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Fundamental truth about SN cosmology with 
LSST:

Machine learning for photometric 
classification is unavoidable. 
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It is NOT the goal of RESSPECT:

● Build a better classifier
● Maximize the number of spectroscopically confirmed SN Ia
● Test a complete cosmology pipeline
● ...
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Ishida et al., 2019, MNRAS from CRP #4

Using this!



Recent improvements

Take into account observational caveats

● Window of Opportunity for 
Labelling 

● Evolving Samples
○ We must make query decisions before 

we can observe the full LC

● Multiple Instruments

● Evolving Costs
○ Observing costs for a given object 

changes as it evolves.

Example light curve

Kennamer et al., 2020 - arXiv:astro-ph/2010.05941

https://arxiv.org/abs/2010.05941


Conclusion of phase 1

It is advisable to start from scratch

Kennamer et al., 2020 - arXiv:astro-ph/2010.05941

● Supernova Photometric Classification Challenge data (SNPCC)

● Data separated into four groups
○ Original training set - 1,103
○ 18,216 in pool set
○ 1,000 objects each in validation and test sets

● Assumed access to an 8m and 4m telescope for labeling 
○ 6 hours per telescope on each night

● Pre-processed data with 
parametric fits (Bazin et al. 2009)

● Observing Costs calculated 
from brightness estimates of 
each objects and telescope 
properties

https://arxiv.org/abs/2010.05941


● Ensemble of Random Forest Classifiers for query decisions

● Four Active Learning Strategies under knapsack constraints:
○ Random Sampling

○ Uncertainty Sampling
■ Entropy used to measure uncertainty 

○ Batch Entropy
■ Measures a joint entropy over batches
■ Takes advantage of submodular properties of entropy

○ Batch KL-Divergence
■ Measures a Joint KL-Divergence/Mutual Information, equivalent to BatchBALD
■ Takes advantage of submodular properties of the KL-Divergence/Mutual 

Information

Conclusion of phase 1

Active Learning details

Kennamer et al., 2020 - arXiv:astro-ph/2010.05941

Proved equivalence between KL-Divergence and Bayesian 
Active Learning by Disagreement (BALD) - check the Appendix!

https://arxiv.org/abs/2010.05941


Conclusion of phase 1

It is advisable to start from scratch
● Supernova Photometric Classification Challenge data (SNPCC)

● Data separated into four groups
○ Original training set - 1,103
○ 18,216 in pool set
○ 1,000 objects each in validation and test sets

● Assumed access to an 8m and 4m telescope for labeling 
○ 6 hours per telescope on each night

● Pre-processed data with 
parametric fits (Bazin et al. 2009)

● Observing Costs calculated 
from brightness estimates of 
each objects and telescope 
properties

Accepted for oral presentation at IEEE Symposium Series in 

Computational Intelligence, 2020

arXiv:astro-ph/2010.05941



Conclusion of phase 1

Active Learning part is closed 

● Start from scratch

● Simple AL strategies are the best we can do

● Further improvements will require theoretical 
development
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Hypothesis

Better classifier leads to a better cosmology

Check how cosmology 
results given each new 

training sample within the 
AL loop
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Hypothesis

Better classifier leads to a better cosmology

Goal: use the cosmology 
metric to choose between 
different possible batches 

per night, which would 
have the same effect from 
the classifier point of view



What now?

Summary and next steps

● Active learning stage is well developed with important theoretical 
contribution for computer science community

● Currently running the pipeline on PLAsTiCC data for astronomy 
paper

● Implement the choices between multiple batches in the same run

● Cosmology metric is under development

● Develop a mathematically coherent procedure to combine active 
learning and cosmology metric

Negotiating extension of ICA until DESC 2021 Summer meeting...



What now?

Summary and next steps

● Active learning stage is well developed with important 
demonstration for computer science community

● Currently running the pipeline on PLAsTiCC data for astronomy 
paper

● Implement the choices between multiple batches in the same run

● Cosmology metric is under development

● Develop a mathematically coherent procedure to combine active 
learning and cosmology metric

Interdisciplinarity at its best!



Extra slides



PLAsTiCC results are virtually the same as SNPCC

● Initial training of 10 objs
● Validation of 8k objs
● Full LC
● No obs effects considered

Feature extraction takes a while ...
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For first N objects in v1, repeat with labels = Ia and non-Ia…
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Soft Vote Entropy

Vote Entropy

The role of Active Learning

Measuring Disagreement / Query by Committee 

Train an ensemble of models on available labeled data

 Kullback-Leibler divergence 



Image Source: Settles 2012 Claypool Publishers

● Equal Entropy
● Low KL

● Equal Entropy
● High KL

The role of Active Learning

Entropy vs KL Divergence


