepton Magnetic Anomaly: from Dirac to QED

$$\vec{\mu} = g \frac{e}{2m} \vec{s}, \qquad a = (g-2)/2$$

Dirac (1928)
$$g_e=2$$
 $a_e=0$

anomaly discovered:


Kusch-Foley (1948)
$$a_e = (1.19 \pm 0.05) \ 10^{-3}$$

and explained by $O(\alpha)$ QED contribution:

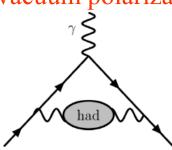
Schwinger (1948)
$$a_e = \alpha/2\pi = 1.16 \ 10^{-3}$$

first triumph of QED

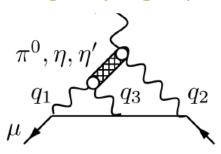
 \Rightarrow a_e sensitive to quantum fluctuations of fields

More Quantum Fluctuations

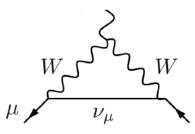
$$a = a^{\text{QED}} + a^{\text{had}} + a^{\text{weak}} + ?$$
 a new physics?

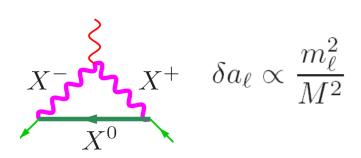

typical contributions:

QED up to $O(\alpha^4)$, α^5 in progress (Kinoshita et al.)



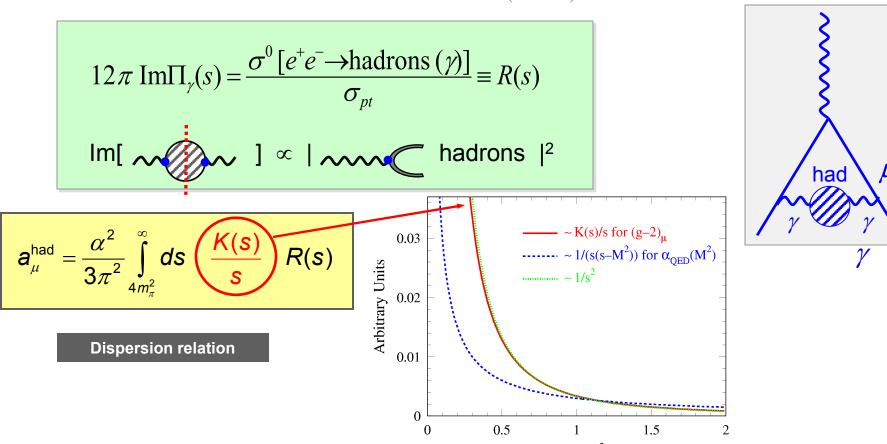
Hadrons


vacuum polarization


light-by-light (models)

Electroweak

new physics at high mass scale

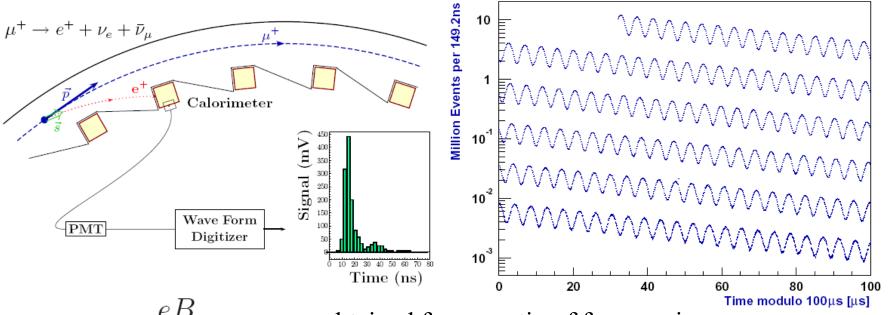

 \Rightarrow a_u much more sensitive to high scales

Hadronic Vacuum Polarization and Muon $(g-2)_{\mu}$

Dominant uncertainty from lowest-order HVP piece

Cannot be calculated from QCD (low mass scale), but one can use experimental data on e+e->hadrons cross section

Born:
$$\sigma^{(0)}(s) = \sigma(s)(\alpha/\alpha(s))^2$$

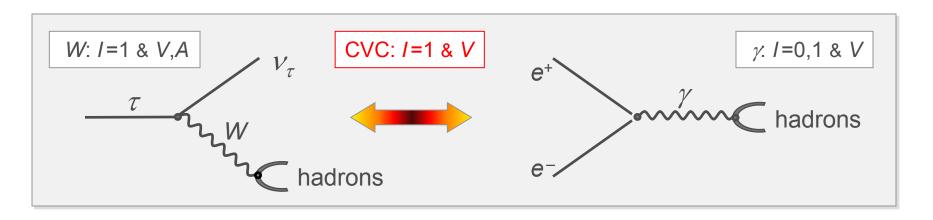


M.Davier ISR pi pi/g-2 Paris 6-7 7/10/2009

s (GeV^2)

The E-821 Direct a, Measurement at BNL

Storage ring technique pionneered at CERN (Farley-Picasso...)


 $\omega_a = a_\mu \, \frac{eB}{m_\mu}$

 $\omega_{precession} - \omega_{rotation}$

 a_{μ} obtained from a ratio of frequencies result updated with new value for μ_{μ}/μ_{p} (+0.9 10⁻¹⁰) (see next review in RPP2009 (Hoecker-Marciano)

$$a_{\mu}^{\text{exp}} = (11\ 659\ 208.9 \pm 5.4 \pm 3.3)\ 10^{-10} \ (\pm 6.3)\ (0.54\ \text{ppm})$$

The Role of τ Data through CVC – SU(2)

Hadronic physics factorizes (spectral Functions)

$$\sigma^{(l=1)} \left[e^+ e^- \to \pi^+ \pi^- \right] = \frac{4\pi\alpha^2}{s} \upsilon \left[\tau^- \to \pi^- \pi^0 \upsilon_\tau \right]$$

$$\upsilon \left[\tau^- \to \pi^- \pi^0 \upsilon_\tau \right] \propto \frac{\mathsf{BR} \left[\tau^- \to \pi^- \pi^0 \upsilon_\tau \right]}{\mathsf{BR} \left[\tau^- \to e^- \overline{\upsilon}_e \upsilon_\tau \right]} \frac{1}{N_{\pi\pi^0}} \frac{dN_{\pi\pi^0}}{ds} \frac{m_\tau^2}{\left(1 - s/m_\tau^2 \right)^2 \left(1 + s/m_\tau^2 \right)}$$
branching fractions mass spectrum kinematic factor (PS)

6

SU(2) Breaking

Corrections for SU(2) breaking applied to τ data for dominant $\pi^-\pi^+$ contrib.:

- Electroweak radiative corrections:
 - \blacktriangleright dominant contribution from short distance correction $S_{\rm EW}$
 - subleading corrections (small)
 - ▶ long distance radiative correction $G_{EM}(s)$

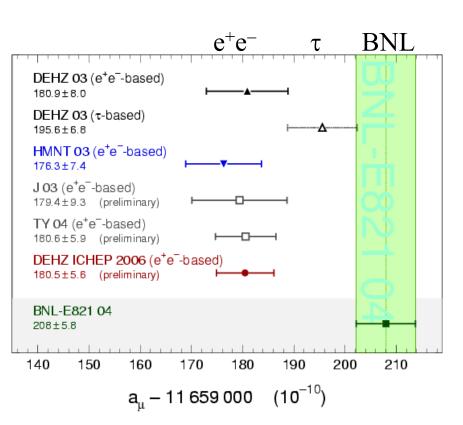
Marciano-Sirlin' 88

Braaten-Li' 90

Cirigliano-Ecker-Neufeld' 02 Lopez Castro et al.' 06

Charged/neutral mass splitting:

Alemany-Davier-Höcker' 97, Czyż-Kühn' 01


- $\rightarrow m_{\pi^-} \neq m_{\pi^0}$ leads to phase space (cross sec.) and width (FF) corrections
- ▶ ρ - ω mixing (EM $\omega \to \pi^-\pi^+$ decay) corrected using FF model
- $ightharpoonup m_{\rho^-} \neq m_{\rho^0}$ *** and $\Gamma_{\rho^-} \neq \Gamma_{\rho^0}$ ***

Flores-Baez-Lopez Castro' 08 Davier et al.'09

- Electromagnetic decays: $\rho \to \pi \pi \gamma^{***}$, $\rho \to \pi \gamma$, $\rho \to \eta \gamma$, $\rho \to l^+ l^-$
- Quark mass difference $m_u \neq m_d$ (negligible)

Situation at ICHEP'06 / 08

$$a_{\mu}^{\text{had}}$$
 [ee] = (690.9 ± 4.4) × 10⁻¹⁰
 a_{μ} [ee] = (11 659 180.5 ± 4.4_{had} ± 3.5_{LBL} ± 0.2_{QED+EW}) × 10⁻¹⁰

Hadronic HO $-(9.8 \pm 0.1) \times 10^{-10}$ Hadronic LBL $+(12.0 \pm 3.5) \times 10^{-10}$ Electroweak $(15.4 \pm 0.2) \times 10^{-10}$ QED $(11.658 471.9 \pm 0.1) \times 10^{-10}$

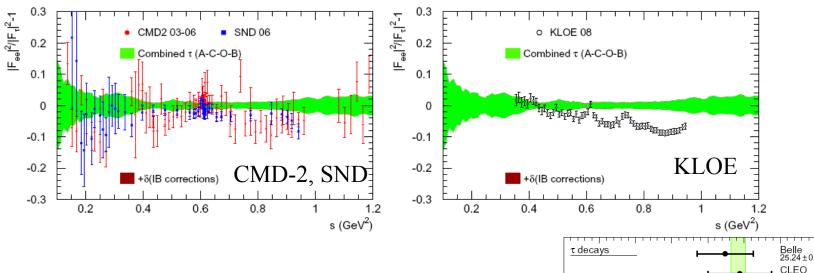
Knecht-Nyffeler (2002), Melnikov-Vainhstein (2003)

Davier-Marciano (2004)

Kinoshita-Nio (2006)

Observed Difference with BNL using e⁺e⁻:

$$a_{\mu}$$
 [exp] - a_{μ} [SM] = (27.5 ± 8.4) × 10⁻¹⁰

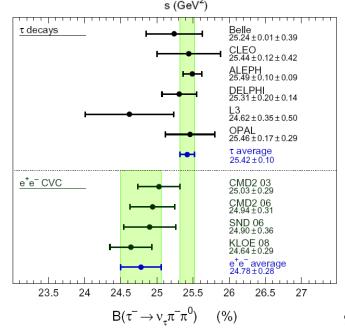

3.3 "standard deviations"

Estimate using τ data consistent with E-821

Revisited Analysis using τ Data: Belle + new IB

Relative comparison of τ and ee spectral functions (τ green band)

arXiv:0906-5443 MD et al.



slope...

