ELECTRONIC-RECOIL EXCESS IN XENON1T

Sara Diglio – SUBATECH

On behalf of the XENON Collaboration + X. Mougeot

Online Seminar, 5 October 2020, CPPM, Marseille

arxiv: 2006.09721

THE NEWS... PAPERS

OUTLINE

- How did we find it?
 - → The XENON1T experiment
- What have we observed exactly?
 - →The Electronic-Recoil Excess
- Are we really sure?
 - → Cross-checks of the results
- What could it be?
 - → Standard Model & Beyond interpretations
- What next?
 - → the XENONnT experiment

OUTLINE

- How did we find it?
 - → The XENON1T experiment
- What have we observed exactly?
 - → The Electronic-Recoil Excess
- Are we really sure?
 - → Cross-checks of the results
- What could it be?
 - → Standard Model & Beyond interpretations
- What next?
 - → the XENONnT experiment

THE XENON COLLABORATION

Online Seminar - 5 October - CPPM, Marseille

Sara Diglio

THE XENON1T EXPERIMENT @ LNGS

Below 1400 m of rock (3.6 km water equivalent)

THE XENON1T EXPERIMENT @ LNGS

THE XENON1T EXPERIMENT @ LNGS

S1: Prompt Scintillation (light)

S2: Proportional scintillation following e⁻ drift and extraction into gas (charge)

(S2/S1)NR < (S2/S1)ER

S1: Prompt Scintillation (light)

S2: Proportional scintillation following e⁻ drift and extraction into gas (charge)

(S2/S1)NR < (S2/S1)ER

- Energy from \$1 and \$2
- 3D event reconstruction
 - X, Y from S2 hit pattern on top PMTs
 - Z from S2 S1 time difference

ER vs **NR** discrimination

 $(S2/S1)_{NR} < (S2/S1)_{ER}$

LXE DUAL PHASE TIME PROJECTION CHAMBER EVOLUTION

Extremely
difficult
Dark Matter
measurement
requires
large detectors
with tiny
electronic-recoil
backgrounds

NUCLEAR RECOIL SEARCH IN XENON1T

PRL 123, 241803 - Migdal effect PRL 123, 251801 - Light dark matter PRL 121, 111302 - Main WIMP search

WHAT ABOUT ELECTRONIC RECOILS?

• This talk !

→ Search for excess events over known background in XENON1T

arxiv:2006.09721

OUTLINE

- How did we find it?
 - →The XENON1T experiment
- What have we observed exactly?
 - → The Electronic-Recoil Excess
- Are we really sure?
 - → Cross-checks of the results
- What could it be?
 - → Standard Model & Beyond interpretations
- What next?
 - → the XENONnT experiment

ENERGY RECONSTRUCTION

Light yield [pe/keV] S1/E

DATA SELECTION

- SCIENCE RUN 1 (SR1): from Feb 2017 to Feb 2018
 - Total of 226.9 live days
- SCIENCE RUN 2 (SR2): right after SR1 & until end of 2018
 - Several tests performed, 24.4 live days of stable data
 - 20% less background (new pumps, radon distillation)

- Exposure 0.65 t * y
- Single-scatter events within [1, 210] keV_{ee}
- 3-fold PMT coincidence for S1 detection
- Standard quality cuts with higher S2 threshold
- 1 t Fiducial Volume

BACKGROUND MODEL

• Intrinsic

```
<sup>214</sup>Pb

<sup>85</sup>Kr

<sup>136</sup>Xe

<sup>124</sup>Xe
```

Neutron activated

```
<sup>131m</sup>Xe
<sup>133</sup>Xe
<sup>125</sup>I
```

- Materials
- Solar neutrinos

BACKGROUND MODEL & DATA

Lowest background rate ever achieved in this energy range!

