

Heliophysics Event Knowledge database: solar events catalogs using VOEvent format

Véronique Delouille

Solar Dynamics Observatory (SDO)

Artist's concept image of the SDO satellite orbiting Earth. Credit: NASA

- SDO is a NASA mission, launched in 2010. Its EUV telescope, AIA, observes the Sun in 10 wavelengths and returns the equivalent of one 4k x 4k image every second (1TB/day).
- Automated feature-detection methods are essential to helps researchers find data sets relevant for their topics of interest.

HOW?

- Data mining

- Automated recognition module for solar events
- Event Detection System (EDS) to control and manage mining modules

- Data markup

- Recording and annotating events for later data recall, extracting sample images and movies
- Capturing mission metadata associated with data, e.g. Planning logs, instrument settings...

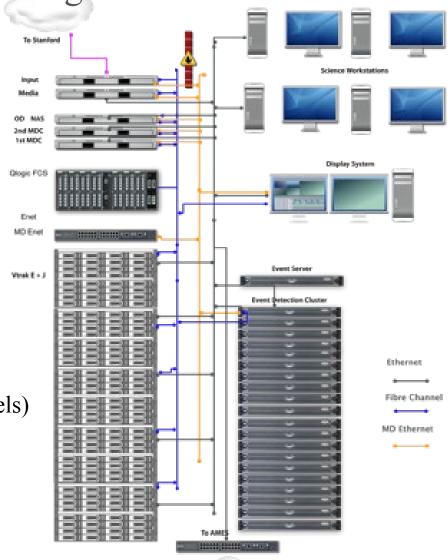
- Guided data searches

Web and Java clients

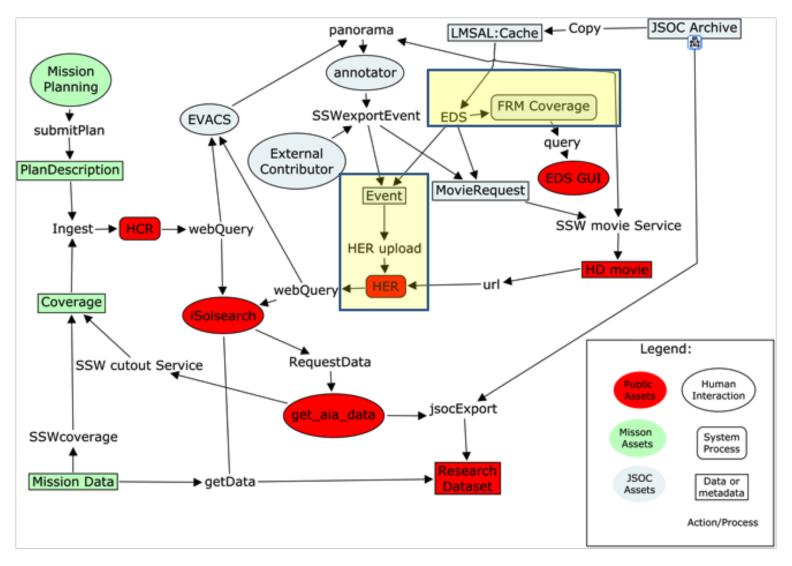
Complex system running at Lockheed Martin

Figure for Data Mining hardware at LMSAL

• 400+TB Apple Xsan


- -5TB SAS for database
- -100TB Cache
- -300TB user/archive
- -10Gb link to Stanford
- -10Gb link to LM science network
- Attached Apple and SGI servers

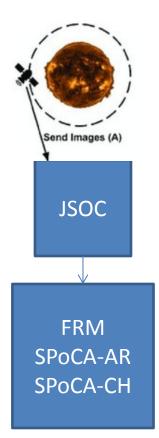
• SGI Compute servers


- -22 node SGI XE Cluster for EDS
- -SGI UV100 w/72 core, 750GB memory

• HiPerspace Datawall:

- -Quad HD display (3840x2160 pixels)
- –9-panel 30" display (7680x4800 pixels)
- -Seven-node CGLX cluster
- MacPro science workstations