Global test of spectral functions: prediction of τ BR using ee data

$$\mathcal{B}_{X}^{\text{CVC}} = \frac{3}{2} \frac{\mathcal{B}_{e} |V_{ud}|^{2}}{\pi \alpha^{2} m_{\tau}^{2}} \int_{s_{\text{min}}}^{m_{\tau}^{2}} ds \, s \, \sigma_{X^{0}}^{I} \left(1 - \frac{s}{m_{\tau}^{2}}\right)^{2} \left(1 + \frac{2s}{m_{\tau}^{2}}\right)$$

⇒ larger disagreement with KLOE

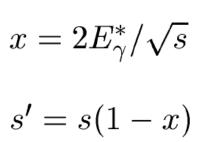
M.Davier ISR pi pi/g-2

Paris 6-7 7/10/2009

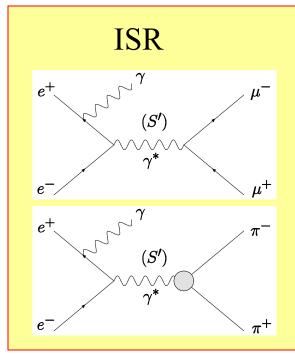
9

Goals of the BaBar Analysis

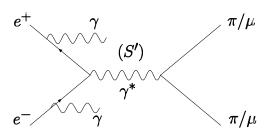
- * Measure $\sigma[e^+e^- \to \pi^+\pi^-(\gamma)]$ with high accuracy for vacuum polarization calculations, using the ISR method $e^+e^- \to \pi^+\pi^-\gamma(\gamma)$
- * $\pi\pi$ channel contributes 73% of a_u^{had}
- * Dominant uncertainty also from $\pi\pi$
- Also important to increase precision on $\alpha(M_Z^2)$ (EW tests, ILC)
- ❖ Present systematic precision of e⁺e[−] experiments

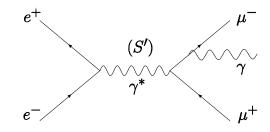

```
CMD-2 0.8% SND 1.5% in agreement KLOE (ISR from 1.02 GeV) 2005 1.3% some deviation in shape 2008 0.9% better agreement
```

- * Big advantage of ISR: all mass spectrum covered at once, from threshold to 3 GeV, with same detector and analysis
- Measure simultaneously $\pi^+ \pi^- \gamma (\gamma)$ and $\mu^+ \mu^- \gamma (\gamma)$
- Compare to spectral functions from previous e^+e^- data and τ decays
 - \Rightarrow aim for a measurement with <1% accuracy (syst. errors at per mil level)

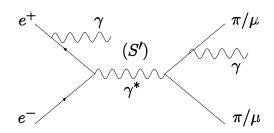

great interest to clarify the situation as magnitude of possible discrepancy with SM is of the order of SUSY contributions with masses of a few 100 GeV

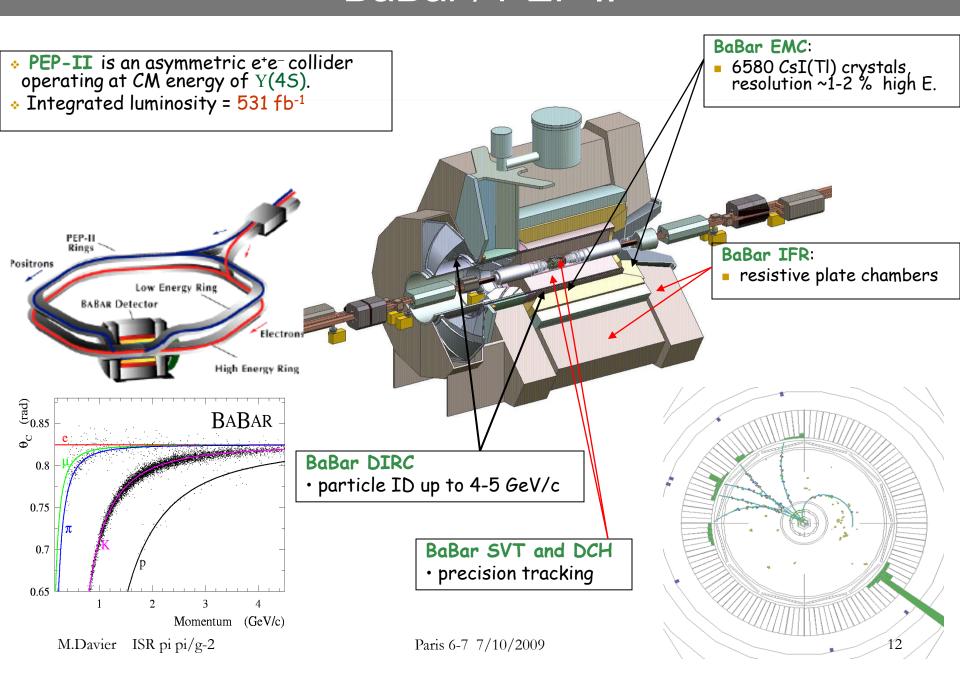
The Relevant Processes


 $e^+e^- \rightarrow \mu^+\mu^-\gamma$ (γ) and $\pi^+\pi^-\gamma$ (γ) measured simultaneously


$$s' = s(1 - x)$$

ISR + add. ISR





LO FSR negligible for $\pi\pi$ at $s\sim (10.6 \text{ GeV})^2$

ISR + add. FSR

BaBar / PEP II

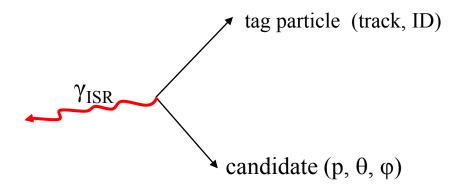
Analysis Steps

```
232 fb<sup>-1</sup> (Y(4S) on-peak & off peak)
```

- Measure ratio of $\pi\pi\gamma(\gamma)$ to $\mu\mu\gamma(\gamma)$ cross sections to cancel ee luminosity, additional ISR, vacuum polarization,ISR photon efficiency (otherwise 1-2% syst.)
- ISR photon at large angle in EMC + 2 tracks
- Geometrical acceptance (using Monte Carlo simulation)
- All efficiencies measured on data (data/MC corrections)
- Triggers (L1 hardware, L3 software), background-filter efficiencies
- Tracking efficiency
- Particle ID matrix (ID and mis-ID efficiencies): μ π K
- Kinematic fitting reduce non 2-body backgrounds

 χ^2 cut efficiency: additional radiation (ISR, FSR), secondary interactions

- Unfolding of mass spectra
- Consistency checks for $\mu\mu$ (QED test, ISR luminosity) and $\pi\pi$
- Unblinding $R \Rightarrow$ partial preliminary results (Tau08, Sept. 2008)
- Additional studies and checks
- Final results on $\pi\pi$ cross section and calculation of dispersion integral


MC Generators

- Acceptance and efficiencies determined initially from simulation, with data/MC corrections applied
- Large simulated samples, typically 10 × data, using AfkQed generator
- AfkQed: lowest-order (LO) QED with additional radiation:
 ISR with structure function method, γ assumed collinear to the beams and with limited energy

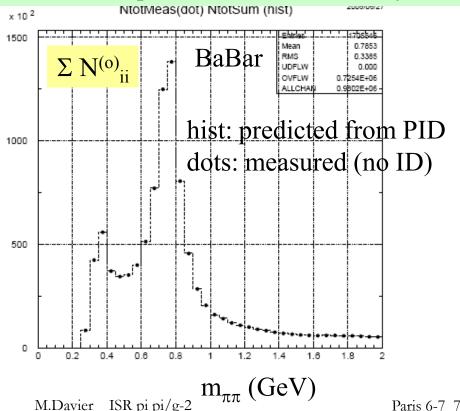
FSR using PHOTOS

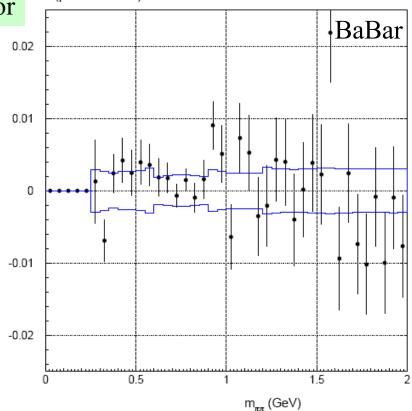
- Phokhara 4.0: (almost) exact second-order QED matrix element, limited to NLO
- Studies comparing Phokhara and AfkQed at 4-vector level with fast simulation
- **QED** test with μ μ γ (γ) cross section requires reliable NLO generator
- $\pi \pi (\gamma)$ cross section obtained through $\pi \pi \gamma / \mu \mu \gamma$ ratio, rather insensitive to detailed description of radiation in MC

Particle-related Efficiency Measurements

- benefit from pair production for tracking and particle ID
- kinematically constrained events
- efficiency automatically averaged over running periods
- measurement in the same environment as for physics, in fact same events!
- applied to particle ID with $\pi/K/\mu$ samples, tracking, study of secondary interactions...
- assumes that efficiencies of the 2 particles are uncorrelated
- in practice not true ⇒ study of 2-particle overlap in the detector
 (trigger,tracking, EMC, IFR) required a large effort to reach per mil accuracies

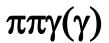
PID separation and Global Test

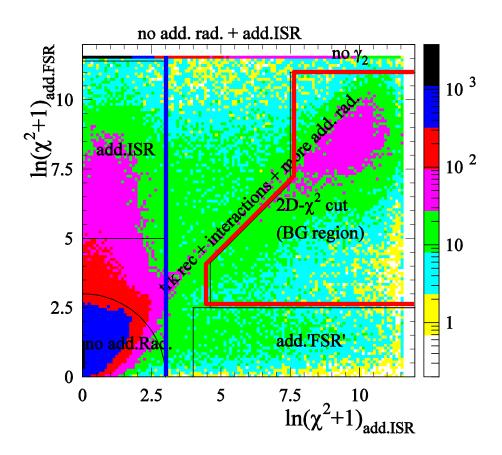

$$N_{'\pi\pi'} = N_{\mu\mu}^{(0)} \varepsilon_{\mu\mu\to'\pi\pi'} + N_{\pi\pi}^{(0)} \varepsilon_{\pi\pi\to'\pi\pi'} + N_{KK}^{(0)} \varepsilon_{KK\to'\pi\pi'} + N_{ee/'\pi\pi'}$$


$$N_{'\mu\mu'} = N_{\mu\mu}^{(0)} \varepsilon_{\mu\mu\to'\mu\mu'} + N_{\pi\pi}^{(0)} \varepsilon_{\pi\pi\to'\mu\mu'} + N_{KK}^{(0)} \varepsilon_{KK\to'\mu\mu'}$$

$$N_{'KK'} = N_{\mu\mu}^{(0)} \varepsilon_{\mu\mu\to'KK'} + N_{\pi\pi}^{(0)} \varepsilon_{\pi\pi\to'KK'} + N_{KK}^{(0)} \varepsilon_{KK\to'KK'}$$

