ENIGMASS WP1: The Origin of Mass and the Search for New Physics – Overview –

Diego Guadagnoli CNRS, LAPTh Annecy Within the Standard Model, every mass scale originates from the spontaneous breaking of a symmetry (SSB)

......

The WP1

.........................

- The SSB of gauge $SU(2)_{L} \times U(1)_{Y}$ due to the Higgs vev Mass to fundamental particles quarks, leptons, massive gauge bosons, the Higgs

- The chiral (global) SSB due to the chiral condensate Λ_{QCD} : the fundamental dynamical scale of low-energy QCD

```
SSB SU(2)_{L} \times U(1)_{Y}
```

Realized through a scalar.

What if there were a new physical scale $M \gg$ Higgs vev? (ex: M_{Planck} , M_{GUT} , ...)

In general, one would then expect

 $\delta M_{\rm Higgs} \propto M \gg M_{\rm Higgs}$

What mechanisms keeps M and M_{Higgs} apart?

 Do neutrinos receive their mass through the Higgs mechanism or otherwise?

......

Strong interactions

 Low-energy QCD, in all its manifestations, is only calculable through non-perturbative methods

Methods that, at present, are accessible to a limited number of quantities

Lots of low-energy phenomenology which is not understood quantitatively

or not understood at all

Strong interactions

- Why don't they violate CP?

In spite of the fact that

- Strong *CP* and electroweak *CP* are related through the Yukawa couplings
- Small CP violation is not required on anthropic arguments – rather the converse
- Maybe the answer is the axion?
 - \Box

The axion would even be an excellent DM candidate

.....

.....

Plenty of questions from cosmology

- Dark Energy?
- Dark Matter?
- Matter-Antimatter Asymmetry?
- The microphysical nature of Inflation

As concerns the WP1 :

 Can we make progress on these questions with the tools we use to inquire about the origin of mass?

For example: can we produce DM at colliders?

Probing the origin of mass

and the presence of new effects

directly

LAPP / ATLAS : 3 physics streams

- SM: di-boson production (WZ and Z_Y)
 Crucial channels for the understanding of the gauge sector
- New physics: resonances → di-photons and di-leptons
 "Bump-hunt"
- Higgs (properties, production, decays)
 Central to WP1

LAPP contributed to 1^{st} evidence of the Higgs (in H $\rightarrow \gamma\gamma$) [LAr calibration; event selection; stat. analysis]

D. Guadagnoli, ENIGMASS, WP1 Overview

Technical contrib's include LAPP – LPSC synergies

Inner Tracker (ITk)

LAPP & LPSC in charge of 12.5% of pixel outer barrel

The "CO₂ cooling" project

Cooling of the trajectographs for HL-LHC via di-phasic CO₂

LPSC: involved in a prototype (financed by ENIGMASS)

LAPP: measurement of the support's thermal performance

LAr calorimeter

Key detector for precision measurement of electrons, γ , jets, MET

LPSC Electronics and LAPP collaborating on various tasks related to the PCBs

Overlooking many aspects, in particular Computing

Challenging yet important to probe QCD in conditions resembling more the early Universe.

The "medium": Quark-Gluon Plasma

ALICE at LPSC

the high energy density of the collisions causes partons to deconfine. QCD analog of e.m. plasmas

merges non-perturbative & finite T QCD

 Jets propagating in a hot & dense medium display a marked reduction in energy ("jet quenching")

Path-length dependence? Differences w.r.t. in-vacuum propagation? Jet substructure? ...

 Focus at LPSC: aim for clean-er probes, e.g. jet-photon correlations

Neutrinos:

a trivial SM extension

or the first messengers of a new scale?

Note:

the *only* dim=5 interaction in the SMEFT (the "Weinberg operator") is precisely what can explain neutrino masses

D. Guadagnoli, ENIGMASS, WP1 Overview

Question 2: Are v their own antiparticles?

In a $\beta\beta$ decay, two v could annihilate: ultra-rare $0\nu\beta\beta$ decay

SuperNEMO at LSM

[idea: full event reconstruction will tell apart $\beta\beta$ decays]

- "demonstrator" [6.3kg of ⁸²Se] [1st data ~ 2020] $\tau_{0\nu\beta\beta} > 6.5 \cdot 10^{24}$ yrs
- "full" SuperNEMO [100kg, multi-module] $\Gamma \sim \tau_{0\nu\beta\beta} > 10^{26}$ yrs

Strong involvement of LAPP

[Detector commissioning; coordination; tracker repair]

Question 3: Coherent Elastic v-N Scattering (CEvNS)

Scattering between a v and all nucleons in a nucleus

- Possible if mom transfer < few tens MeV
- Interaction x-section \propto (# neutrons)² !