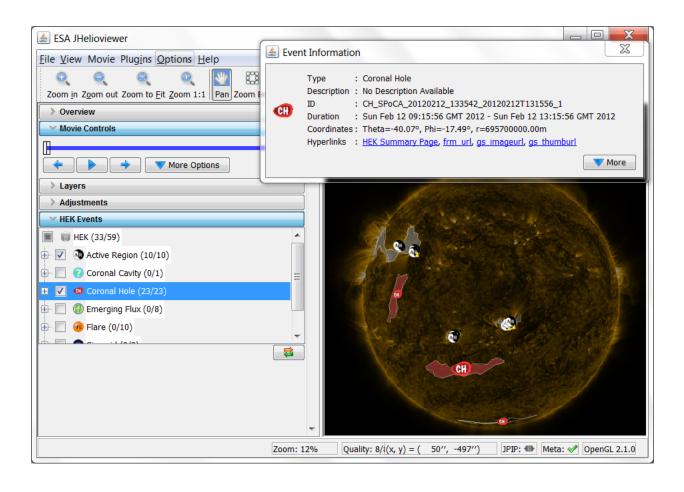
Heliphysics Event Knowledge base


Event classes

- AR = ActiveRegion
- CE = CME
- CD = CoronalDimming
- CH = CoronalHole
- CW = CoronalWave
- FI = Filament
- FE = FilamentEruption
- FA = FilamentActivation
- FL = Flare
- LP = Loop
- OS = Oscillation
- SS = Sunspot
- EF = EmergingFlux

- CJ = CoronalJet
- PG = Plage
- OT = Other
- NR = NothingReported
- SG = Sigmoid
- SP = SpraySurge
- CR = CoronalRain
- CC = CoronalCavity
- ER = Eruption
- TO = TopologicalObject
- HY = Hypothesis
- BU = UVBurst
- EE = ExplosiveEvent
- PB = ProminenceBubble
- ...

SPoCA-AR and SPoCA-CH modules


- The two modules for recognition of active regions and coronal holes on the Sun were developed at Royal Observatory of Belgium
- As its core, SPoCA is a fuzzy clustering algorithm that allows to decompose a UV image into regions of similar intensity, typically active regions, coronal holes, and quiet sun.
- Different steps: classification of pixels, determination of feature maps (AR, CH), tracking of features
- Output formatted as VOEvent (IVOA standard of 2006), and used within search tools, image browser, etc via API.

HEK

Helioviewer, JHelioviewer

Screenshot from the ESA JHelioviewer tool.

Python script, etc...

WP4 Provenance Workshop, 8 September 2020

SPOCA FRM

- Written in C++
- Wrapper for IDL (used in HEK) and for Python
- 3 main activities (execution):
 - Pixel-wise Classification AIA.CH.classification.config
 - Building of AR and CH maps AIA.get_CH_map.config
 - Tracking from one map to the next map AIA.tracking.config
- Main entities:
 - AIA original files
 - Pixel-wise Classification map
 - Region map
- Agents: responsabilities shared between LMSAL (who keeps the system running) and ROB (is responsible for the scientific software)
- Two slightly different versions of SPoCA are also running at ROB.

Success so far and going forward

- Uninterrupted detection of AR and CH for 10years
- Catalog of AR and CH generated
- Used as benchmark e.g. for newer supervised algorithm based on deep learning
- Recurent requests for 'more information about intermediary products', such as classification maps, region maps, etc,...

Output of FRM: VOEvent

```
-<voe:VOEvent ivorn="ivo://helio-informatics.org/CH SPoCA 20190226 020627 20190226T014841 0" role="observation" version="1.1" xsi:schemaLocation="http://www.ivoa.net/xml/VOEvent/v1.1"
http://www.lmsal.com/helio-informatics/VOEvent-v1.1.xsd">
 -<Who>
    <!--Data pertaining to curation-->
   -<AuthorIVORN>
                                                                                                  Unique ID for
      ivo://helio-informatics.org/CH SPoCA 20190226 020627 20190226T014841 0
     </AuthorIVORN>
                                                                                                  the VOEVent
   -<Author>
       <contactName>veronique.delouille@sidc.be</contactName>
     <Date>2019-02-26T02:06:27.741</Date>
  </Who>
  -<What>
     <!--Data about what was measured/observed.-->
    <Description/>
   +<Group name="CoronalHole optional"></Group>
   </What>
  +<WhereWhen></WhereWhen>
  -<How>
   +<!--->
   +<lmsal:data></lmsal:data>
   +<lmsal:method></lmsal:method>
   +<Group name="CoronalHole optional"></Group>
   </How>
  -<Whv>
    <Inference probability="0.882927"/>
```

<Concept>CoronalHole</Concept>

</Whv>

</voe:VOEvent>

+<Group name="CoronalHole optional"></Group>

<lmsal:EVENT TYPE>CH: CoronalHole</lmsal:EVENT TYPE>

< Reference name="FRM_URL" uri="http://sdoatsidc.oma.be/web/sdoatsidc/SoftwareSPoCA"/>

<Reference name="OBS_DATAPREPURL" uri="http://sdoatsidc.oma.be/web/sdoatsidc/SoftwareSPoCA"/>

< Reference name="Edge" type="follows" uri="ivo://helio-informatics.org/CH SPoCA 20190225 220540 20190225T214841 0"/>