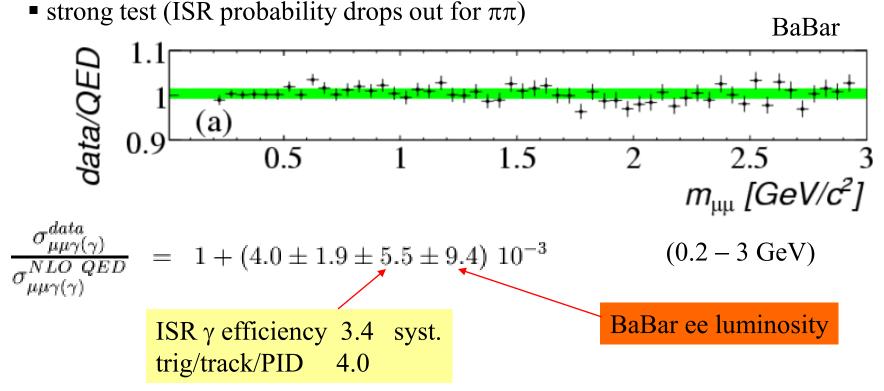
(predicted - XX)/XX


All 'xx' \Rightarrow solve for all xx⁽⁰⁾ and compare with no-ID spectrum and estimated syst. error



Paris 6-7 7/10/2009

Kinematic Fitting


■ Two kinematic fits to $X X \gamma_{ISR} \gamma_{add}$ (ISR photon defined as highest energy)

Add. ISR fit: γ_{add} assumed along beams Add. 'FSR' if γ_{add} detected

- First analysis to measure cross section with additional photons (NLO)
- Loose χ^2 cut (outside BG region in plot) for $\mu\mu$ and $\pi\pi$ in central ρ region
- Tight χ^2 cut $(\ln(\chi^2+1)<3)$ for $\pi\pi$ in ρ tail region
- q \bar{q} and multi-hadronic ISR background from MC samples + normalization from data using signals from $\pi^0 \rightarrow \gamma_{ISR} \gamma$ (q \bar{q}), and ω and φ ($\pi\pi\pi^0\gamma$)

QED Test with μμγ sample

- absolute comparison of μμ mass spectra in data and in simulation
- simulation corrected for data/MC efficiencies
- AfkQed corrected for incomplete NLO using Phokhara

M.Davier ISR pi pi/g-2

Obtaining the $\pi\pi(\gamma)$ cross section

$$\frac{dN_{\pi\pi\gamma(\gamma)}}{d\sqrt{s'}} = \frac{dL_{ISR}^{eff}}{d\sqrt{s'}} \; \varepsilon_{\pi\pi\gamma(\gamma)}(\sqrt{s'}) \; \sigma_{\pi\pi(\gamma)}^{0}(\sqrt{s'})$$
 Unfolded spectrum
 Acceptance from MC + data/MC corrections

Effective ISR luminosity from $\mu\mu\gamma(\gamma)$ analysis (similar equation + QED)

 $\pi\pi$ mass spectrum unfolded (Malaescu arXiv:0907-3791) for detector response

Additional ISR almost cancels in the procedure $(\pi\pi\gamma(\gamma) / \mu\mu\gamma(\gamma))$ ratio) Correction (2.5 ±1.0) $10^{-3} \Rightarrow \pi\pi$ cross section does not rely on accurate description of NLO in the MC generator

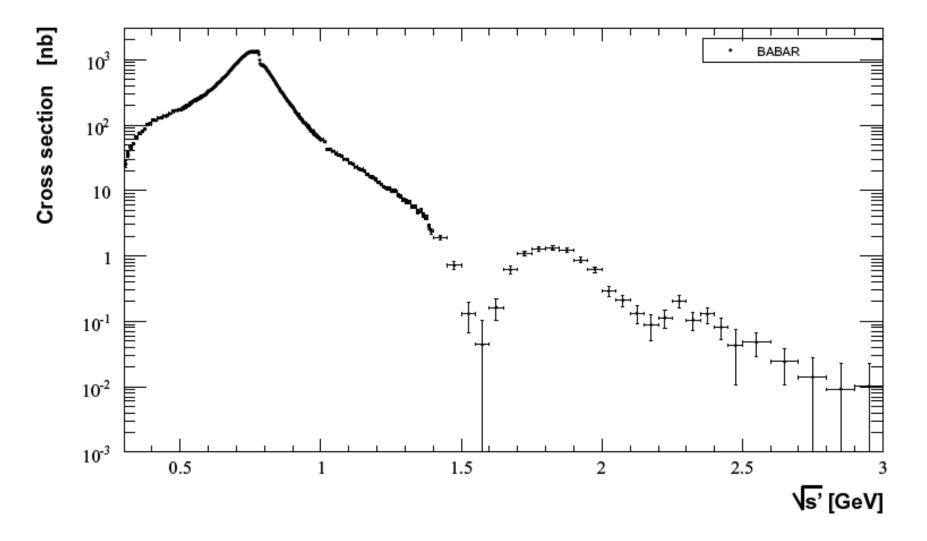
ISR luminosity from $\mu\mu\gamma\gamma$ in 50-MeV energy intervals (small compared to variation of efficiency corrections)

Systematic uncertainties

 \sqrt{s} ' intervals (GeV)

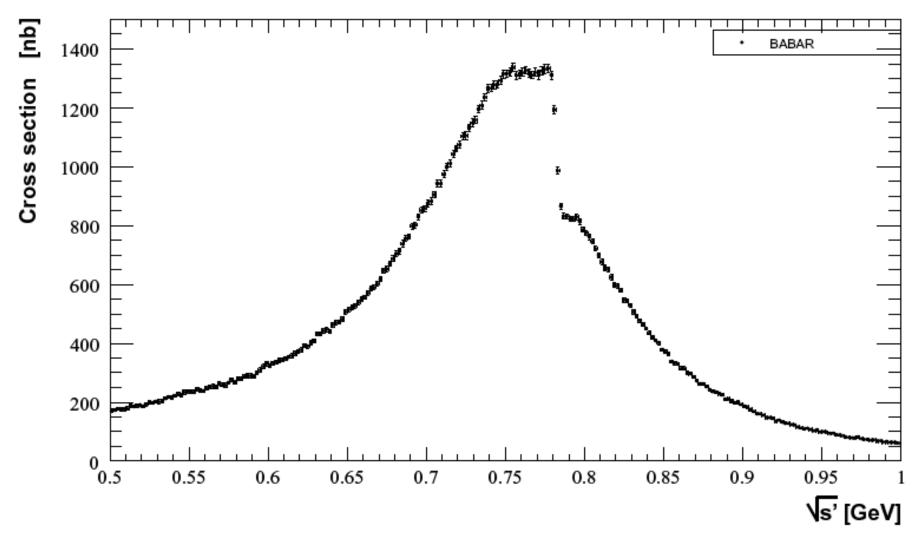
errors in 10^{-3}

sources	0.3-0.4	0.4-0.5	0.5-0.6	0.6-0.9	0.9-1.2	1.2-1.4	1.4-2.0	2.0-3.0
trigger/ filter	5.3	2.7	1.9	1.0	0.5	0.4	0.3	0.3
tracking	3.8	2.1	2.1	1.1	1.7	3.1	3.1	3.1
$\pi\text{-ID}$	10.1	2.5	6.2	2.4	4.2	10.1	10.1	10.1
background	3.5	4.3	5.2	1.0	3.0	7.0	12.0	50.0
acceptance	1.6	1.6	1.0	1.0	1.6	1.6	1.6	1.6
kinematic fit (χ^2)	0.9	0.9	0.3	0.3	0.9	0.9	0.9	0.9
correl $\mu\mu$ ID loss	3.0	2.0	3.0	1.3	2.0	3.0	10.0	10.0
$\pi\pi/\mu\mu$ cancel.	2.7	1.4	1.6	1.1	1.3	2.7	5.1	5.1
unfolding	1.0	2.7	2.7	1.0	1.3	1.0	1.0	1.0
ISR luminosity	3.4	3.4	3.4	3.4	3.4	3.4	3.4	3.4
sum (cross section)	13.8	8.1	10.2	5.0	6.5	13.9	19.8	52.4


Dominated by particle ID (π -ID, correlated $\mu\mu \rightarrow '\pi\pi'$, μ -ID in ISR luminosity)

BaBar results (arXiv:0908.3589)

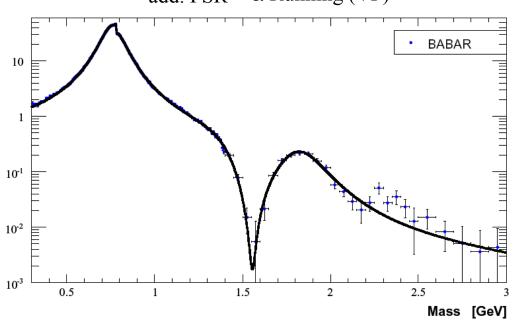
 $e^+ e^- \rightarrow \pi^+ \pi^- (\gamma)$

