

LSST DESC & COIN RESSPECT

Recommendation System for Spectroscopic Follow-up

Project update

Emille E. O. Ishida on behalf of the RESSPECT team

LSST France, 4 November 2020

Fundamental truth about supervised learning:

The performance of any supervised learning algorithm is dependent on the degree of **representativeness** between training and target samples. Fundamental truth about supervised learning:

The performance of any supervised learning algorithm is dependent on the degree of **representativeness** between training and target samples.

Fundamental truth about SN cosmology with LSST:

Machine learning for photometric classification is unavoidable.

The goal of RESSPECT:

To build a **recommendation system** for the construction of an **optimal training sample** given available spectroscopic resources.

The goal of RESSPECT:

To build a **recommendation system** for the construction of an **optimal training sample** given available spectroscopic resources.

It is **NOT** the goal of RESSPECT:

- Build a better classifier
- Maximize the number of spectroscopically confirmed SN Ia
- Test a complete cosmology pipeline

The SN Ia photometric cosmology pipeline

Cosmology results from photometrically classified SN IA

The SN Ia photometric cosmology pipeline

Ishida et al., 2019, MNRAS from CRP #4

Recent improvements

Take into account observational caveats

- Window of Opportunity for Labelling
- Evolving Samples
 - We must make query decisions before we can observe the full LC
- Multiple Instruments
- Evolving Costs
 - Observing costs for a given object changes as it evolves.

Kennamer et al., 2020 - arXiv:astro-ph/2010.05941

Conclusion of phase 1

It is advisable to start from scratch

- Supernova Photometric Classification Challenge data (SNPCC)
- Data separated into four groups
 - Original training set 1,103
 - 18,216 in pool set
 - 1,000 objects each in validation and test sets
- Assumed access to an 8m and 4m telescope for labeling
 - 6 hours per telescope on each night
- Pre-processed data with parametric fits (Bazin *et al.* 2009)
- Observing Costs calculated from brightness estimates of each objects and telescope properties

Kennamer et al., 2020 - arXiv:astro-ph/2010.05941

Active Learning details

- Ensemble of Random Forest Classifiers for query decisions
- Four Active Learning Strategies under knapsack constraints:
 - Random Sampling
 - Uncertainty Sampling
 - Entropy used to measure uncertainty
 - Batch Entropy
 - Measures a joint entropy over batches
 - Takes advantage of submodular properties of entropy
 - Batch KL-Divergence
 - Measures a Joint KL-Divergence/Mutual Information, equivalent to BatchBALD
 - Takes advantage of submodular properties of the KL-Divergence/Mutual Information

Proved equivalence between KL-Divergence and Bayesian Active Learning by Disagreement (BALD) - check the Appendix!

Conclusion of phase 1

It is advisable to start from scratch

- Supernova Photometric Classification Challenge data (SNPCC)
- Data separated into four groups
 - Original training set 1,103
 - 18,216 in pool set
 - 1,000 objects each in validation and test sets
- Assumed access to an 8m and 4m telescope for labeling
 - 6 hours per telescope on each night

Conclusion of phase 1

Active Learning part is closed

- Start from scratch
- Simple AL strategies are the best we can do
- Further improvements will require theoretical development

This is only half of the story ...

The cosmology part ...

Ishida et al., 2019, MNRAS from CRP #4

This is only half of the story ...

The cosmology part ...

Ishida et al., 2019, MNRAS from CRP #4

Hypothesis

Better classifier leads to a better cosmology

Better classifier leads to a better cosmology

Better classifier leads to a better cosmology

Goal: use the cosmology metric to choose between different **possible batches** per night, which would have the **same effect** from the classifier point of view What now?

Summary and next steps

- Active learning stage is well developed with important theoretical contribution for computer science community
- Currently running the pipeline on PLAsTiCC data for astronomy paper
- Implement the choices between multiple batches in the same run
- Cosmology metric is under development
- Develop a mathematically coherent procedure to combine active learning and cosmology metric

Negotiating extension of ICA until DESC 2021 Summer meeting...

What now?

Summary and next steps

- Active learning stage is well developed with important demonstration for computer science community
- Currently running the pipeline on PLAsTiCC data for astronomy paper
- Implement the choices between multiple batches in the same run
- Cosmology metric is under development
- Develop a mathematically coherent procedure to combine active learning and cosmology metric

Interdisciplinarity at its best!

Extra slides

PLAsTiCC results are virtually the same as SNPCC

External Factors

Cosmological Feedback

The role of Active Learning

Measuring Disagreement / Query by Committee

Train an ensemble of models on available labeled data

Vote Entropy
$$x_{VE}^* = \underset{x}{\operatorname{argmax}} - \sum_{y} \frac{\operatorname{vote}_{\mathcal{C}}(y, x)}{|\mathcal{C}|} \log \frac{\operatorname{vote}_{\mathcal{C}}(y, x)}{|\mathcal{C}|}$$

Soft Vote Entropy
$$x_{SVE}^* = \underset{x}{\operatorname{argmax}} - \sum_{y} P_{\mathcal{C}}(y|x) \log P_{\mathcal{C}}(y|x),$$

Kullback-Leibler divergence $x_{KL}^* = \underset{x}{\operatorname{argmax}} \frac{1}{|\mathcal{C}|} \sum_{\alpha \in \mathcal{C}} KL(P_{\theta}(Y|x) \parallel P_{\mathcal{C}}(Y|x))$

The role of Active Learning

Entropy vs KL Divergence

(a) uncertain but in agreement

(b) uncertain and in disagreement

- Equal Entropy
- Low KL

- Equal Entropy
- High KL