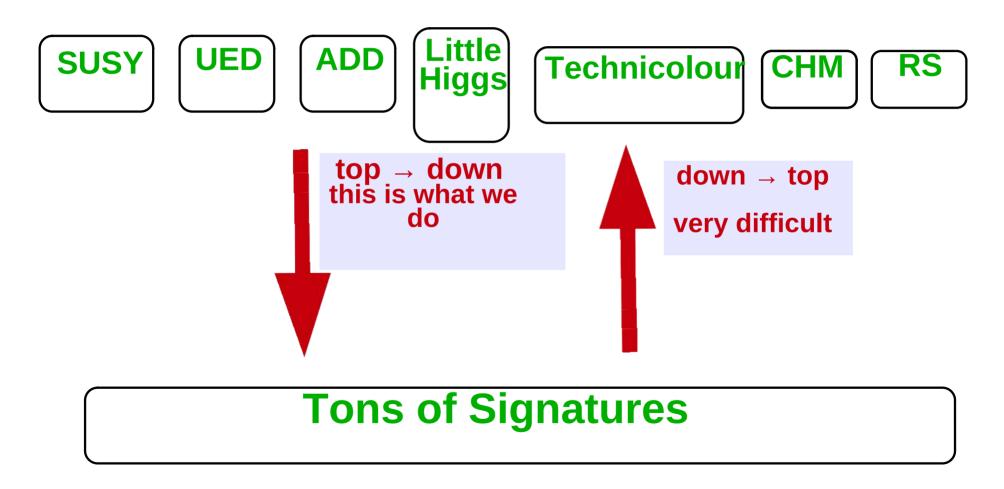
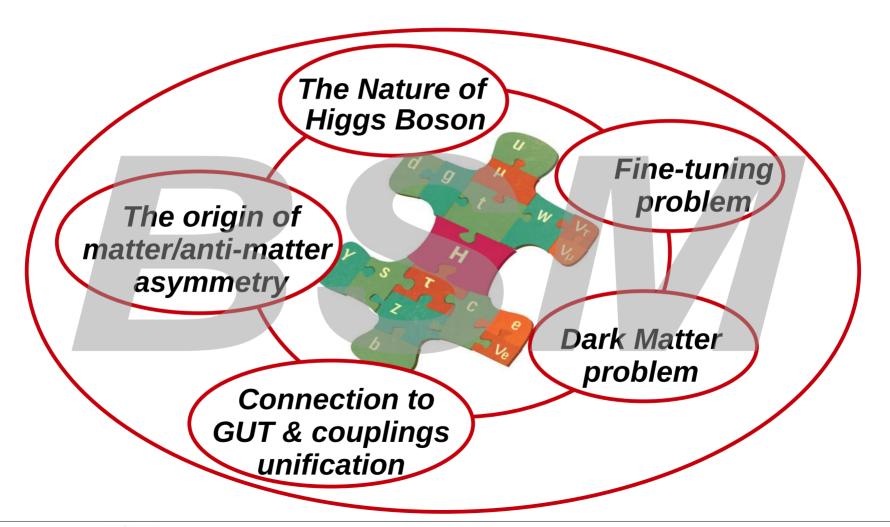
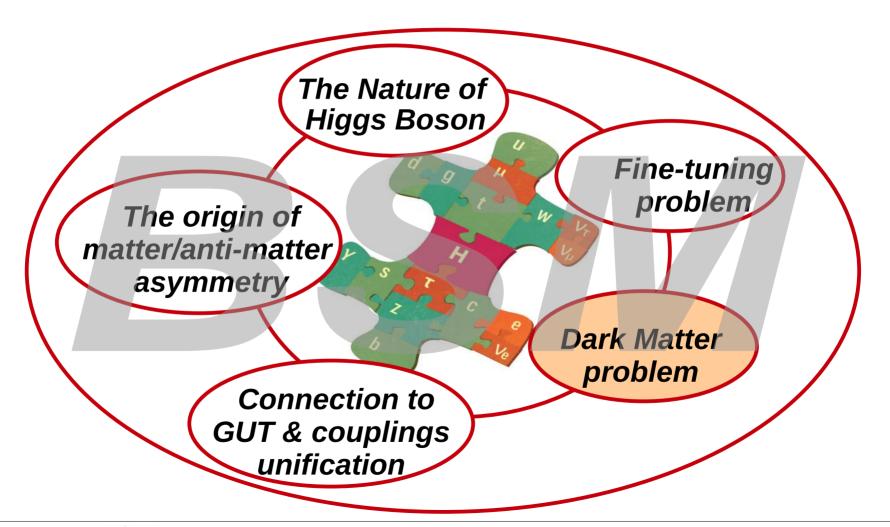
Decoding the nature of Dark Matter at current and future experiments

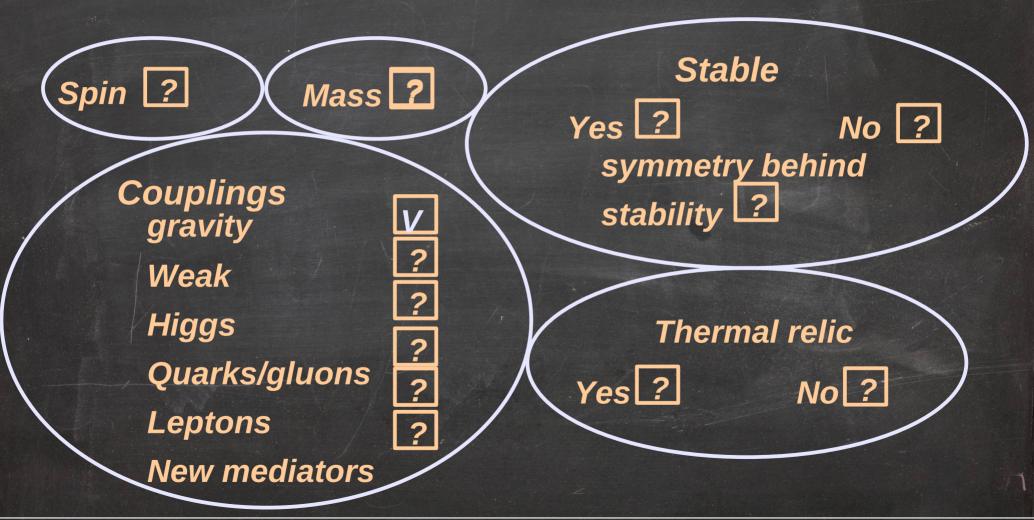
Alexander Belyaev


Southampton University & Rutherford Appleton Laboratory

LIO international conference on Composite connections of Higgs, Dark Matter and Neutrinos


September 25, 2020


Decoding underlying theory (down → top) from the complicated set of signatures is very challenging!