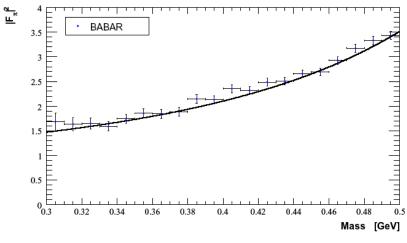

bare (no VP) cross section

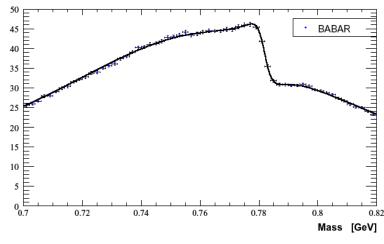
diagonal errors stat+syst

BaBar results in ρ region

2-MeV energy intervals

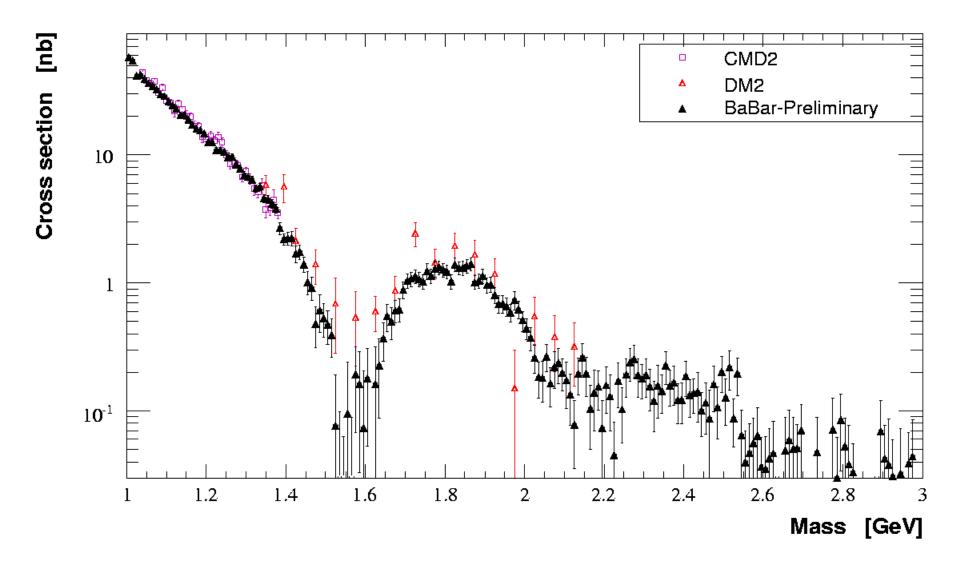

VDM fit of the pion form factor


$$F_{\pi}(s) = \frac{BW_{\rho}^{GS}(s, m_{\rho}, \Gamma_{\rho}) \frac{1 + \alpha BW_{\omega}^{KS}(s, m_{\omega}, \Gamma_{\omega})}{1 + \alpha} + \beta BW_{\rho'}^{GS}(s, m_{\rho'}, \Gamma_{\rho'}) + \gamma BW_{\rho''}^{GS}(s, m_{\rho''}, \Gamma_{\rho''})}{1 + \beta + \gamma}$$

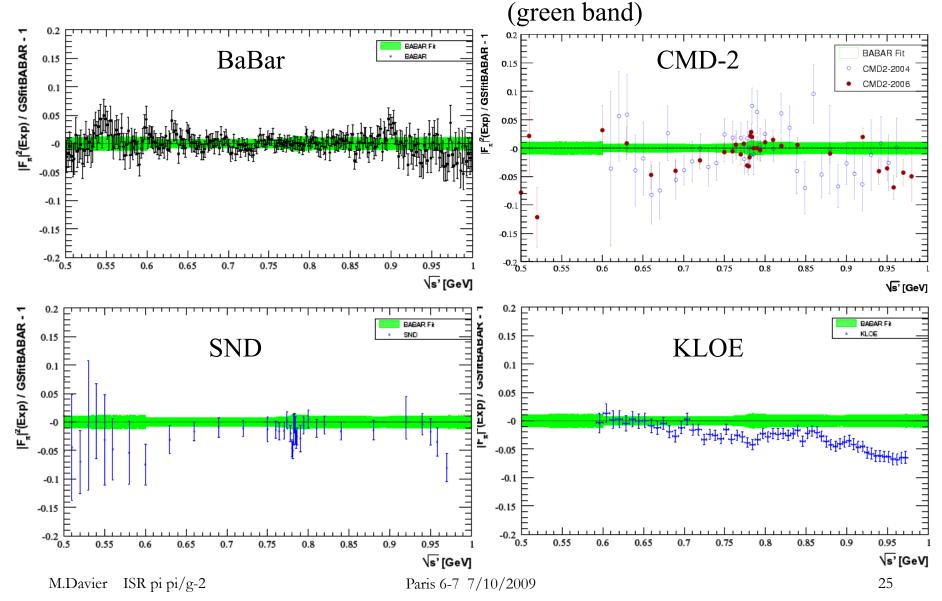

$$|F_{\pi}|^{2}(s') = \frac{3s'}{\pi \alpha^{2}(0)\beta_{\pi}^{3}} \sigma_{\pi\pi}(s')$$

$$\sigma_{\pi\pi}(s') = \frac{\sigma_{\pi\pi(\gamma)}^0(s')}{1 + \frac{\alpha}{\pi}\eta(s')} \left(\frac{\alpha(s')}{\alpha(0)}\right)^2$$

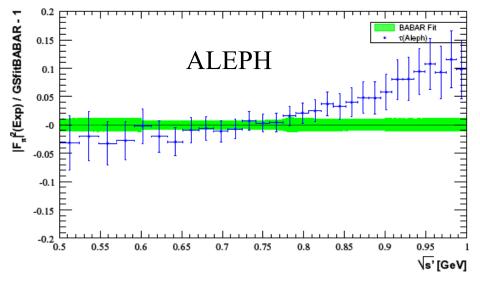
add. FSR α Running (VP)



M.Davier ISR pi pi/g-2

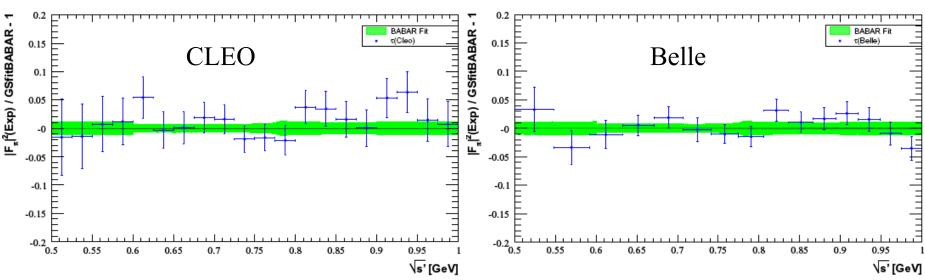

Paris 6-7 7/10/2009

BaBar vs. other experiments at larger mass



BaBar vs.other ee data (0.5-1.0 GeV)

direct relative comparison of cross sections with BaBar fit (stat + syst errors included)


BaBar vs. IB-corrected τ data (0.5-1.0 GeV)

relative comparison w.r.t. BaBar of isospin-breaking corrected τ spectral functions

IB corrections: radiative corr., π masses, ρ - ω interference, ρ masses/widths

each τ data normalized to its own BR

Computing $a_{\mu}^{\pi\pi}$

$$a_{\mu}^{\pi\pi(\gamma),LO} = \frac{1}{4\pi^3} \int_{4m_{\pi}^2}^{\infty} ds \, K(s) \, \sigma_{\pi\pi(\gamma)}^0(s) ,$$

where K(s) is the QED kernel,

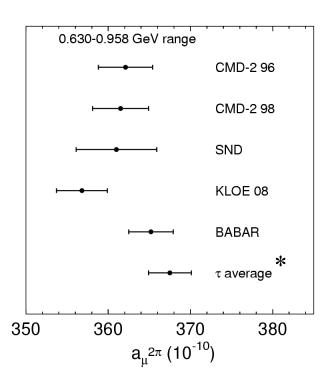
$$K(s) = x^{2} \left(1 - \frac{x^{2}}{2} \right) + (1+x)^{2} \left(1 + \frac{1}{x^{2}} \right) \left[\ln(1+x) - x + \frac{x^{2}}{2} \right] + x^{2} \frac{1+x}{1-x} \ln x ,$$

with $x = (1 - \beta_{\mu})/(1 + \beta_{\mu})$ and $\beta_{\mu} = (1 - 4m_{\mu}^2/s)^{1/2}$.

$m_{\pi\pi}$ range (GeV)	$a_{\mu}^{\pi\pi(\gamma),LO}$ BABAR
0.28 - 0.30	$0.55 \pm 0.01 \pm 0.01$
0.30 - 0.50	$57.62 \pm 0.63 \pm 0.55$
0.50 - 1.00	$445.94 \pm 2.10 \pm 2.51$
1.00 - 1.80	$9.97 \pm 0.10 \pm 0.09$
0.28 - 1.80	$514.09 \pm 2.22 \pm 3.11$

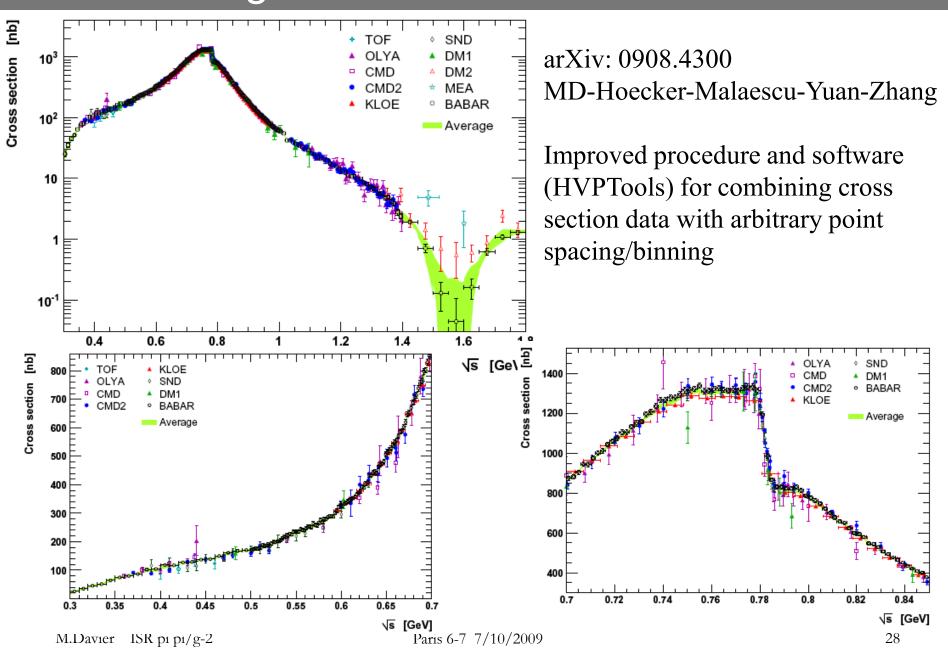
 $(\times 10^{-10})$

 $0.28-1.8 \, (GeV)$

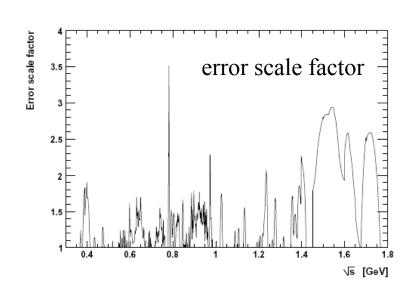

BABAR

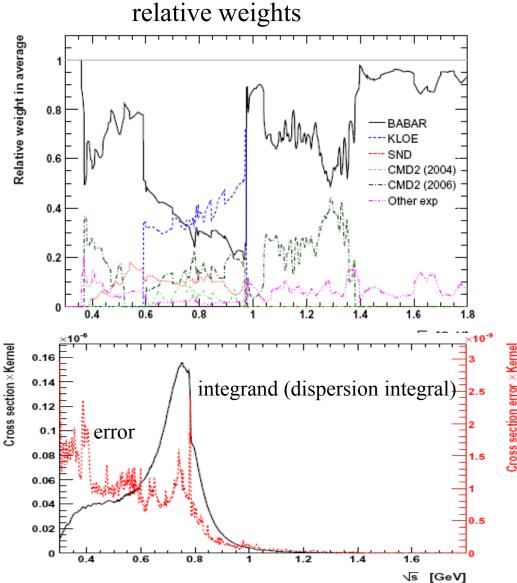
previous e ⁺e⁻ combined τ combined

514.1 + 3.8


503.5 ± 3.5 *

515.2 ± 3.5 *


* arXiv:0906-5443 MD et al.

