

DES-SN

Supernova systematics* in the era of LSST

MATHEW SMITH

*astrophysical (I can't cover them all!)

Supernova cosmology: the basics

Brief Takeaway:

- Supernova => SNe la*
- Bright + 'standardly bright'
- We don't know what they are
- it kind of doesn't matter

(as long as they are the same today as the past)

750 - 1000 SNIa to z>1

Supernova cosmology: 'today'

Precision cosmology

Precision cosmology

THE DARK ENERGY SURVEY. IN ONE SLIDE

One survey, comprised of multiple probes, to determine the nature of cosmic acceleration

"EVERYTHING WITH ONE SURVEY"

"LSST-light"

DES-Wide

- 5000 deg² in griz Y: r_{AB} ~ 24.3, i_{AB} ~ 23.5 (10σ)
- Large Scale Structure, Weak Lensing & Galaxy Clustering

DES-SN

- ~ 6-day cadenced griz survey over 27 deg²
- Type la supernovae & other transients

<u>Overall</u>

- Probes of both Distance v Redshift & Growth of Structure
- Multiple probes to break degeneracies & minimise systematics
- Lots of ancillary science (understatement alert)
- First WF cosmology results recently released ...
- Most distant SN discovered ...
- Multiple MW satellites discovered ...
- New population of fast transients discovered ...
 - and so much more ...

THE DARK ENERGY SURVEY SUPERNOVA PROGRAM TO FIND, CHARACTERISE & FOLLOW 3000+ SN TO Z>1

~3500 SNIA

I0 fields (8 shallow, 2 deep) in 4 filters (griz)
Every 7 nights, for 5+ months for 5 years

DES SPECTROSCOPY: Targeted followup + host spec_z

OzDES: Targeting the hosts of all live transients to measure redshifts

r-band

2 hours 2 hours DES13C3acrs 1500 Host specz = 1.0258 4 hours Flux (nJy) 1000 500 + 5 hours 9 hours 1500 6 hours Flux (nJy) 1000 500 -60 -40 -20 [OII]

Host specz = 1.0258 Host spe

g-band

SN exploded in 2013; redshift obtained in 2016 <u>Most SNe not confirmed</u>

650

660

640

DES SPECTROSCOPY: Targeted followup + host spec_z

OzDES: Targeting the hosts of all live transients to measure redshifts

"the same"

SURVEY	N_SNIa	wErr (stat + sys)
JLA (2014)	740	0.054
Pantheon (2018)	1049	0.04
DES 3YR (2018)	334 (206	DES) 0.057
DES 5YR (2021)	~1800	??

<u>'best constraints today'</u>

DES-SN: What's coming

Cosmology coming in 2021

1800 SN

DES-3YR: Systematics

Description ^b	σ'_w	$\sigma'_w/\sigma^{ m stat}_w$	w shift
Total Stat (σ_w^{stat})	0.042	1.00	0.000
Total Syst ^c ($\sigma_w^{\text{total syst}}$)	0.042	1.00	-0.006
[Photometry and Calibration]	[0.021]	[0.50]	[-0.005]
Low-z	0.014	0.33	-0.003
DES	0.010	0.33	0.001
SALT2 model	0.009	0.21	-0.003
HST Calspec	0.007	0.17	0.001
1/3 No SuperCal	0.005	0.12	-0.001
SuperCal Coherent Shift ^d	0.005	0.12	-0.001
[μ -Bias Corrections: Survey]	[0.023]	[0.55]	[-0.001]
^e Low-z 3σ Cut	0.016	0.38	0.005
Low-z Volume Limited	0.010	0.24	0.009
Spectroscopic Efficiency	0.007	0.17	0.001
^e Flux Err Modeling	0.001	0.02	-0.001
[μ -Bias Corrections: Astrophysical]	[0.026]	[0.62]	[-0.003]
Intrinsic Scatter Model	0.014	0.33	-0.001
c, x_1 Parent Population	0.014	0.33	0.000
^e Two σ_{int}	0.014	0.33	-0.005
MW Extinction	0.005	0.12	-0.001
^e w , Ω_M for bias corr	0.006	0.14	0.001
[Redshift]	[0.012]	[0.29]	[0.003]
$e_{z} + 0.00004$	0.006	0.14	-0.001
Peculiar Velocity	0.007	0.17	0.004

DES-SN+ 2019

DES-5YR: Systematics

What do we have to solve?

Description ^b	σ'	$\sigma'_w/\sigma^{ m stat}_w$	w shift	
Total Stat (σ_w^{stat})	0.042	1.00	0.000	Systematics dominate
Total Syst ^c ($\sigma_w^{\text{total syst}}$)	0.042	1.00	-0.006	today!
[Photometry and Calibration]	[0.021]	[0.50]	[-0.005]	
Low-z	0.014	0.33	-0.003	
DES	0.010	0.33	0.001	
SALT2 model	0.009	0.21	-0.003	
HST Calspec	0.007	0.17	0.001	
1/3 No SuperCal	0.005	0.12	·····	n
SuperCal Coherent Shift ^d	0		siticau	
	smetr	IC Class	[0.004]	
μ -Bias Corrections + DNOU	711	[0.05]	[-0.001]	
^e Low-z 3σ Cut	0.016	0.38	0.005	
Low-z Volume Limited	0.010	0.24	0.009	
Spectroscopic Efficiency	0.007	0.17	0.001	
^e Flux Err Modeling	0.001	0.02	-0.001	
[µ-Bias Corrections: Astrophysical]	[0.026]	[0.62]	[-0.003]	
Intrinsic Scatter Model	0.014	0.33	-0.001	
c. r. Parant Population	0.014	0.33	0.000	a de seu a demonstra de la deserva de la de de seu a de serva de la deserva de serva de serva de serva de serv

DES is systematics limited

LSST == DES+++

DES-5YR: Systematics

What do we have to solve?