Encoding of tracking of information

'What' was measured/observed

```
-<What>
   <!--Data about what was measured/observed.-->
  <Description/>
 -<Group name="CoronalHole optional">
     <Param name="INTENSMIN" value="3.00058"/>
    <Param name="INTENSMAX" value="17.5034"/>
    <Param name="INTENSMEAN" value="12.3582"/>
    <Param name="INTENSMEDIAN" value="12.5024"/>
    <Param name="INTENSVAR" value="6.62766"/>
     <Param name="INTENSSKEW" value="-0.0578303"/>
    <Param name="INTENSKURT" value="-0.580218"/>
    <Param name="INTENSTOTAL" value="1.38835e+06"/>
    <Param name="INTENSUNIT" value="DN/s"/>
    <Param name="AREA ATDISKCENTER" value="108293."/>
    <Param name="AREA ATDISKCENTERUNCERT" value="9963.24"/>
    <Param name="AREA RAW" value="31411.6"/>
    <Param name="AREA UNCERT" value="3596.68"/>
     <Param name="AREA UNIT" value="Mm2"/>
     <Param name="EVENT_NPIXELS" value="169263"/>
    <Param name="EVENT PIXELUNIT" value="DN/s"/>
   </Group>
 </What>
```

Global measured quantities for CH

Note: Associated UCD would be good
To have

Where/when: Data pertaining to when(time) and where (location on the Sun) something occured

```
Data pertaining to when and where something occurred
-<ObsDataLocation>
 -<ObservatoryLocation>
    <AstroCoordSystem/>
    <a href="AstroCoords id="UTC-HPC-TOPO" coord_system_id="UTC-HPC-TOPO"/></a>
  </ObservatoryLocation>
 -<ObservationLocation id="SDO">
    <AstroCoordSystem/>
    -<AstroCoords coord_system_id="UTC-HPC-TOPO">
     -<Time>
        -<TimeInstant>
           <ISOTime>2019-02-25T21:48:41.840</ISOTime>
         </TimeInstant>
       </Time>
      -<Position2D unit="arcsec.arcsec">
        -<Value2>
           <C1>-36.9470</C1>
           <C2>-861.919</C2>
         </Value2>
        -<Error2>
           <C1>1.22704</C1>
           <C2>15.0041</C2>
         </Error2>
       </Position2D>
    </AstroCoords>
    -<AstroCoordArea coord_system_id="UTC-HPC-TOPO">
      -<TimeInterval>
        -<StartTime>
           <ISOTime>2019-02-25T21:48:41.840</ISOTime>
         </StartTime>
        -<StopTime>
           <ISOTime>2019-02-26T01:48:41.000</ISOTime>
         </StopTime>
      </TimeInterval>
      -<Box2>
        --<Center>
          <C1>-43.5000</C1>
           <C2>-850.500</C2>
         </Center>
           <C1>812.400</C1>
           <C2>234.000</C2>
         </Size>
       </Box2>
     </AstroCoordArea>
  </ObservationLocation>
</ObsDataLocation>
-<Group name="CoronalHole optional">
   <Param name="EVENT_CLIPPEDSPATIAL" value="T"/>
```

</Group> </WhereWhen>

Trick to encode tracking

<StartTime>: you need to say when did the event occur, but for a long lived feature you do not know, hence you report the previous time when events were reported

<StopTime = >T OBS in the FITS file in which CH was detected, at time t From this time, it may be possible to recover initial AIA Filename, here: AIA.20190226 014840.0193.image lev1.fits

<Param name="BOUND CCNSTEPS" value="31"/> <Param name="BOUND CCSTARTC1" value="-449.700"/> <Param name="BOUND CCSTARTC2" value="-854.700"/> Param name="BOUND CHAINCODE" value="-449.700.-854.700.-49.100.-854.100.-409.500.-852.900.-318.900.-894.300.-287.100.-873.900.-291.900.-838.51 770.100.-235.500.-761.700.-207.300.-790.500.-174.300.-795.300.-154.500.-825.900.-74.700.-830.100.-6.900.-767.700.89.700.-734.700.159.900.-733.500.246.804.900,175.500,-786.300,123.900,-823.500,159.900,-852.900,220.500,-851.100,240.300,-876.900,170.700,-873.300,152.100,-906.900,198.300,-912.300,226.500,-912.30903.900,362.700,-896.700,147.900,-956.100,-57.300,-965.700,-258.300,-932.100"/> <Param name="CHAINCODETYPE" value="ordered list of points in HPC"/>

Chain code to report the boundaries of CH = Approximation of information available in region maps!