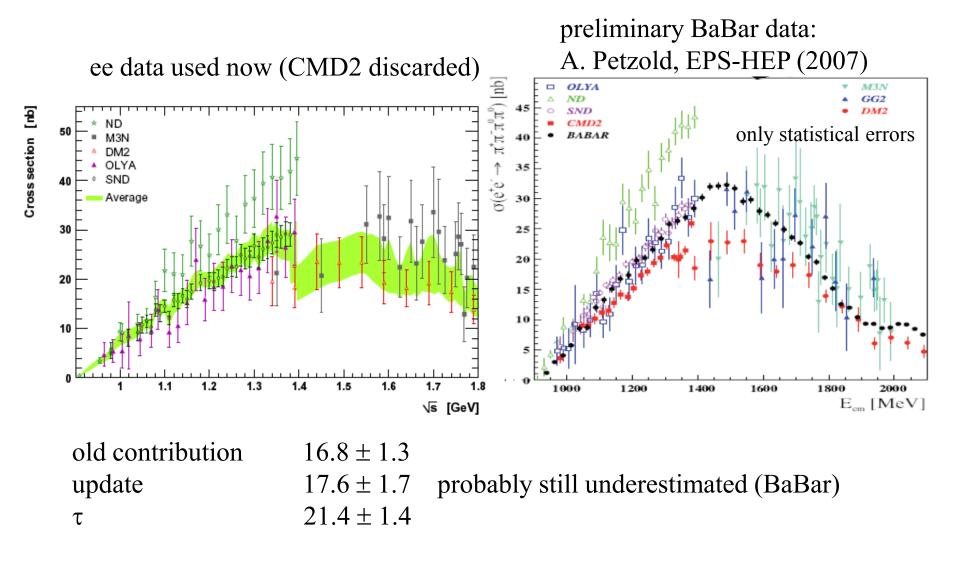

Including BaBar in the e⁺e⁻ Combination

Obtaining the average cross section

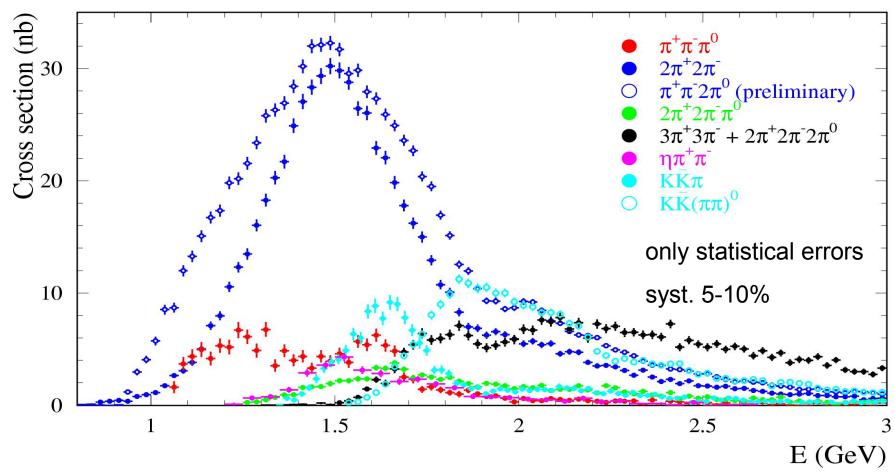
- local weighted average performed
- full covariance matrices
- local χ^2 used for error rescaling
- average dominated by BaBar and KLOE, BaBar covering full range

M.Davier ISR pi pi/g-2

Paris 6-7 7/10/2009


Other hadronic contributions

from MD-Eidelman-Hoecker-Zhang (2006)


Modes	Energy [GeV]	e+e-	au
$\pi^+\pi^-2\pi^0$	$2m_{\pi}$ – 1.8	16.8 ± 1.3 ± 0.2 _{rad}	21.4 ± 1.3 ± 0.6 _{SU(2)}
2π ⁺ 2π ⁻ (+BaBar)	$2m_{\pi}$ – 1.8	13.1 ± 0.4 ± 0.0 _{rad}	12.3 ± 1.0 ± 0.4 _{SU(2)}
<i>ω</i> (782)	0.3 - 0.81	$38.0 \pm 1.0 \pm 0.3_{rad}$	-
φ (1020)	1.0 – 1.055	$35.7 \pm 0.8 \pm 0.2_{rad}$	-
Other excl. (+BaBar)	$2m_{\pi}$ – 1.8	24.3 ± 1.3 ± 0.2 _{rad}	-
J/ψ, ψ(2S)	3.08 – 3.11	7.4 ± 0.4 ± 0.0 _{rad}	-
R [QCD]	1.8 – 3.7	33.9 ± 0.5 _{theo}	-
R [data]	3.7 – 5.0	7.2 ± 0.3 ± 0.0 _{rad}	-
R [QCD]	5.0 – ∞	9.9 ± 0.2 _{theo}	-

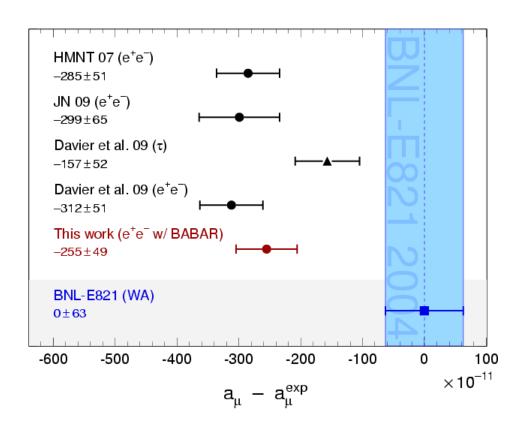
 \Rightarrow another large long-standing discrepancy in the $\pi^+\pi^-2\pi^0$ channel!

The Problematic 2π $2\pi^0$ Contribution

BaBar Multi-hadronic Results

Still more channels under analysis: K^+K^- , $KK\pi\pi$ with K^0

Where are we?


• including BaBar 2π results in the e+e- combination + estimate of hadronic LBL contribution (Prades-de Rafael-Vainhstein, 2009) yields

$$a_{\mu}^{SM}[e+e-] = (11\ 659\ 183.4\ \pm 4.1\ \pm 2.6\ \pm 0.2)\ 10^{-10}$$
 HVP LBL EW (±4.9)

11 659 208.9 +6.3

- E-821 updated result
- deviation (ee) 25.5 ± 8.0 (3.2σ)

- updated τ analysis
 +Belle +revisited IB corrections
- deviation (τ) 15.7 ± 8.2 (1.9 σ)

Discussion

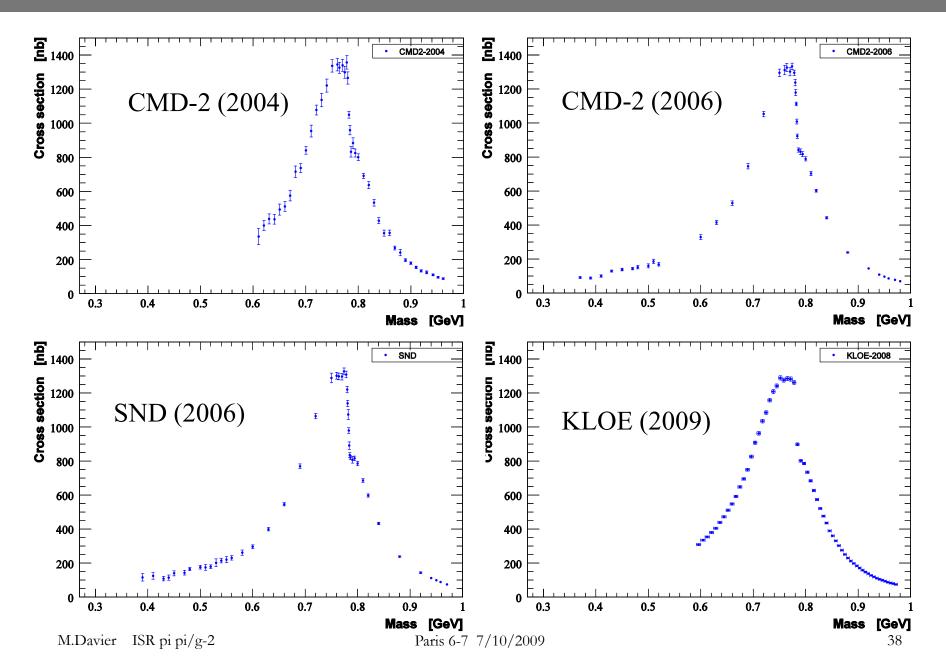
- BaBar 2π data complete and the most accurate, but expected precision improvement on the average not reached because of discrepancy with KLOE
- however, previous τ /ee disagreement strongly reduced 2.9 σ (2006) \rightarrow 2.4 σ (τ update) \rightarrow 1.5 σ (including BaBar)
- a range of values for the deviation from the SM can be obtained, depending on the 2π data used:

BaBar	2.40
all ee	3.2σ
all ee -BaBar	3.7σ
all ee -KLOE	2.9σ
τ	1.9σ

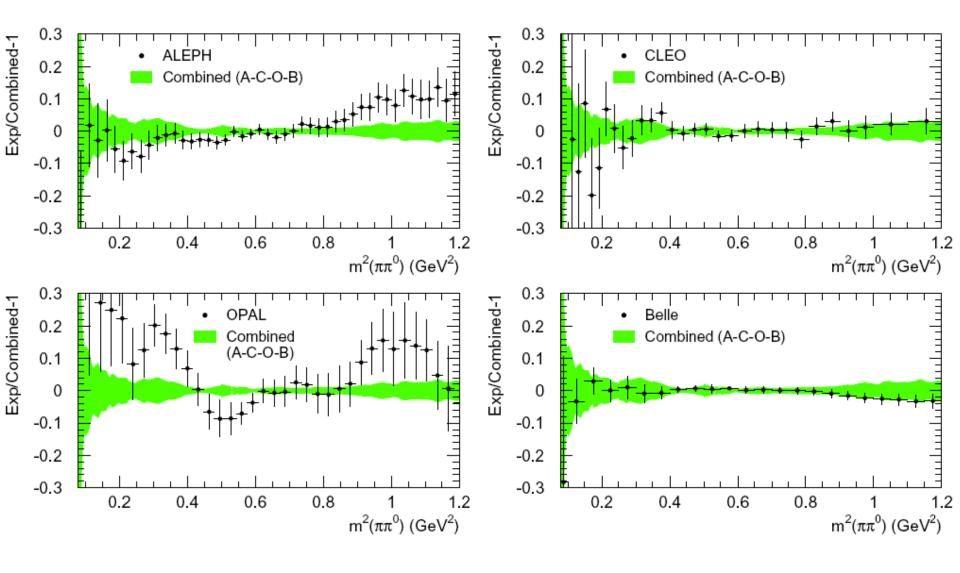
- all approaches yield a deviation, but SM test limited by systematic effects not accounted for in the experimental analyses (ee) and/or the corrections to τ data
- at the moment some evidence for a deviation $(2-4\sigma)$, but not sufficient to establish a contribution from new physics

Perspectives

- first priority is a clarification of the BaBar/KLOE discrepancy:
 - origin of the 'slope' (was very pronounced with the 2004 KLOE results, reduced now with the 2008 results)
 - normalization difference on ρ peak (most direct effect on a_{μ})
 - Novosibirsk results in-between, closer to BaBar
 - slope also seen in KLOE/ τ comparison; BaBar agrees with τ
- further checks of the KLOE results are possible: as method is based on MC simulation for ISR and additional ISR/ISR probabilities \Rightarrow long-awaited test with $\mu\mu\gamma$ analysis
- contribution from multi-hadronic channels will continue to be updated with more results forthcoming from BaBar, particularly $2\pi \ 2\pi^0$
- more ee data expected from VEPP-2000 in Novosibirsk
- \bullet experimental error of E-821 direct a_{μ} measurement is a limitation, already now
 - ⇒ new proposal submitted to Fermilab to improve accuracy by a factor 4
 - \Rightarrow project at JPARC


Conclusions

- BaBar analysis of $\pi\pi$ and $\mu\mu$ ISR processes completed
- Precision goal has been achieved: 0.5% in ρ region (0.6-0.9 GeV)
- Absolute μμ cross section agrees with NLO QED within 1.1%
- ee $\rightarrow \pi\pi(\gamma)$ cross section very insensitive to MC generator
- full range of interest covered from 0.3 to 3 GeV
- Structures observed in pion form factor at large masses
- Comparison with data from earlier experiments fair agreement with CMD-2 and SND, poor with KLOE agreement with τ data
- Contribution to a_{μ} from BaBar is (514.1 ±2.2±3.1)×10⁻¹⁰ in 0.28-1.8 GeV
- BaBar result has comparable accuracy (0.7%) to combined previous results
- Deviation between BNL measurement and theory prediction reduced using BaBar $\pi\pi$ data


$$a_{\mu}$$
 [exp] $-a_{\mu}$ [SM] = (19.8 ± 8.4)×10⁻¹⁰ 2 π from BaBar only combined ee including BaBar

Backup Slides

Data on e⁺e⁻ → hadrons

Revisited Analysis using τ Data: including Belle

Revisited Analysis τ Data: new IB corrections

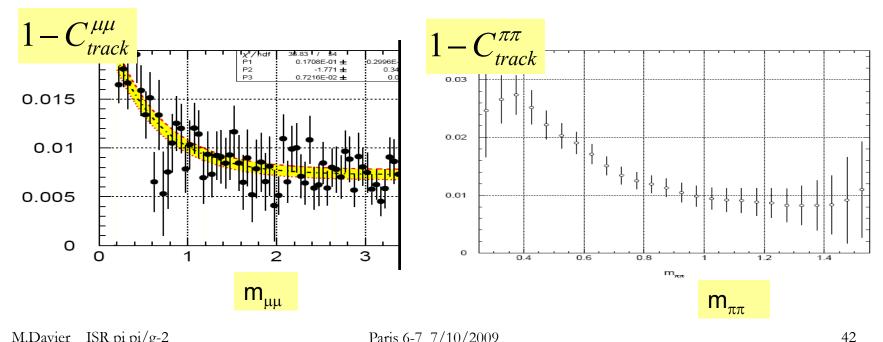
Source	$\Delta a_{\mu}^{\rm had, LO}[\pi\pi, \tau] \ (10^{-10})$	
	GS model	KS model
$S_{ m EW}$	-12.21 ± 0.15	
$G_{\rm EM}$	-1.92 ± 0.90	
FSR	$+4.67 \pm 0.47$	
ρ – ω interference	$+2.80 \pm 0.19$	$+2.80 \pm 0.15$
$m_{\pi^{\pm}} - m_{\pi^0}$ effect on σ	-7.88	
$m_{\pi^{\pm}} - m_{\pi^{0}}$ effect on Γ_{ρ}	+4.09	+4.02
$m_{\rho^{\pm}} - m_{\rho_{\text{bare}}^0}$	$0.20^{+0.27}_{-0.19}$	$0.11^{+0.19}_{-0.11}$
$\pi\pi\gamma$, electrom. decays	-5.91 ± 0.59	-6.39 ± 0.64
Total	-16.07 ± 1.22	-16.70 ± 1.23
	-16.07 ± 1.85	

The Measurement

- ISR photon at large angle in EMC
- 1 (for efficiency) or 2 (for physics) tracks of good quality
- identification of the charged particles
- separate $\pi\pi/KK/\mu\mu$ event samples
- kinematic fit (not using ISR photon energy) including 1 additional photon
- obtain all efficiencies (trigger, filter, tracking, ID, fit) from same data
- measure ratio of $\pi\pi\gamma(\gamma)$ to $\mu\mu\gamma(\gamma)$ cross sections to cancel

ee luminosity additional ISR vacuum polarization otherwise ~2% syst error ISR photon efficiency

- correct for $|FSR|^2$ contribution in $\mu\mu\gamma(\gamma)$ (QED, <1% below 1 GeV)
- additional FSR photons measured


$$R_{\rm exp}(s') = \frac{\sigma_{[\pi\pi\gamma(\gamma)]}(s')}{\sigma_{[\mu\mu\gamma(\gamma)]}(s')} = \frac{\sigma_{[\pi\pi(\gamma)]}^{0}(s')}{(1 + \delta_{\rm FSR}^{\mu\mu})\sigma_{[\mu\mu(\gamma)]}^{0}(s')} = \frac{R(s')}{(1 + \delta_{\rm FSR}^{\mu\mu})(1 + \delta_{add,FSR}^{\mu\mu})}$$

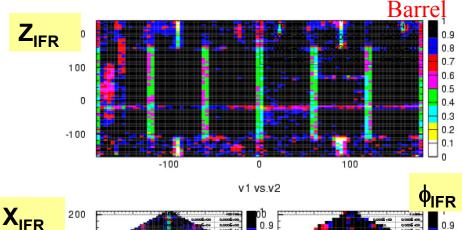
Data/MC Tracking Correction to $\pi\pi\gamma$, $\mu\mu\gamma$ cross sections

- single track efficiency
- correlated loss probability f_0
- probability to produce more than 2 tracks f₃

$$C_{track}^{\mu\mu} = \left(\frac{\varepsilon_{track}^{data}}{\varepsilon_{track}^{MC}}\right)^{2} \frac{\left(1 - f_{0} - f_{3}\right)^{data}}{\left(1 - f_{0} - f_{3}\right)^{MC}}$$

and similarly for $\pi\pi$

M.Davier ISR pi pi/g-2 Paris 6-7 7/10/2009

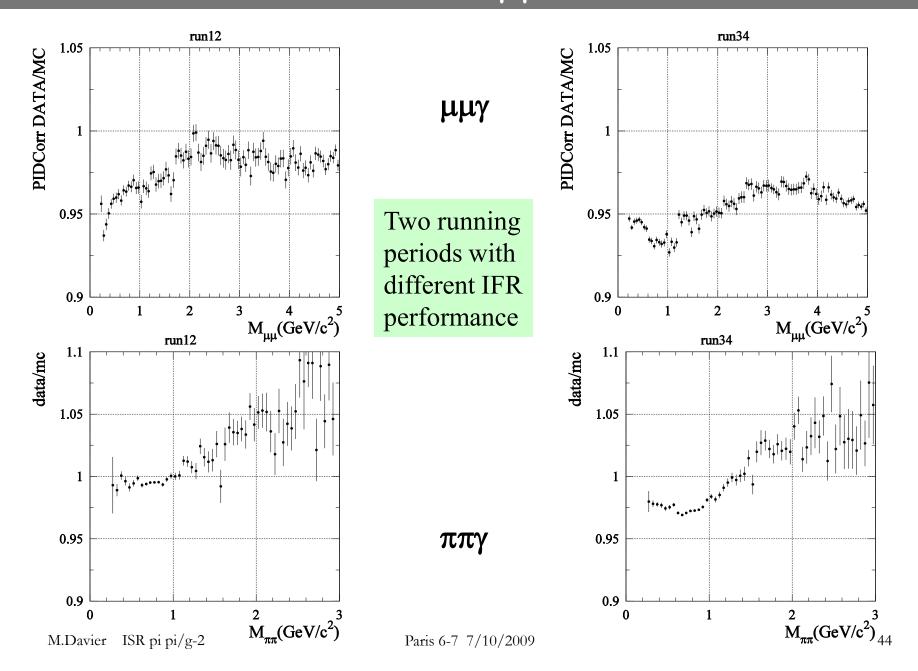

Particle Identification

- Particle identification required to separate XXγ final processes
- Define 5 ID classes using cuts and PID selectors (complete and orthogonal set)
- Electrons rejected at track definition level (E_{cal}, dE/dx)
- All ID efficiencies measured

$$\varepsilon_{x \to I}$$

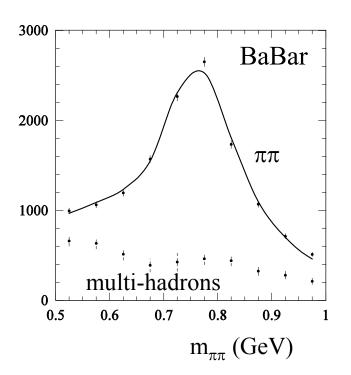
• a tighter π ID (π_h) is used for tagging in efficiency measurements and to further reject background in low cross section regions.