Description ^b	σ'_w	$\sigma'_w/\sigma^{\rm stat}_w$	w shift
Total Stat (σ_w^{stat})	0.042	1.00	0.000
Total Syst ^c ($\sigma_w^{\text{total syst}}$)	0.042	1.00	-0.006
[Photometry and Calibration]	[0.021]	[0.50]	[-0.005]
Low-z	0.014	0.33	-0.003
DES	0.010	0.33	0.001
SALT2 model	0.009	0.21	-0.003
HST Calspec	0.007	0.17	0.001
1/3 No SuperCal	0.005	0.12	-0.001
SuperCal Coherent Shift ^d	0.005	0.12	-0.001
[µ-Bias Corrections: Survey]	[0.023]	[0.55]	[-0.001]
^e Low-z 3σ Cut	0.016	0.38	0.005
Low-z Volume Limited	0.010	0.24	0.009
Spectroscopic Efficiency	0.007	0.17	0.001
^e Flux Err Modeling	0.001	0.02	-0.001
[µ-Bias Corrections: Astrophysical]	[0.026]	[0.62]	[-0.003]
Intrinsic Scatter Model	0.014	0.33	-0.001
c, x_1 Parent Population	0.014	0.33	0.000
^e Two σ_{int}	0.014	0.33	-0.005
MW Extinction	0.005	0.12	-0.001
^e w, Ω_M for bias corr	0.006	0.14	0.001
[Redshift]	[0.012]	[0.29]	[0.003]
$z^{e} = 0.00004$	0.006	0.14	-0.001
Peculiar Velocity	0.007	0.17	0.004

Astrophysical uncertainties dominant...

limiting systematic

DES-SN+ 2019

'what is a SNIa?'

Host galaxy studies

correlations between SN and host:

improve standardisation insights into astrophysical scatter

<u>Selection term:</u>

Previously:
$$\mu_{
m bias} = f(z)$$
 '1D'

For DES3YR:
$$\mu_{\text{bias}} = f(z, x_1, c)$$
 '5D'

effectively:

$$\mu = (m_B - \Delta m_B) - M + \alpha \times (x_1 - \Delta x_1) - \beta \times (c - \Delta c) + \gamma$$

selection terms: the "BBC" formalism

Results:

 $\mu=m_B-M+\alpha\times x_1-\beta\times c+\gamma+\mu_{\rm bias} \label{eq:masses} \begin{tabular}{c} {\rm Mass \ term}\\ {\rm step\ function}\\ {\rm Substant}\\ {\rm Mass\ term}\\ {\rm Substant}\\ {\rm Substant}\\ {\rm Mass\ term}\\ {\rm Substant}\\ {\rm Substant}\\ {\rm Substant}\\ {\rm Mass\ term}\\ {\rm Substant}\\ {\rm Substant}\\$

-	Sample	Biascor	Best-fit γ	-
'2020':	DES-SN	5D	0.040 ± 0.019	
	DES3YR	5D	0.043 ± 0.018	$\gamma \sim 0.045$
	Pantheon	5D	0.053 ± 0.009	
	PS1	5D	0.039 ± 0.016	222
'2015':	DES-SN	1D	0.066 ± 0.020	
	DES3YR	1D	0.064 ± 0.019	
	SNLS5YR	1D	0.070 ± 0.013	$\gamma \sim 0.065$
	JLA	1D	0.070 ± 0.023	1
	Pantheon	1D	0.072 ± 0.010	what happened?
	PS1	1D	0.064 ± 0.018	what's vialet?
-				

SO

from 'realistic' simulations:

from 'realistic' simulations:

 $\mu = (m_B - \Delta m_B) - M + \alpha \times (x_1 - \Delta x_1) - \beta \times (c - \Delta c) + \gamma$ now allow for correlations

but

Also M* isn't the truth, and it's degenerate with SFR, dust, sSFR, Z, local, ...

in all cases still need to get SN/host correlation right

• • •

'local colour' is better? Kelsey+ 2020

DES-5YR is ideal for this

need to understand SELECTION, CONTAMINATION and UNDERLYING CORRELATIONS ==> lots of SIMULATIONS (ongoing)

intriguing early results: ask me in a couple of months ;)

That's it for now.

DES-SN is great 2000 SNIa with 0.1 < z < 1.2; all with hosts precursor to LSST deep 200 SN == state-of-the-art

highlights the power of 'one survey' approach

Not modelling SN v host correctly can lead to biased γ **must** know how: <u>SN \propto galaxy</u>

DES5YR (in 2020) will trace $\gamma v z$ to probe fundamental cause and optimal standardisation

Ideal test-bed for LSST

That's it for now.

DES-SN is great 2000 SNIa with 0.1 < z < 1.2; all with hosts precursor to LSST deep 200 SN == state-of-the-art

highlights the power of 'one survey' approach

Not modelling SN v host correctly can lead to biased γ **must** know how: <u>SN \propto galaxy</u>

DES5YR (in 2020) will trace $\gamma v z$ to probe fundamental cause and optimal standardisation

Ideal test-bed for LSST

Thank you!