 \rightarrow Allows a precision measurement of low-E v spectrum

```
Manifold relevance:

v properties; NSI; SNe dynamics;

"v floor", ...
```

RICOCHET at ILL 1% precision by ~ 2024

Strong involvement of LPSC

D. Guadagnoli, ENIGMASS, WP1 Overview

Beam by 2026. Precision v physics: oscillations; MH; CPV

Strong involvement of LAPP and LPSC

- Several technical tasks: mechanics, charge readout, simulation SW
- ProtoDUNE-DP (CERN): installation, operation, analysis, CR tagger

The Strong CP Problem

is the neutron EDM's fault

nEDM: major progress

New nEDM best limit: |d_n| < 1.8 · 10⁻²⁶ e · cm [PRL 2020]
 Unprecedented understanding of the magn. field & syst. effects
 Two independent analysis teams. One led by the LPSC group

- New experiment, n2EDM, being assembled (≤ 2022)
 1 o.o.m. improvement expected over 5 years
 - **LPSC team:** in charge of three major components
 - performing R&D on Hg magnetometry
 - recognized expertise in the TH understanding of syst. effects

New effects

can be searched for

through distortions to

accurately measured and accurately calculated

rare processes

Runs 1 & 2 proved the LHCb design successful

A plenitude of interesting results on:

rare decays, CKM metrology, CPV, spectroscopy, ... even *K* decays

At LAPP

- unique expertise on calorimetry and photon reconstruction
- strong involvement in
 - LHCb Upgrade I [leading to a 5x increase in LHCb lumi] & subsequent Run-3 startup (~ 2022)

LAPP / LHCb: 3 main physics streams

- Progress on the CKM angle γ (SM "standard candle") through analyses of $B \rightarrow D hh$ (h = π or K)
- $B_s \rightarrow J/\psi \eta(t)$ to measure CPV induced by $B_s \overline{B}_s$ mixing [tiny in the SM]
- A consistent LAPTh LAPP collaboration on radiative modes [including students in co-supervision]

Current focus: $B_s \rightarrow \mu\mu \gamma$

- never measured
- novel test of $b \rightarrow s$ transitions

Theory

LAPTh. A large spectrum of WP1 subjects – many of which interdisciplinary

- Higher-order computations, and tools
 - New method to perform NNLO + parton shower simul's
 public code & plethora of generalizations ahead
 - New approach to 2-loop integrals w/ complex masses
 [with potential spin-offs to/from phys-math]
- Higgs and new physics
 - automatizing BSM at 1 loop through "SloopS"
 [CT calculation; gauge fixing; low-velocity limit]
 countless potential applications in HEP, astro/cosmo

LAPTh. A large spectrum of WP1 subjects – many of which interdisciplinary

- The HEP Dark Matter interface
 - MicrOMEGAs arguably "the" particle-DM calculation tool
 - DM@NLO including (large) QCD corr's to $\overline{\chi}$ DM
- Flavour physics
 - Flavour violation within SUSY GUTs & leptonic obs.'s
 - B- and K-physics pheno, from models to observables
 [proven synergy with LAPP / LHCb]
- Low-energy frontiers
 - One example: probing Yukawas from atomic physics

HEP theory at LPSC

Two wide domains of activity, closely related to LPSC exp

- QCD: both high- and low-energy
 - Study of the nucleon & nucleus PDFs
 [unified approach through nCTEQ]
 - Lattice QCD: novel formalism for LQCD renormalization; simulations w/ 4 dynamical quarks

HEP theory at LPSC

- Beyond-SM: from models, to collider pheno, to astro-cosmo
 - SUSY at colliders, effective approaches & specific models
 Consistent effort in the establishment of data-interpretation strategies
 - generic NP:

"simplified-model" approach through SModelS calculation of RGE evolution through Pyr@te

- Dark Matter

Diverse expertise, from DM at colliders (w/ EFTs or models) to quantitative predictions for small-scale DM structures

- Axions: models, LHC and low-E signatures, cosmo aspects

Conclusions

- WP1 is central to ENIGMASS' mission
- Our equipes span a wide, ambitious, well-recognized, range of complementary activities
- Several synergies between labs
 - ... yet we're still far from the upper bound