- * isolated muons Mµµ > 2.5 GeV \rightarrow efficiency maps (p,v₁,v₂) impurity (1.1±0.1) 10⁻³
- * correlated efficiencies/close tracks \rightarrow maps (dv₁,dv₂)



Forward Endcap

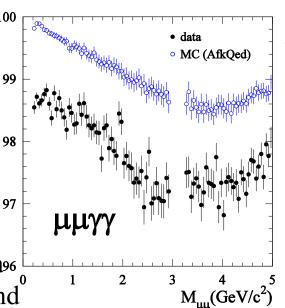
Backward Endcap

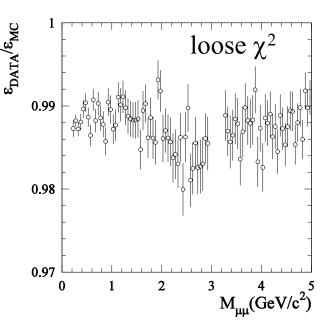

Data/MC PID corrections to $\mu\mu$ and $\pi\pi$ cross sections

Backgrounds

- background larger with loose χ^2 cut used in 0.5-1.0 GeV mass range
- $q \overline{q}$ and multi-hadronic ISR background from MC samples + normalization from data using signals from $\pi^0 \rightarrow \gamma_{ISR} \gamma$ ($q \overline{q}$), and ω and φ ($\pi \pi \pi^0 \gamma$)
- global test in background-rich region near cut boundary

Fitted BG/predicted = 0.968 ± 0.037

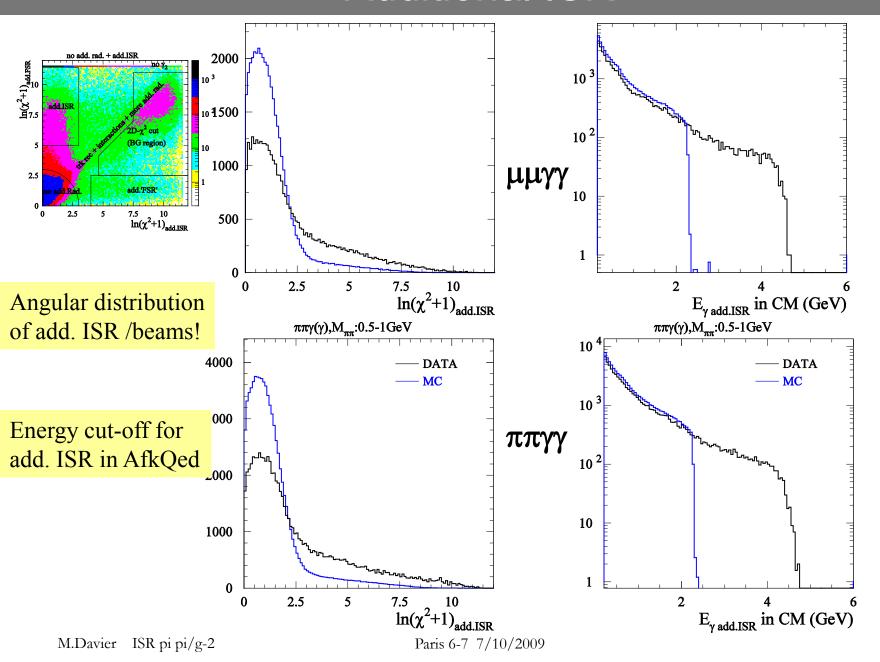

BG fractions in 10^{-2} at $m_{\pi\pi}$ values


process	$0.525~{ m GeV}$	$0.775~\mathrm{GeV}$	$0.975~{ m GeV}$
$\mu\mu$	3.48 ± 0.36	0.37 ± 0.23	2.71 ± 0.31
KK	0.08 ± 0.01	0.01 ± 0.01	0.08 ± 0.01
$\gamma 2\pi \pi^0$	8.04 ± 0.41	0.39 ± 0.05	0.88 ± 0.19
$q\overline{q}$	1.11 ± 0.17	0.26 ± 0.03	1.81 ± 0.19
$\gamma 2\pi 2\pi^0$	1.29 ± 0.16	0.06 ± 0.01	0.46 ± 0.09
$\gamma 4\pi$	0.20 ± 0.04	0.09 ± 0.01	0.24 ± 0.06
$\gamma p \overline{p}$	0.22 ± 0.02	0.04 ± 0.01	0.52 ± 0.06
$\gamma \eta 2\pi$	0.02 ± 0.01	0.03 ± 0.01	0.09 ± 0.01
$\gamma K_S K_L$	0.18 ± 0.03	0.01 ± 0.01	0.10 ± 0.02
$\gamma 4\pi 2\pi^0$	< 0.01	< 0.01	< 0.01
$\tau\tau$	0.17 ± 0.03	0.04 ± 0.01	0.31 ± 0.05
γee	0.63 ± 0.63	0.03 ± 0.03	0.27 ± 0.27
total	15.38 ± 0.87	1.31 ± 0.24	7.37 ± 0.51

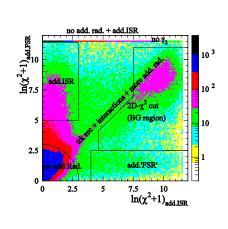
χ² cut Efficiency Correction

• depends on simulation of ISR (FSR), resolution effects (mostly ISR γ direction) for $\mu\mu$ and $\pi\pi$

χ² cut efficiency can be well measured in μμ data% because of low background

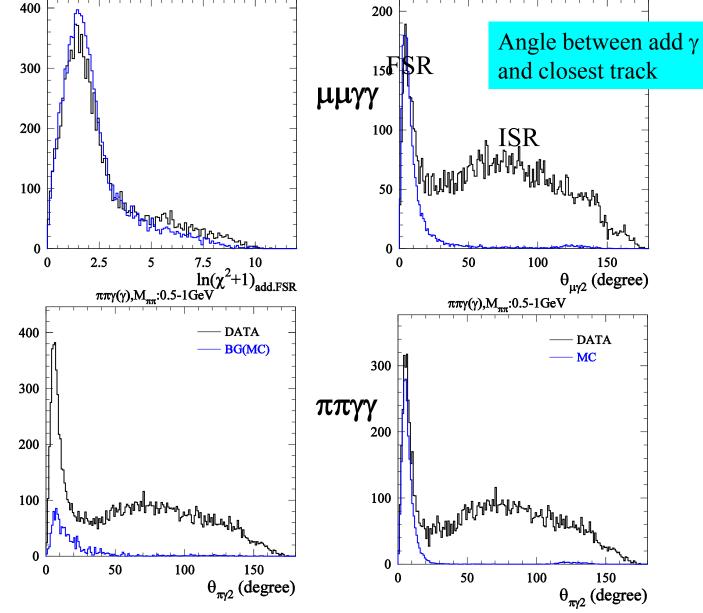


- main correction from lack of angular distribution for additional ISR in AfkQed
- common correction: 1% for loose χ^2 , 7% for tight χ^2
- additional loss for $\pi\pi$ because of interactions studied with sample of interacting events much better study now, 2 independent methods


secondary interactions data/MC 1.51 ± 0.03 syst error $0.3 - 0.9 \times 10^{-3}$

Additional ISR

47

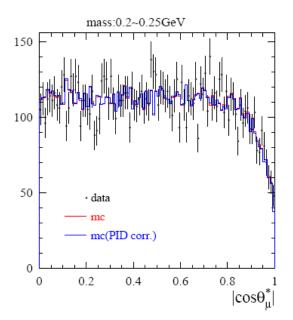

Additional FSR

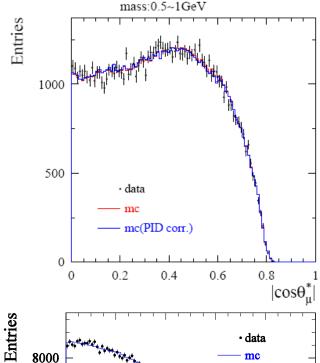
Large-angle add.ISR in data \neq AfkQed

Evidence for FSR data ~ AfkQed

data/MC $\mu\mu = 0.96\pm0.06$ $\pi\pi = 1.21\pm0.05$

M.Davier ISR pi pi/g-2

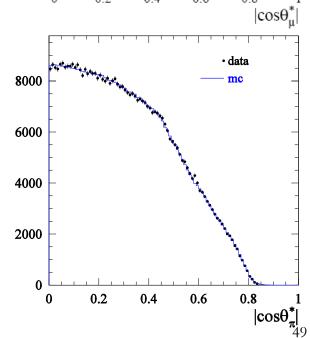

Paris 6-7 7/10/2009


Checking Known Distributions

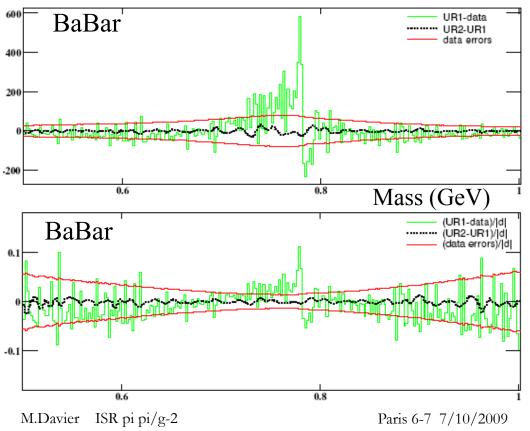
 $\cos\theta^*$ in XX CM $/\gamma$

μμ

flat at threshold $1+cos^2\theta^*$ $\beta_{\mu}\rightarrow 1$



$\pi\pi$


 $\sin^2\theta^* \quad \forall \beta_{\pi}$

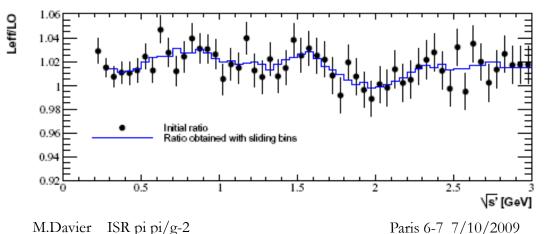
P>1 GeV track requirement \Rightarrow loss at $\cos\theta^*\sim1$