The SM itself must be the piece of some (more) complete and consistent BSM theory

The SM itself must be the piece of some (more) complete and consistent BSM theory

DM is very appealing even though we know almost nothing about it!

Alexander Belyaev

How we can decode the fundamental nature of Dark Matter?

How we can decode the fundamental nature of **Dark Matter?**

We need DM signal first!

Alexander Belyaev

How we can decode the fundamental nature of **Dark Matter?**

We need DM signal first!

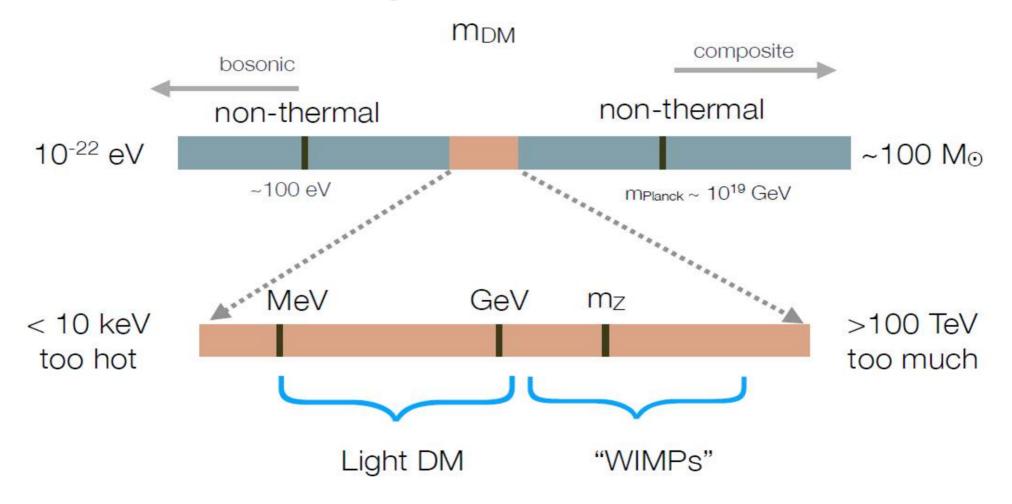
But at the moment we can:

- understand what kind of DM is already excluded
- explore theory space and prepare ourselves to discovery and decoding of DM

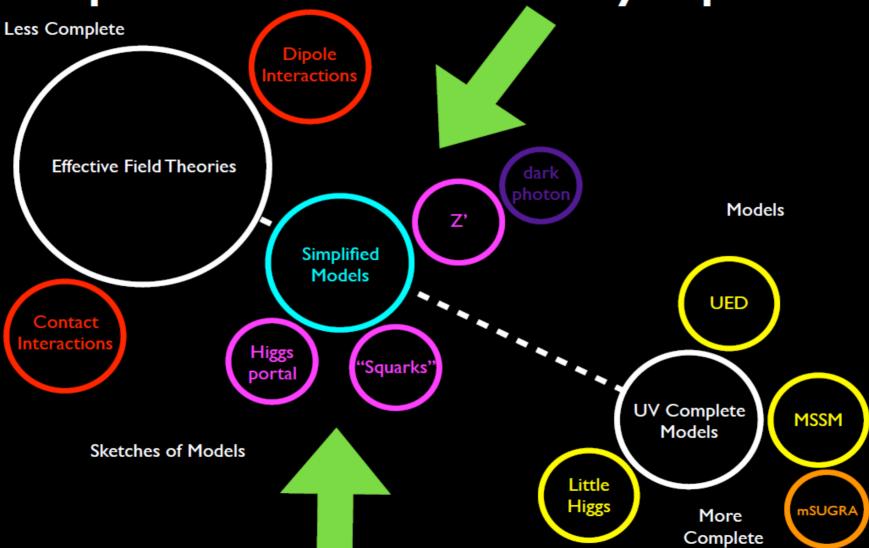
Alexander Belyaev

Collaborators & Projects

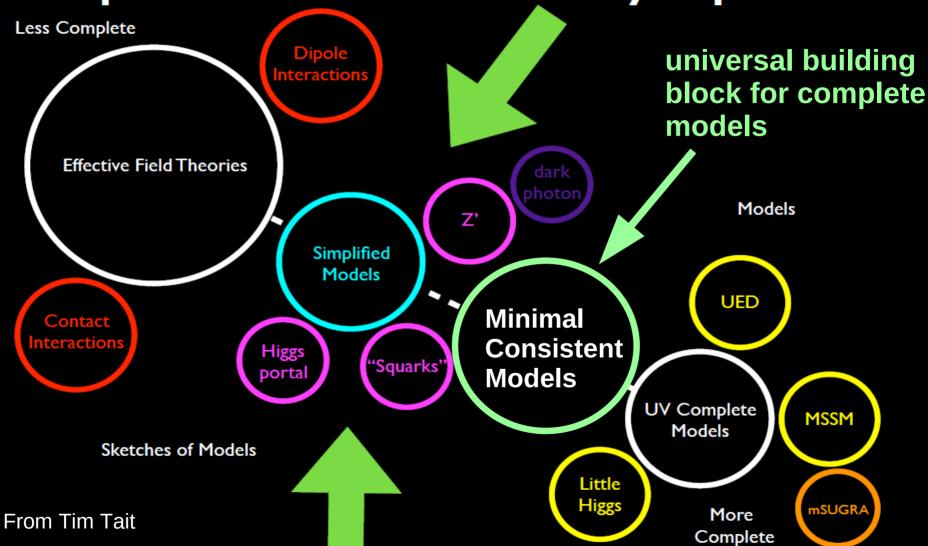
I.Ginzburg, D.Locke, A. Freegard, T. Hosken, AB	arXiv: 2006.xxxxx
S.Prestel, F.Rojas-Abate, J.Zurita, AB	arXiv: 2008.08581
S.Novaes, P.Mercadante, C.S. Moon, T.Tomei,	
S. Moretti, M.Tomas, L. Panizzi, AB	arXiv: 1809.00933
G.Cacciapaglia, J.McKay, D. Marin, A.Zerwekh, AB	arXiv: 1808.10464
E.Bertuzzo, C.Caniu, G. di Cortona, O.Eboli,	
F. Iocco, A.Pukhov, AB	arXiv: 1807.03817
T. Flacke, B. Jain, P. Schaefers, AB	arXiv: 1707.07000
G. Cacciapaglia, I. Ivanov, F. Rojas, M. Thomas, AB	arXiv: 1612.00511
I. Shapiro, M. Thomas, AB	arXiv: 1611.03651


