
Introducing Caesar

An Advanced Subject Retirement Engine

The Basic Idea

Classification
Stream

Extractors Reducers Rules Effects

Extractors

● Raw Zooniverse classifications contain a lot of data and most of those data are
not scientifically interesting.

● Caesar’s built-in extractors are designed to extract just the information that
you’re interested in.

● Some are designed for specific tasks like question tasks, drawing tasks or
survey tasks.

● The Pluck Field extractor can be used to select a specific field from the raw
classification data.

● The Blank extractor can be used to detect null responses to tasks.
● Finally, you can use the External extractor to define your own functionality.
● When you create a Caesar extractor you must assign it a unique name.

Reducers

● Reducers are designed perform aggregation tasks.
● When you create a Caesar reducer you must assign it a unique name.
● They can consider the outputs from specific extractors and some specific

metadata associated with a subject.
● They can aggregate extracts associated with a particular subject or with a

particular volunteer.
● Caesar’s built in reducers compute simple statistics like the majority

consensus for a particular subject, or the number of classifications it has
received.

● You can extend Caesar’s built-in functionality using external reducers, or the
SQS Reducer (see machine learning tutorial).

Rules

● Rules are logical and mathematical operations that are applied in order to
make decisions about specific subjects or volunteers.

● Rules consider the outputs from reducers and any metadata associated with
a subject.

● Rules are defined using a special syntax (see later slides).
● It is possible to specify that Caesar evaluates rules in a specific order.
● In that case, Caesar will stop evaluating rules for a particular subject as soon as

one of them evaluates to true. So some later rules may not be considered.
● When rules evaluate to true they trigger effects.

Effects

● When Caesar’s rules evaluate to true, they trigger one or more effects.
● Like rules, effects can apply to particular subjects or volunteers.
● For subjects possible effects are:

○ Retire the subject, specifying a retirement reason.
○ Add the subject to a Collection.
○ Add the subject to another subject set.
○ Send the subject to an external URL.

● For volunteers one type of effect is currently in development. It will allow
volunteers to be promoted to a specific workflow.

● The intended use of this effect is promoting skilled volunteers to more difficult
workflows and tasks.

Example

● Here’s an example that follows on from our project building tutorial.
● We don’t want to waste our volunteers’ time classifying junk lightcurves, so

we’ll set up a rule that will immediately retire any subject that receives three
“Junk” classifications.

● To do this, we’ll use a QuestionExtractor to isolate the answer to the first task
and then a StatsReducer to count the number of votes for “Junk”.

● Then we’ll set up a rule that evaluates to True if the StatsReducer counts 3 or
more “Junk” votes.

● Finally we’ll associate a retire subject effect with our rule.
● This should save lots of volunteer clicks!

Caesar’s Rule Syntax

● Caesar rules are defined using a special syntax.
● At first glance they can look daunting, but complex rules are actually

composed of several simple conditional units that all have the same basic
structure.

[“operation”, operand1, operand2, … , operandN]

● Complex rules are possible because any of the operands may themselves be
conditional units. Conditions can be nested inside each other.

● The operands can also refer to the results of reducers, subject metadata, or
they may represent constant numerical values.

Caesar’s Rule Syntax - Operations

● The result of a conditional unit is a Boolean value - True or False.
● Accordingly, the operations that Caesar conditions support all perform logical

reductions and comparisons between the operands.
● The supported operations that operate on numerical values are:

○ “lt” - Less than - returns True if operand1 < operand2 < … < operandN and False
otherwise.

○ “gt” - Greater than - returns True if operand1 > operand2 > … > operandN and False
otherwise.

○ “lte” - Less than or equal - returns True if operand1 <= operand2 <= … <= operandN
and False otherwise.

○ “gte” - Greater than or equal - returns True if operand1 >= operand2 >= … >=
operandN and False otherwise.

Caesar’s Rule Syntax - Operations

○ “eq” - Less than - returns True if operand1 == operand2 == … == operandN and False
otherwise.

● The supported operations that operate on boolean values are:
○ “and” - Greater than - returns True if operand1 and operand2 and … and operandN

and False otherwise.
○ “or” - Less than or equal - returns True if operand1 or operand2 or … or operandN

and False otherwise.

● There are two other important components in Caesar rules.
○ Constants, specified as [“const”, value], where value is a number e.g. 3. Constants are

used as operands for numerical operations.
○ Lookups, specified as [“lookup”, reference, default], where reference may refer

to results of reducers or subject metadata, and default is a value that should be used if the
specified reference does not exist.

Caesar’s Rule Syntax - Reducer Result Lookup

● To use the result of a particular reducer as the operand of a condition, use a
lookup component like this:

[“lookup”, reducer_name.reducer_attribute, default]

● reducer_name refers to the unique name you assigned to the reducer when
you created it.

● reducer_attribute refers to a particular element of the reducer’s output.
● For example, the Consensus reducer returns data with three attributes:

most_likely, num_votes and agreement. To select the num_votes
attribute (with a default of zero) for a reducer named cons you would use

[“lookup”, cons.num_votes, 0]

Caesar’s Rule Syntax - Subject Metadata Lookup

● To use the value of a subject metadatum as the operand of a condition, use a
lookup component like this:

[“lookup”, subject.metadatum_name, default]

● subject is literally the word “subject”.
● metadatum_name is the name you gave to your subject metadata when you

uploaded it.
● For example, if you wanted to Caesar to ignore a subset of your subjects you

could define a hidden metadatum called #ignoreme. You could then look up
the value of #ignoreme like this

[“lookup”, subject.#ignoreme, False]

The Caesar User Interface

● The Zooniverse team have developed a web user interface for Caesar
● Using the web UI, you can set up extractors, reducers, rules and effects for

your workflows.
● To access this user interface, visit

https://caesar.zooniverse.org

● You can log in using your normal Zooniverse username and password.

https://caesar.zooniverse.org

Extending Caesar

● Sometimes Caesar’s built-in functionality doesn’t do exactly what you want.
● If you find that to be the case and you don’t mind a bit of coding you have

some options.
○ For simple operations you could consider adding a new reducer or extractor to the

aggregation_for_caesar GitHub repository.
○ aggregation_for_caesar is also the name of a Zooniverse-run application for

custom extractors and reducers. If you specify a URL to that repository when you
set up an external reducer or extractor, then your code will be executed by and you
won’t need to provide any compute resources.

○ With more effort, you can define external extractors and reducers that can perform
arbitrarily complex aggregation and reduction logic asynchronously using
compute resources you manage, and then pass the results back to Caesar.