- (76 ± 2) events/(t *y*keV)in [1, 30] keV
- Good fit observed over most of the energy range

THE EXCESS

OUTLINE

- How did we find it?
 - →The XENON1T experiment
- What have we observed exactly?
 - → The Electronic-Recoil Excess
- Are we really sure?
 - → Cross-checks of the results
- What could it be?
 - → Standard Model & Beyond interpretations
- What next?
 - → the XENONnT experiment

EFFICIENCY OR ENERGY RECONSTRUCTION?

- High statistics ²²⁰Rn calibration data validate our model
- The excess is not at our threshold fall-off. It persists:
 - if analysis threshold is doubled
 - with a profile likelihood in (S1, S2) space
 - if efficiencies are different within $\pm 1 \sigma$
- To explain the excess, you need:
 - a large systematic
 - that is absent when we calibrate

MIS-MODELING OF THE BACKGROUND SHAPE?

- Atomic screening and exchange effects do lead to rate enhancement at very low energies
- Not properly considered in GEANT4 and IAEA
- We teamed up with X.Mougeot (CEA) to calculate the correct spectrum
- ~ 6% uncertainty on the shape
- ~ 50% needed to account for the excess

STATISTICAL FLUKE?

Theorists' skepticism

Are we still excited if we rotate the plot by 180 degrees?

STATISTICAL FLUKE?

We investigated the dip at ~ 17 keV

STATISTICAL FLUKE?

- Changing the display bins changes the apparent deviation
- Bins are for presentation only, we use an unbinned profile likelihood
- Bins are smaller than energy resolution
 physics related phenomena should have bins correlated

The sub-7 keV excess is robustly visible across several bins

EVENT LOCATION AND INSTRUMENTAL BACKGROUNDS?

- Spatially uniform
- Negligible amount of accidental coincidences (AC) in the ROI
- No surface background in the ROI

OUTLINE

- How did we find it?
 - →The XENON1T experiment
- What have we observed exactly?
 - → The Electronic-Recoil Excess
- Are we really sure?
 - → Cross-checks of the results
- What could it be?
 - → Standard Model & Beyond interpretations
- What next?
 - → the XENONnT experiment

STANDARD MODEL & BEYOND INTERPRETATIONS

Standard Model

— Not considered backgrounds? → The Tritium hypothesis

Beyond the Standard Model

We focus on 3 signals that are "traditional", but represent the variety of spectra

- **Solar axions**: peaked around 1-2 keV, set by the Sun's core temperature
- Anomalous v magnetic moment : a continuous spectrum steeply rising towards low E
- Bosonic DM absorption : a monoenergetic peak

Disclaimer

there are (many!) other possible models: I won't cover them today, sorry...

POTENTIAL BACKGROUND EVENTS IN XENON1T

POTENTIAL BACKGROUND EVENTS IN XENON1T

POTENTIAL BACKGROUND EVENTS IN XENON1T

TRITIUM

- Long-lived (12.3 y) low energy β emitter (Q-value 18.6 keV)
- Cosmogenic activation of xenon or atmospheric abundance?
- Favored over B_0 at 3.2σ

- Best fit rate (159 ± 51) evts/ (t·y·keV)
- ³H/Xe concentration: (6.2 ± 2.0) × 10⁻²⁵ mol/mol

Fewer than 3 tritium atoms per kg of xenon!

TRITIUM FROM COSMOGENIC ACTIVATION OF XENON

- 1. Xenon gas stored above ground
 - Cosmogenic activation of xenon produces ~32 tritium atoms / kg / day (Zhang, 2016)
 - 1 ppm of water in xenon bottles implies formation of HTO
- 2. Gas moved underground and decay
- 3. Xe filled into the cold ReStoX storage vessel (~ x4000 reduction)
 - Water (including HTO) condenses and remains on the vessel walls
- 4. Further decay until the detector is filled
- 5. Detector filling :efficient removal (99.99%) in dedicated hydrogen removal unit of the purification system