L. Panizzi, A. Pukhov, M.Thomas, AB

D. Barducci, A.Bharucha, W. Porod, V. Sanz, AB

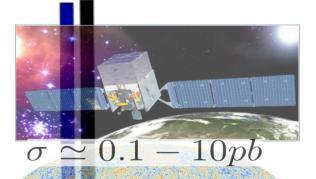

arXiv:1610.07545

arXiv:1504.02472

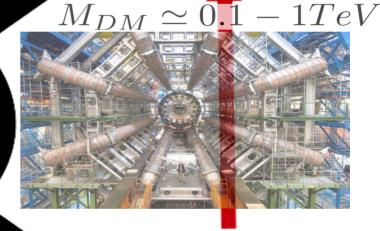

Mass range for thermal DM

Spectrum of Theory Space

Spectrum of Theory Space

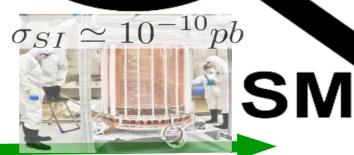


 $\Omega h^2 \simeq 0.12$

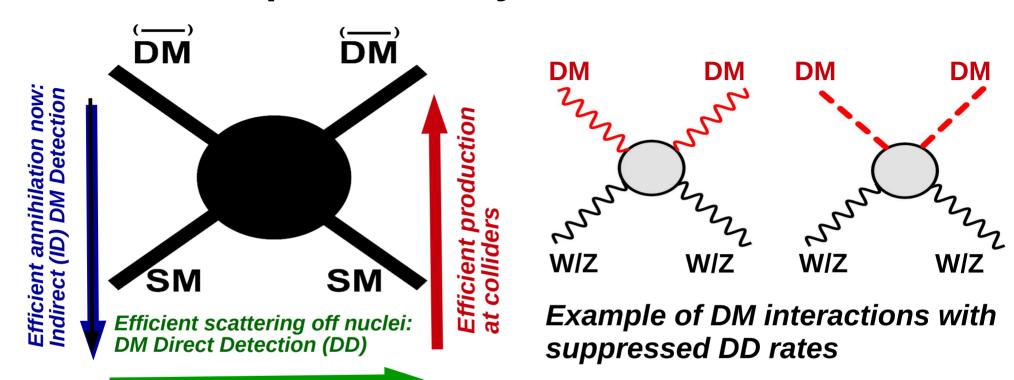

DM

Efficient annihilation now: Indirect Detection

Correct Relic density: efficient (co) annihilation at the time of early Universe


Dark Matter (DM) Signatures

at colliders


Efficient production

SM

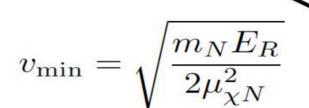
Efficient scattering off nuclei: Direct Detection

Complementarity of DM searches

Important: there is no 100%correlation between signatures above. E.g. the high rate of annihilation does not always guarantee high rate for DD!

Actually there is a great complementarity in this:

- In case of NO DM Signal we can efficiently exclude DM models
- In case of DM signal we have a way to determine the nature of DM


Direct Dark Matter Detection

Search for the recoil energy of a nucleus in an underground detector after collision with a WIMP

Elastic recoil energy

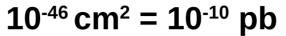
$$E_R = \frac{2\mu_{\chi N}^2 v^2}{m_N} \cos^2 \theta \qquad v_{\min} = \sqrt{\frac{m_N E_R}{2\mu_{\chi N}^2}}$$

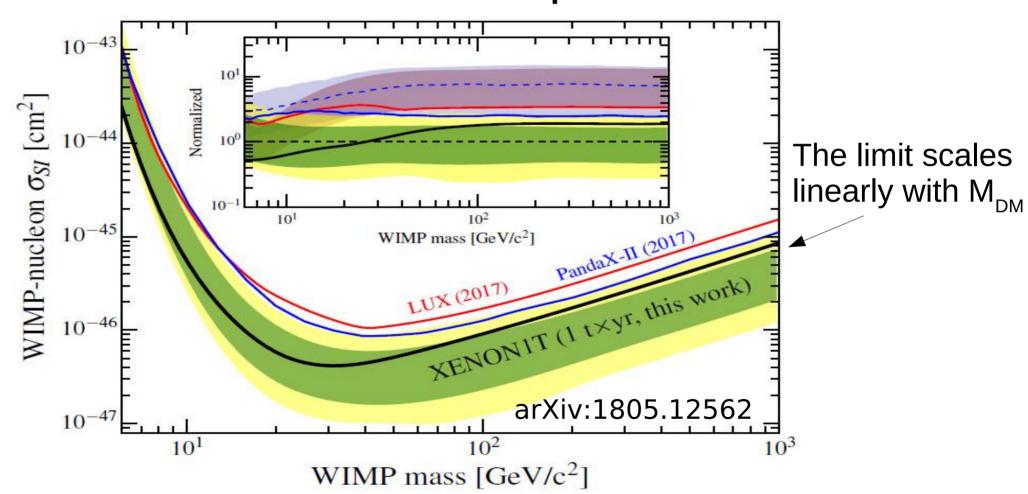
Minimum WIMP speed required to produce a recoil energy limitation in low DM mass region!

$$\mu_{\chi N} = \frac{m_N \cdot m_{\chi}}{m_N + m_{\chi}}$$

The differential event rate (per unit detector mass):

$$\frac{dR}{dE_R} = \frac{\rho_\chi}{m_\chi m_N} \int_{v>v_{\rm min}} d^3 v \, \frac{d\sigma_{\chi N}}{dE_R} \, v \frac{f_{\rm det}(\mathbf{v},t)}{dE_R}$$

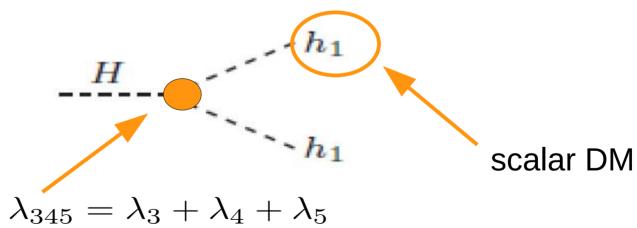

the source of uncertainty from the halo integral – from DM velocity and density distributions