How was the file produced: information about SPoCA method

```
+<1--->
-<lmsal:data>
    <lmsal:OBS ChannelID>AIA 193</lmsal:OBS ChannelID>
    <lmsal:OBS Instrument>AIA</lmsal:OBS Instrument>
    <lmsal:OBS MeanWavel>193.000</lmsal:OBS MeanWavel>
    <lmsal:OBS WavelUnit>Angstroms</lmsal:OBS WavelUnit>
 -<lmsal:method>
    <lmsal:FRM Contact>veronique.delouille@sidc.be</lmsal:FRM Contact>
    <lmsal:FRM DateRun>2019-02-26T02:06:27.714// DateRun>
    <lmsal:FRM HumanFlag>F</lmsal:FRM HumanFlag>
    <lmsal:FRM Identifier>vdelouille</lmsal:FRM Identifier>
    <lmsal:FRM Institute>ROB</lmsal:FRM Institute>
    <lmsal:FRM Name>SPoCA</lmsal:FRM Name>
  -<lmsal:FRM ParamSet>
     image 195: calibrated image 193/195 A; spocaPreprocessing=DivExpTime,ALC,ThrMax80,TakeSqrt; spocaClassifierType=HFCM; spocaNumberclasses=4; spocaChannels=
      [AIA 193]; spocaPrecision=0.00150000; spocaRadiusRatio=1.20; spocaBinsize=0.0100000; spocaSegmentationType=max; spocaVersion=2.00;
      intensitiesStatsPreprocessing=NAR,DivExpTime; intensitiesStatsRadiusRatio=0.95; trackingDeltat=36000; trackingOverlap=2; trackingNumberImages=6; minLifeTime=259200
      minDeathTime=28800; spocaCenters=(2.9581),(5.4468),(7.2253),(8.9175)
    Imsal:FRM ParamSet>
 -<Group name="CoronalHole optional">
    <Param name="FRM VERSIONNUMBER" value="1.00000"/>
    <Param name="FRM SPECIFICID" value="SPoCA v1.0 CH 0000029662"/>
    <Param name="OBS_DATAPREPURL" value="http://sdoatsidc.oma.be/web/sdoatsidc/SoftwareSPoCA"/>
    <Param name="OBS_LASTPROCESSINGDATE" value="2019-02-26T01:59:39"/>
    <Param name="OBS_LEVELNUM" value="1.50000"/>
    <Param name="OBS INCLUDESNRT" value="T"/>
 </Group>
</How>
```

-<How>

Description of activities (but all mixed up, ie parameters for classification, getting AR maps, and tracking all together)

```
-<voe:VOEvent ivorn="ivo://helio-informatics.org/CH SPoCA 20190226 020627 20190226T014841 0" role="observation" version="1.1" xsi:schemaLocation="http://www.ivoa.net/xml/VOEvent/v1.1"
http://www.lmsal.com/helio-informatics/VOEvent-v1.1.xsd">
 -<Who>
     <!--Data pertaining to curation-->
   -<AuthorIVORN>
      ivo://helio-informatics.org/CH SPoCA 20190226 020627 20190226T014841 0
    </AuthorIVORN>
   -<Author>
       <contactName>veronique.delouille@sidc.be</contactName>
     </Author>
     <Date>2019-02-26T02:06:27.741</Date>
  </Who>
 -<What>
     <!--Data about what was measured/observed.-->
     <Description/>
   +<Group name="CoronalHole optional"></Group>
  </What>
 +<WhereWhen></WhereWhen>
 -<How>
   +<!--->
   +<lmsal:data></lmsal:data>
   +<lmsal:method></lmsal:method>
   +<Group name="CoronalHole optional"></Group>
   </How>
 -<Whv>
    <Inference probability="0.882927"/>
    <Concept>CoronalHole</Concept>
     <lmsal:EVENT TYPE>CH: CoronalHole</lmsal:EVENT TYPE>
   +<Group name="CoronalHole optional"></Group>
  </Why>
  < Reference name="FRM_URL" uri="http://sdoatsidc.oma.be/web/sdoatsidc/SoftwareSPoCA"/>
  < Reference name="OBS_DATAPREPURL" uri="http://sdoatsidc.oma.be/web/sdoatsidc/SoftwareSPoCA"/>
  <Reference name="Edge" type="follows" uri="ivo://helio-informatics.org/CH SPoCA 20190225 220540 20190225T214841 0"/>
</voe:VOEvent>
```

Encoding of tracking of information

In a second pass, these information are linked together to form a meta-event, e.g. indicating a CH which may last several days on the solar disk.

Questions

- Existing software, combination of C++, IDL, Python. One version at LMSAL (little control on it), one version at ROB (more control)
- How to structure better provenance information within VOEvent files?
- How to get a provenance DM with an 'on top' approach?
- How to proceed if one wants to save provenance info during the processing ('inside' approach)

Concerns

- Scientific developers have a lot on their plate
- Hierarchy will balance the benefit of having a provenance DM implemented vs the time it costs
- Need to clearly see the benefits, and what it brings in addition to a well documented workflow
- Learning curve.