TRITIUM FROM COSMOGENIC ACTIVATION OF XENON

Xenon gas stored above ground

Cosmogenic activation of xenon produces ~32 tritium atoms / kg / day

1 ppm of water in xenon bottles implies formation of HTO

- Gas moved underground and decay
- Xe filled into the cold ReStoX storage vessel (~ x4000 reduction)
 - Water (including HTO) condenses and remains on the vessel walls
- Further decay until the detector is filled

Sara Diglio

Detector filling:efficient removal (99.99%) in dedicated hydrogen removal unit of the purification system

Predicted rate 100x lower than observation

TRITIUM FROM ATMOSPHERIC ABUNDANCE IN MATERIALS

HTO:H₂O concentration (assume same for HT:H₂)

(5—10)×10⁻¹⁸ mol/mol *

Required $(H_2O + H_2)$:Xe concentration to explain the excess

60-120 ppb

Tritiated Water (HTO)

Light yield \Rightarrow O(1) ppb H₂O:Xe

Sara Diglio

Triated Hydrogen (HT)

Electron lifetime \Rightarrow < ppb O₂-equivalent impurities

*Hydrology measurements from IAEA nuclear database

TRITIUM FROM ATMOSPHERIC ABUNDANCE IN MATERIALS

HTO:H₂O concentration (assume same for HT:H₂)

 $(5-10)\times10^{-18} \text{ mol/mol}^*$

Required $(H_2O + H_2)$:Xe concentration to explain the excess

60-120 ppb

Can neither confirm nor rule out tritium

All other significances reported both with and without tritium in the background model

 $r_{int}^{rec}[cm]$

*Hydrology measurements from IAEA nuclear database

SOLAR AXIONS: PRODUCTION

Hypothetical axions proposed as a solution to the 'strong CP-problem'

Solar axions would be produced in the Sun with keV energies:

- Atomic recombination and de-excitation, Bremsstrahlung and Compton: ABC
- Primakoff conversion of photons to axions
- A mono-energetic 14.4 keV nuclear transition of ⁵⁷Fe

SOLAR AXIONS: DETECTION

Hypothetical axions proposed as a solution to the 'strong CP-problem'

- Detection of axions via the axioelectric effect $\propto g_{ae}^2$
- Absorption of the axion similar to photoelectric effect

SOLAR AXIONS: RECONSTRUCTION

Hypothetical axions proposed as a solution to the 'strong CP-problem'

- Expected rate in xenon convolved with detector effects (resolution, efficiency)
- Energy resolution and shell structure affects the spectrum
- All three components left unconstrained in the fit

SOLAR AXIONS

Results in tension with astrophysical constraints from stellar cooling

(tough in arXiv:2006.14598 Gao et al. shows that this is alleviated by taking into account the inverse Primakoff effect as detection process)

NEUTRINO MAGNETIC MOMENT

Neutrinos acquire magnetic moment in extensions of the SM

- Source: neutrinos from the Sun (mostly from pp-reactions)
- Reaction: elastic scattering off electrons
- Larger values implies new physics, $\mu_{\rm v} > 10^{-15} \, \mu_{\rm B}$ implies Majorana neutrinos

Would lead to enhanced neutrinoelectron scattering cross-section

Neutrino magnetic moment hypothesis favoured at 3.2 σ *

In tension with astrophysical observation

BOSONIC DARK MATTER

- Search for a mono-energetic peak
 - Could be dark matter, e.g. axion-like particle or dark photon

- Most significant at 2.3 ± 0.2 keV
- No > 3σ excess \Longrightarrow only report limits

OUTLINE

- How did we find it?
 - → The XENON1T experiment
- What have we observed exactly?
 - → The Electronic-Recoil Excess
- Are we really sure?
 - → Cross-checks of the results
- What could it be?
 - → Standard Model & Beyond interpretations
- What next?
 - → the XENONnT experiment

@LNGS: DESPITE COVID PANDEMIC ...

Online Seminar - 5 October - CPPM, Marseille

XENONNT

Active volume

Background

Under commissioning

- XENONnT is coming soon!!
- XENONnT will discriminate axions from tritium with ~ few months of data