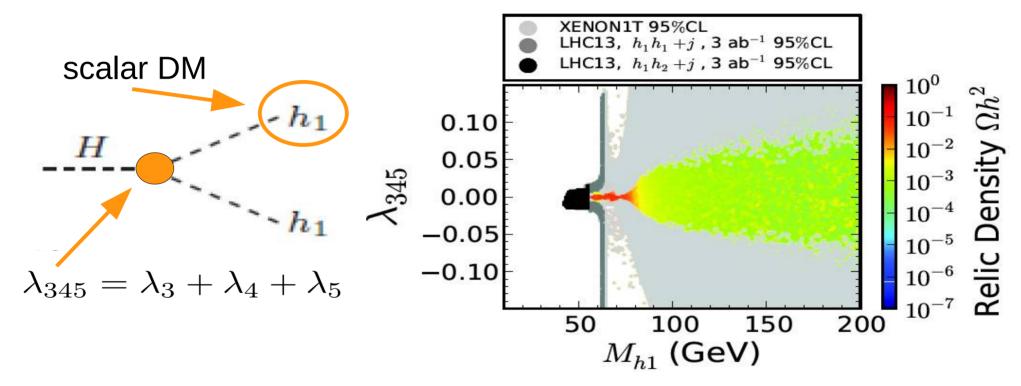

recoiling

nucleus

DM

XENON 1T results

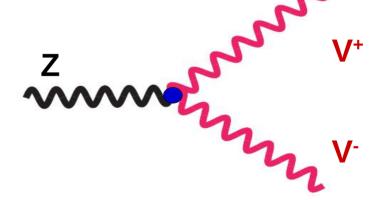



Power of DM DD to rule out theory space Inert 2 Higgs Doublet Model

$$\phi_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v + H \end{pmatrix} \qquad \phi_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{2}h^+ \\ h_1 + ih_2 \end{pmatrix}$$

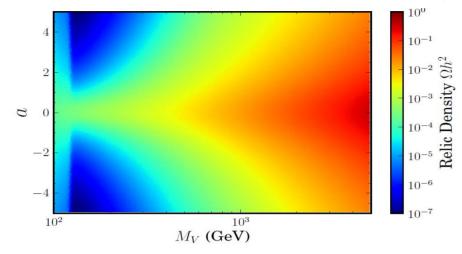
$$V = -m_1^2(\phi_1^{\dagger}\phi_1) - m_2^2(\phi_2^{\dagger}\phi_2) + \lambda_1(\phi_1^{\dagger}\phi_1)^2 + \lambda_2(\phi_2^{\dagger}\phi_2)^2 + \lambda_3(\phi_1^{\dagger}\phi_1)(\phi_2^{\dagger}\phi_2) + \lambda_4(\phi_2^{\dagger}\phi_1)(\phi_1^{\dagger}\phi_2) + \frac{\lambda_5}{2} \left[(\phi_1^{\dagger}\phi_2)^2 + (\phi_2^{\dagger}\phi_1)^2 \right]$$

Power of DM DD to rule out theory space Inert 2 Higgs Doublet Model



Cacciapaglia, Ivanov, Rojas, Thomas, AB arXiv:**1610.07545**Novaes, Mercadante, Moon, Tomei, Moretti, Tomas, Panizzi, AB arXiv:**1809.00933**

Power of DM DD to rule out theory space Vector DM (VDM) Model


$$\mathcal{L} = \mathcal{L}_{SM} - Tr \left\{ D_{\mu} V_{\nu} D^{\mu} V^{\nu} \right\} + Tr \left\{ D_{\mu} V_{\nu} D^{\nu} V^{\mu} \right\}$$

$$- \frac{g^2}{2} Tr \left\{ [V_{\mu}, V_{\nu}] \left[V^{\mu}, V^{\nu} \right] \right\}$$

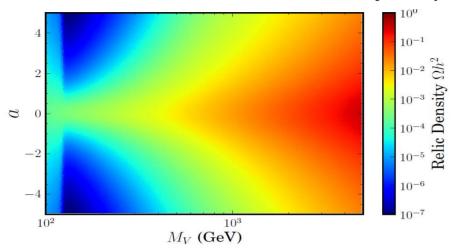
$$- ig Tr \left\{ W_{\mu\nu} \left[V^{\mu}, V^{\nu} \right] \right\} + \tilde{M}^2 Tr \left\{ V_{\nu} V^{\nu} \right\}$$

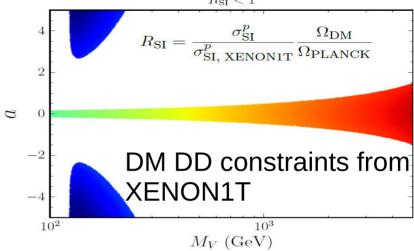
$$+ a \left(\Phi^{\dagger} \Phi \right) Tr \left\{ V_{\nu} V^{\nu} \right\}$$

$$\mathbf{H}$$

$$\mathbf{AB}, \mathsf{Cacciapaglia}, \mathsf{McKay}, \mathsf{Martin}, \mathsf{Zerwekh},$$

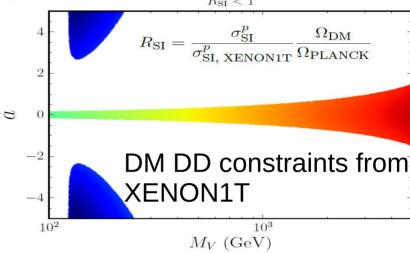
- DM from vector triplet
- SM gauge coupling
- V_{DM}V_{DM}H coupling is the only free parameter

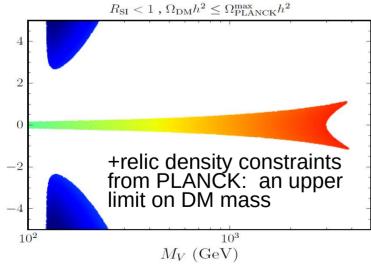



arXiv:1808.10464

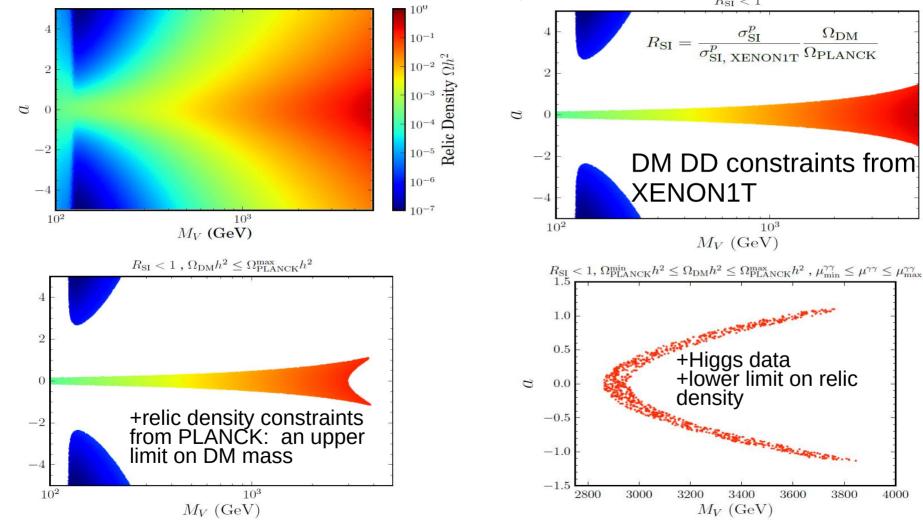
The relic density map in M_{v} - a parameter space