Unfolding $\pi\pi$ Mass Spectrum

- measured mass spectrum distorted by resolution effects and FSR ($m_{\pi\pi}$ vs. \sqrt{s} ')
- iterative unfolding method (B. Malaescu arXiv:0907-3791)
- mass-transfer matrix from simulation with corrections from data
- 2 MeV bins in 0.5-1.0 GeV mass range, 10 MeV bins outside
- most salient effect in ρ - ω interference region (little effect on $a_{\mu}^{\pi\pi}$)

Absolute difference unfolded(1) – raw data unfolded(2) – unfolded(1) Statistical errors (band)

Relative difference


50

Obtaining the $\pi\pi(\gamma)$ cross section

$$\frac{dN_{\pi\pi\gamma(\gamma)}}{d\sqrt{s'}} = \frac{dL_{ISR}^{eff}}{d\sqrt{s'}} \, \varepsilon_{\pi\pi\gamma(\gamma)}(\sqrt{s'}) \, \sigma_{\pi\pi(\gamma)}^{0}(\sqrt{s'})$$
 Unfolded spectrum
Acceptance from MC + data/MC corrections

Effective ISR luminosity from $\mu\mu\gamma(\gamma)$ analysis (similar equation + QED)

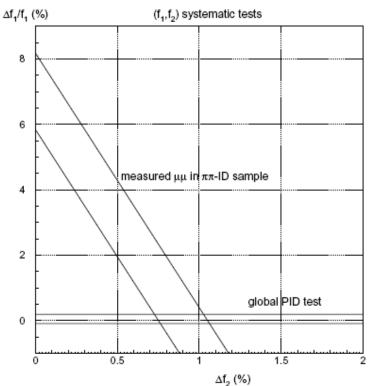
Additional ISR almost cancels in the procedure $(\pi\pi\gamma(\gamma)/\mu\mu\gamma(\gamma))$ ratio) Correction (2.5 ± 1.0) $10^{-3} \Rightarrow \pi\pi$ cross section does not rely on accurate description of NLO in the MC generator

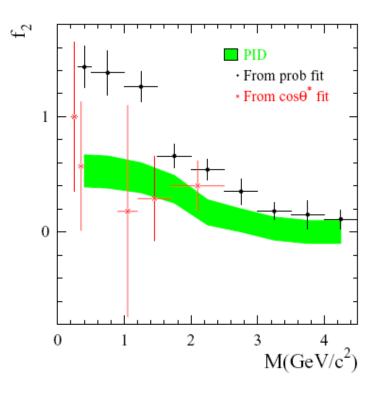
ratio µµ ISR lumi / LO formula should behave smoothly (HVP effects on resonances cancel)

Use measured lumi in 50-MeV bins averaged in sliding 250-MeV bins for smoothing

Paris 6-7 7/10/2009

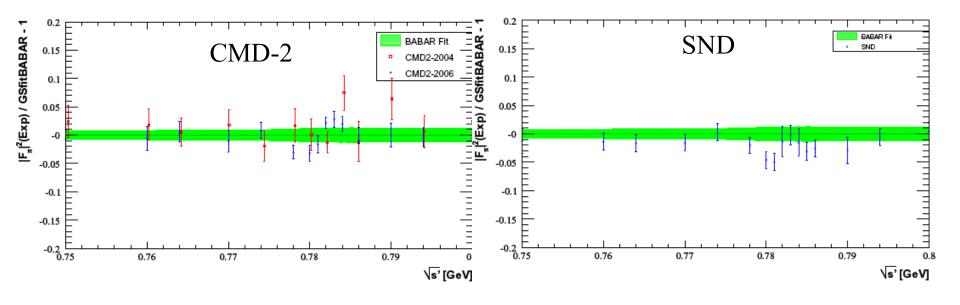
Changes since preliminary results at Tau08

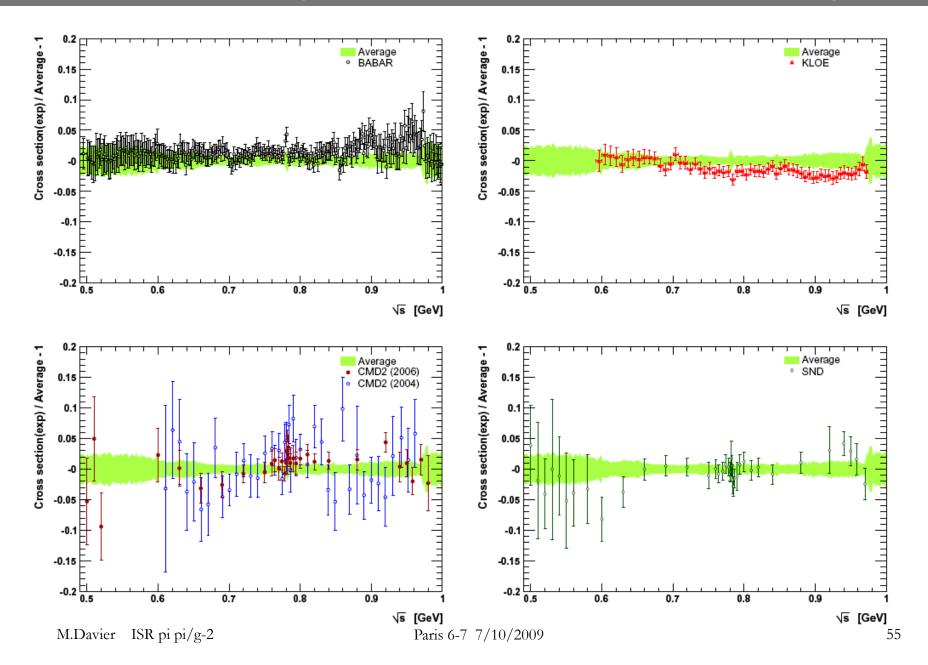

- preliminary results Sept. 2008: only 0.5-3 GeV (excess/expect. near threshold)
- problem explored (Oct. 2008- Feb. 2009): trigger/BGFilter, ee background
- $\mu\mu\rightarrow \pi$ re-investigated \Rightarrow direct measurement achieved using ID probabilities before: model for correlated loss, no precise direct check


```
\Rightarrow significant changes μμ efficiency for ISR lumi \uparrow +0.9% μμ contamination in `\pi\pi' sample \downarrow \Rightarrow \pi\pi cross section \downarrow -1.8% 0.525 GeV -1.0% 0.775 GeV -1.4% 0.975 GeV
```

- other changes: MC unfolding mass matrix corrected for data/MC differences
 (small) ISR lumi now used in 50-MeV sliding bins, instead of global fit
 cancellation of add ISR in ππ/μμ ratio studied/corrected
- extensive review

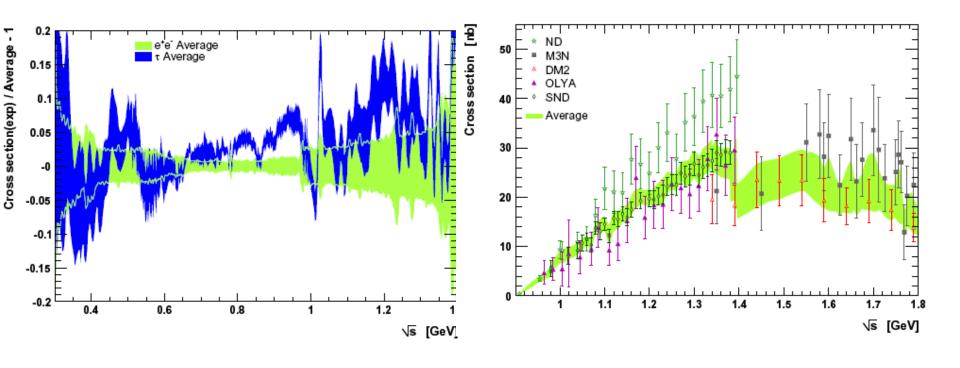
f₂ Story


$$\begin{split} N_{\mu 1 \mu 2} &= N^0 \varepsilon_1 \varepsilon_2 f_1 (1 - f_2) \\ N_{\mu 1 \overline{\mu 2}} &= N^0 \varepsilon_1 \sqrt{f_1} (1 - \varepsilon_2 \sqrt{f_1}) (1 - f_2) \\ N_{\overline{\mu 1} \mu 2} &= N^0 (1 - \varepsilon_1 \sqrt{f_1}) \varepsilon_2 \sqrt{f_1} (1 - f_2) \\ N_{\overline{\mu 1} \mu 2} &= N^0 [(1 - \varepsilon_1 \sqrt{f_1}) (1 - \varepsilon_2 \sqrt{f_1}) (1 - f_2) + f_2] \end{split}$$


BaBar vs.other ee data $(\rho-\omega)$ interference region)

- mass calibration of BaBar checked with ISR-produced J/ψ →μμ
- expect -(0.16 ± 0.16) MeV at ρ peak
- ω mass determined through VDM mass fit $m_{\omega}^{\text{fit}} m_{\omega}^{\text{PDG}} = -(0.12 \pm 0.29) \text{ MeV}$
- Novosibirsk data precisely calibrated using resonant depolarization
- comparison BaBar/CMD-2/SND in ρ-ω interference region shows no evidence for a mass shift

M.Davier ISR pi pi/g-2 Paris 6-7 7/10/2009 54


Consistency of Experiments with Average

Backup Slides

Energy range (GeV)	Experiment	$a_{\mu}^{\rm had,LO}[\pi\pi] \ (10^{-10})$
$2m_{\pi^{\pm}} - 0.3$	Combined e^+e^- (fit)	0.55 ± 0.01
0.30 - 0.63	Combined e^+e^-	$132.6 \pm 0.8 \pm 1.0 \ (1.3_{tot})$
0.63 - 0.958	CMD2 03	$361.8 \pm 2.4 \pm 2.1 \; (3.2_{tot})$
	CMD2 06	$360.2 \pm 1.8 \pm 2.8 \; (3.3_{\rm tot})$
	SND 06	$360.7 \pm 1.4 \pm 4.7 \; (4.9_{tot})$
	KLOE 08	$356.8 \pm 0.4 \pm 3.1 \; (3.1_{\rm tot})$
	BABAR 09	$365.2 \pm 1.9 \pm 1.9 \; (2.7_{\rm tot})$
	Combined e^+e^-	$360.8 \pm 0.9 \pm 1.8 \; (2.0_{\rm tot})$
0.958 - 1.8	Combined e^+e^-	$14.4 \pm 0.1 \pm 0.1 \; (0.2_{\text{tot}})$
Total	Combined e^+e^-	$508.4 \pm 1.3 \pm 2.6 \; (2.9_{tot})$
Total	Combined τ [1]	$515.2 \pm 2.0_{\text{exp}} \pm 2.2_{\mathcal{B}} \pm 1.6_{\text{IB}} (3.4_{\text{tot}})$

Backup Slides