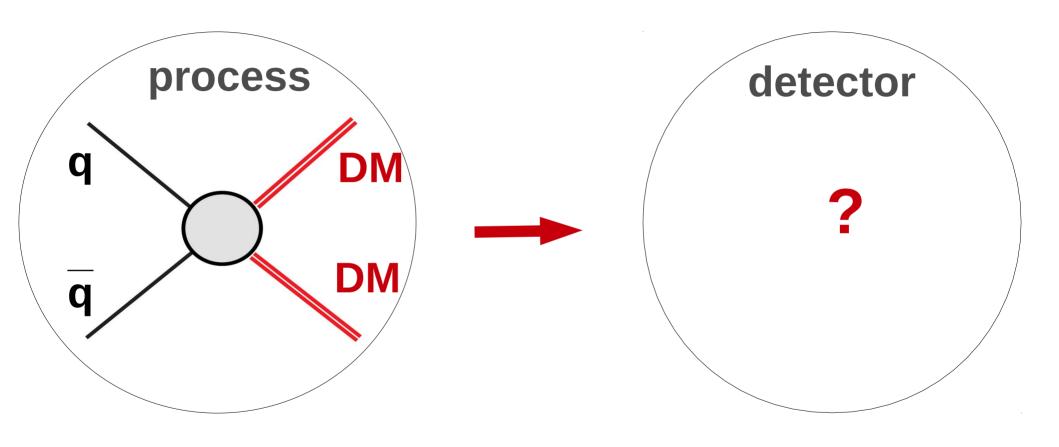



The relic density map in M_V - a parameter space $R_{SI} < 1$

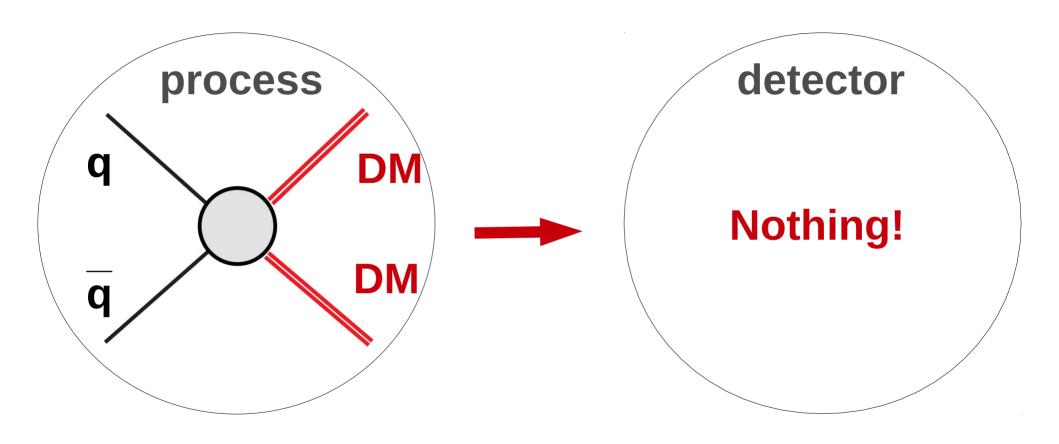


The relic density map in M_V - a parameter space

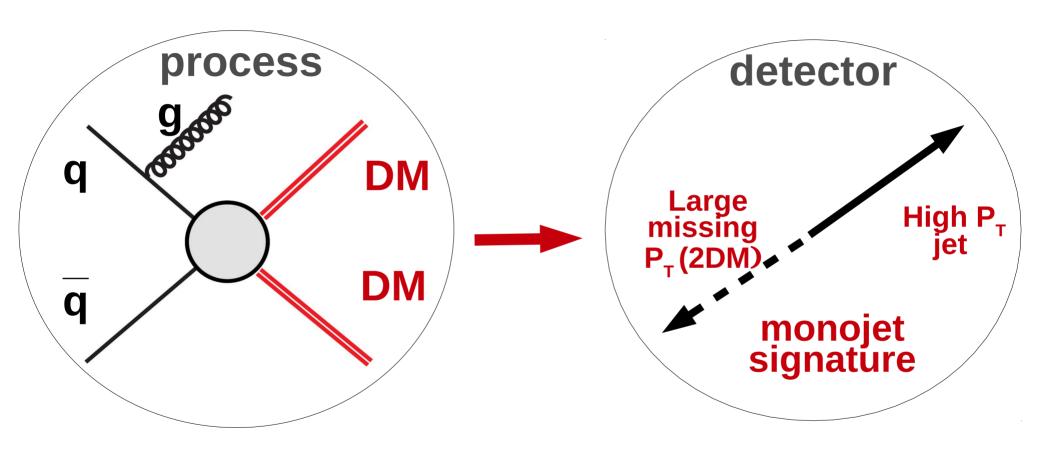



- ZENON 1T + Planck excludes **both** large HV_{DM}V_{DM} couplings and large M_{DM}
- The **lower masses** (rest of space) can be covered at colliders

The relic density map in M_V - a parameter space



NE


DM DD interplay with Collider Searches

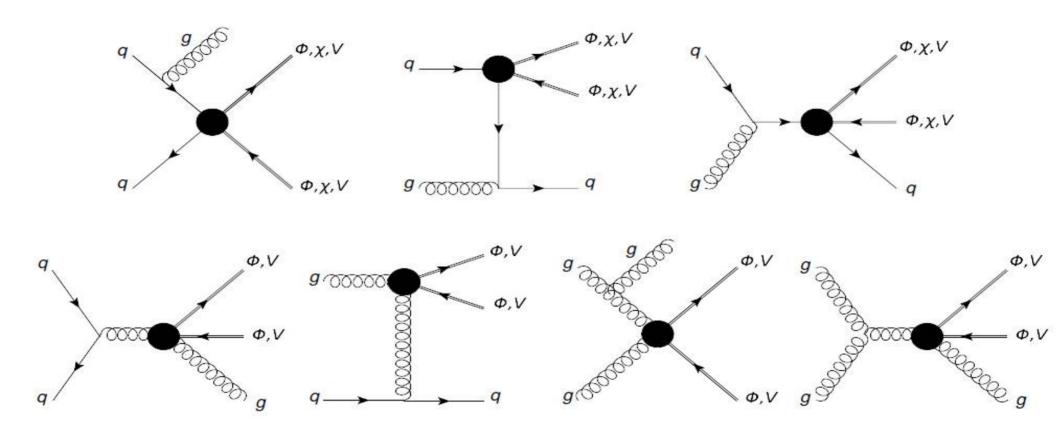
Hunting for DM at Colliders

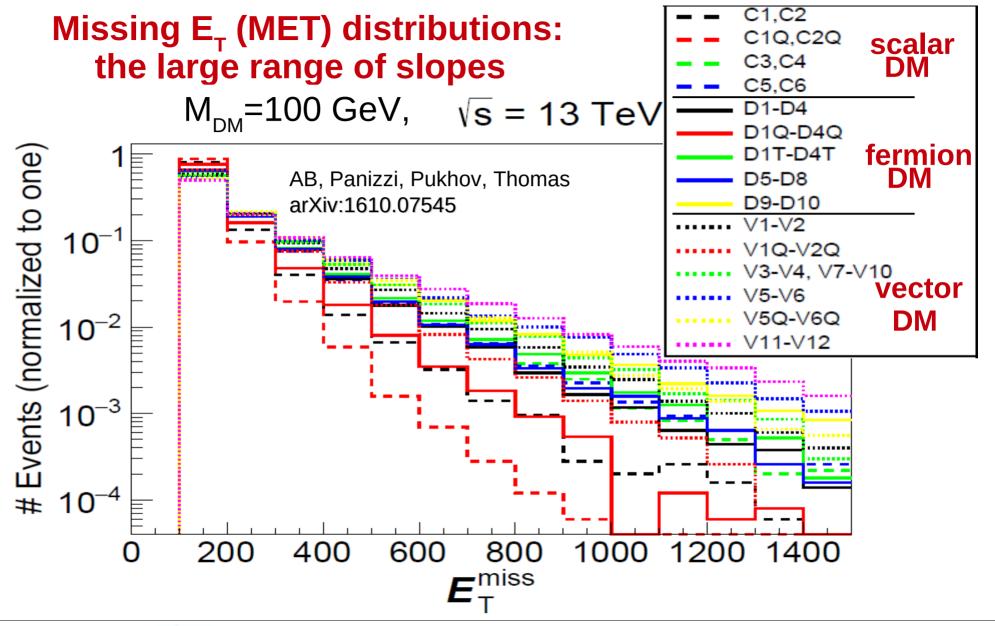
Hunting for DM at Colliders

Probing DM properties at the LHC

Can we to probe DM operators with different DM spin using the shape missing transverse momentum (MET) only?

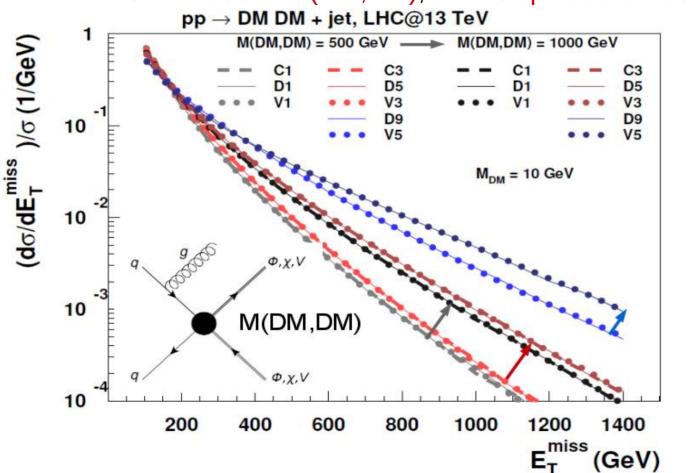
- we use the EFT approach: simplicity and model independence
- explore the complete set of DIM5/DIM6 operators involving two SM quarks (gluons) and two DM particles
- consider DM with spin=0, 1/2, 1
- use mono-jet signature at the LHC

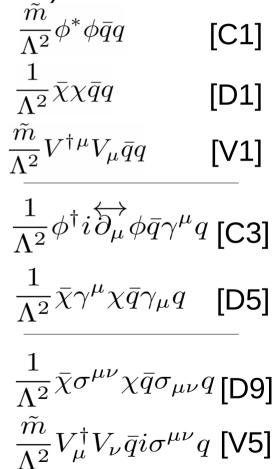

Mapping EFT operators to simplified models


C5,C5A
$$\frac{1}{\Lambda^2}\phi^*\phi G^{\mu\nu}G^{\mu\nu}$$
 $\frac{1}{\Lambda^2}\phi^*\phi \tilde{G}^{\mu\nu}G^{\mu\nu}$

D1T-D4T $\frac{1}{\Lambda^2}\bar{\chi}q\bar{q}\chi$

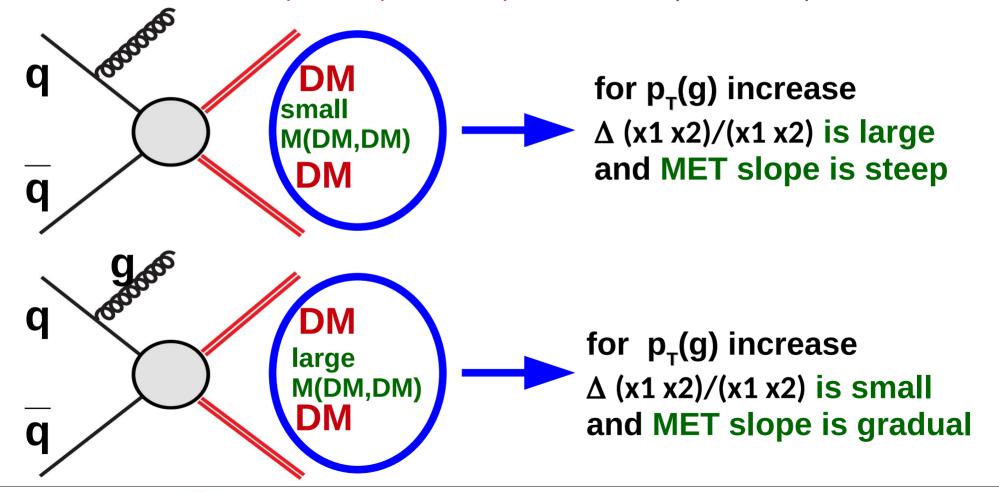
$$Q = \frac{1}{\sqrt{2}}\sum_{\substack{Q \text{ Scalar} \\ \text{mediator} \\ \bar{q} \text{ NDM}}} \sum_{\substack{Q \text{ Scalar} \\ \text{mediator} \\ \bar{q} \text{ NDM}}} \sum_{\substack{Q \text{ Scalar} \\ \text{mediator} \\ \bar{q} \text{ NDM}}} \sum_{\substack{Q \text{ Scalar} \\ \text{mediator} \\ \bar{q} \text{ NDM}}} \sum_{\substack{Q \text{ Scalar} \\ \text{mediator} \\ \bar{q} \text{ NDM}}} \sum_{\substack{Q \text{ Scalar} \\ \text{ mediator} \\ \bar{q} \text{ NDM}}} \sum_{\substack{Q \text{ Scalar} \\ \text{ mediator} \\ \bar{q} \text{ NDM}}} \sum_{\substack{Q \text{ Scalar} \\ \text{ mediator} \\ \bar{q} \text{ NDM}}} \sum_{\substack{Q \text{ Scalar} \\ \text{ mediator} \\ \bar{q} \text{ NDM}}} \sum_{\substack{Q \text{ Scalar} \\ \text{ mediator} \\ \bar{q} \text{ NDM}}} \sum_{\substack{Q \text{ Scalar} \\ \text{ mediator} \\ \bar{q} \text{ NDM}}} \sum_{\substack{Q \text{ Scalar} \\ \text{ mediator} \\ \bar{q} \text{ NDM}}} \sum_{\substack{Q \text{ Scalar} \\ \text{ mediator} \\ \bar{q} \text{ NDM}}} \sum_{\substack{Q \text{ NDM} \\ \bar{q} \text{ NDM}}} \sum_{\substack{Q \text{ NDM}}} \sum_{\substack{Q \text{ NDM} \\ \bar{q}$$


Mono-jet diagrams from EFT operators

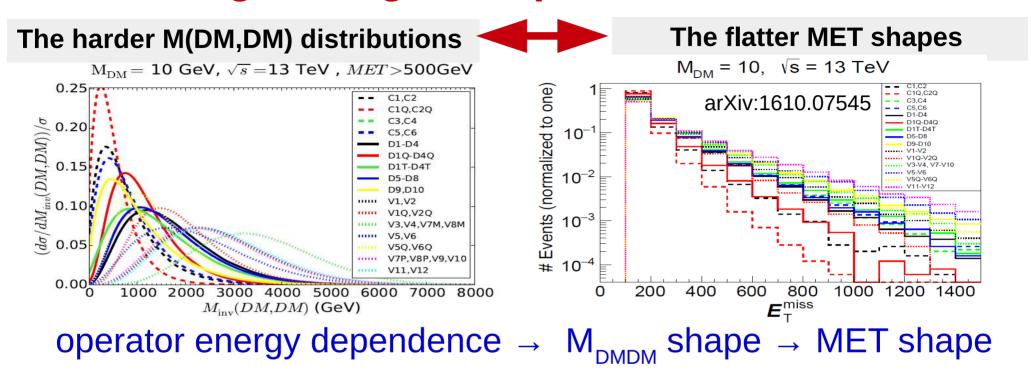


Properties of MET distributions:


- MET distributions are the same for the fixed mass of DM pair [M(DM,DM)] & fixed SM operator
- With the increase of M(DM,DM), MET slope decreases (PDF effect)

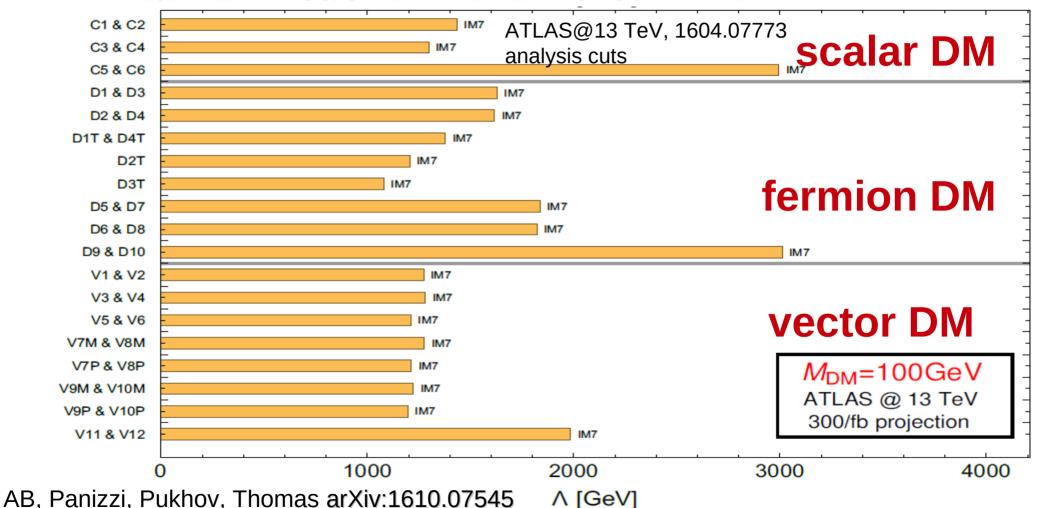

Properties of MET distributions for small and large M(DM,DM)

- MET distributions are the same for the fixed mass of DM pair [M(DM,DM)] & fixed SM operator
- With the increase of M(DM,DM), MET slope decreases (PDF effect)



Properties of MET distributions for small and large M(DM,DM)

- MET distributions are the same for the fixed mass of DM pair [M(DM,DM)] & fixed SM operator
- With the increase of M(DM,DM), MET slope decreases (PDF effect)


Distinguishing DM operators/theories

- projection for 300 fb⁻¹: some operators C1-C2,C5-C6,D9-D10,V1-V2,V3-V4,V5-V6 and V11-12 can be distinguished from each other
- \square Application beyond EFT: when the DM mediator is not produced on-the-mass-shell and M_{DMDM} is not fixed: t-channel mediator or mediators with mass below 2M_{DM}

LHC@13TeV reach projected 100 fb⁻¹

LanHEP → CalcHEP → LHE → CheckMATE

Alexander Belyaev

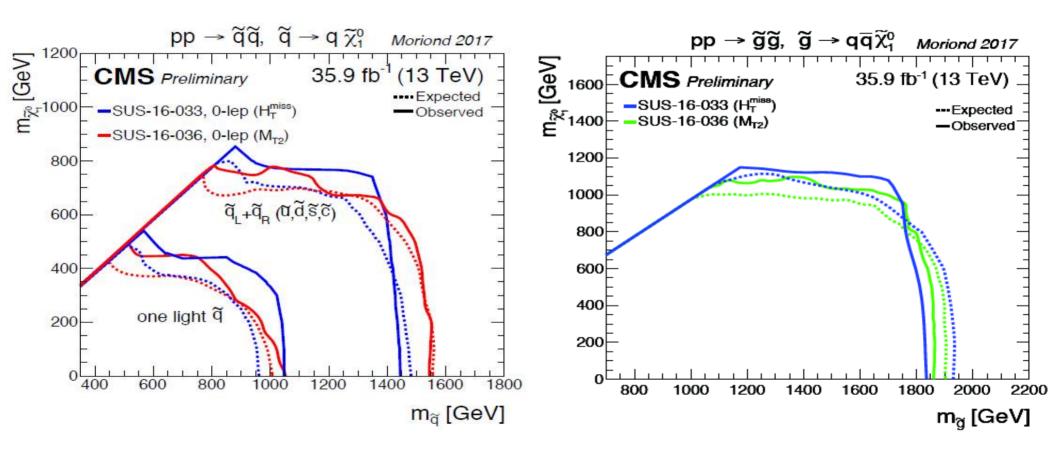
NEXT

Distinguishing the DM operators: χ^2 for pairs of DM operators

$$\chi_{k,l}^2 = \min_{\kappa} \sum_{i=3}^7 [(\frac{1}{2}N_i^k - \kappa \cdot N_i^l)/(10^{-2}BG_i)]^2 \quad : \text{if } \chi^2 > 9.48 \text{ (95\%CL for 4 DOF)} - \text{operators can be distinguished!}$$

			Co 100 (C1		Scalar DM 1000 GeV C1 C5		Dirac Fer 100 GeV D1 D9		mion DM 1000 GeV D1 D9	
Complex Scalar	100 GeV	C1 (0.0 5.74	19.7 0.0			11.73 1.11	41.79 3.93		52.58 7.35
DM	1000 GeV	10000000	9.89 9.86	0.36 13.86	0.0 10.34	11.82 0.0	2.33 21.03	2.09 3.7	0.27 11.18	4.58 1.53
Dirac Fermion	100 GeV	1000	.88 0.49	1.17 3.59	2.52 1.96	25.99 3.96	0.0 7.99	9.23 0.0	2.4 2.71	14.17 0.52
DM	1000 GeV	CHICAGO NO	0.31 7.38	0.73 6.54	0.27 4.18	12.92 1.6	2.25 11.96	2.93 0.5	0.0 4.89	5.42

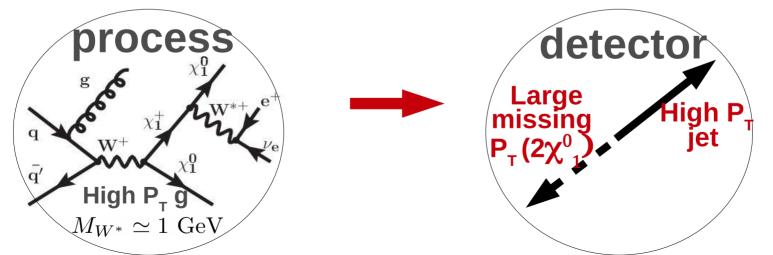
Distinguishing the DM operators: χ^2 for pairs of DM operators


$$\chi_{k,l}^2 = \min_{\kappa} \sum_{i=3}^{7} [(\frac{1}{2}N_i^k - \kappa \cdot N_i^l)/(10^{-2}BG_i)]^2$$

: if χ^2 >9.48 (95%CL for 4 DOF) – operators can be distinguished!

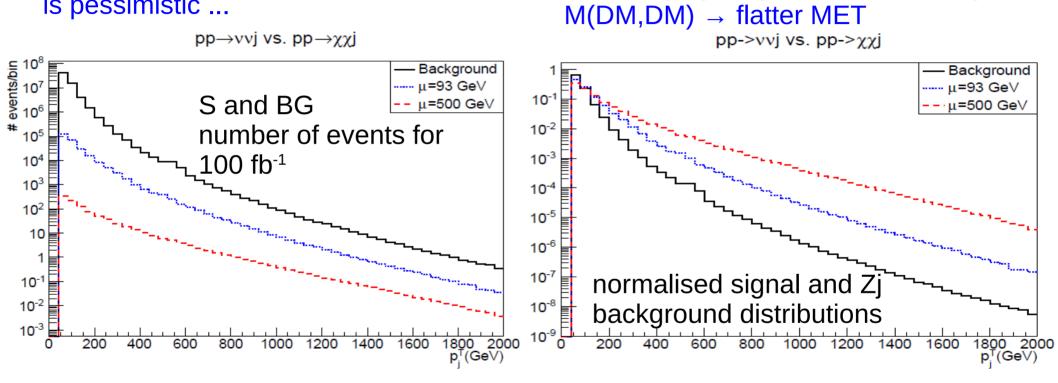
2.			Co	mplex	Scalar D	OM	D	irac Fer	mion D	M			Cc	omplex V	Vector I	OM		
			100	GeV	1000	GeV	100	GeV	1000	GeV	1	100	GeV			1000	GeV	
39			C1	C5	C1	C5	D1	D9	D1	D9	V1	V3	V5	V11	V1	V3	V5	V11
Complex Scalar	100 GeV	C1 C5	0.0 15.74	19.7 0.0		74.63 16.25	11.73 1.11	41.79 3.93	25.78 0.74	52.58 7.35	22.97 0.18	32.89 1.53	54.35 8.2	73.34 15.73		34.61 1.9		80.85 19.13
DM	1000 GeV		19.89 50.86		0.0 10.34	11.82 0.0	2.33 21.03	2.09 3.7	0.27 11.18	4.58 1.53	0.06 11.57	0.45 6.82	5.29 1.26	11.41 0.01	0.06 10.84	0.68 6.1	4.42 1.61	14.36 0.14
Dirac Fermion	100 GeV	D1 D9	9.88 30.49	1.17 3.59	2.52 1.96	25.99 3.96	0.0 7.99	9.23 0.0	2.4 2.71	14.17 0.52	1.85 2.49	5.09 0.62	15.34 0.73	25.37 3.69	2.29 2.31	5.85 0.39	13.85 0.56	29.81 5.36
DM	1000 GeV		$20.31 \\ 37.38$	$0.73 \\ 6.54$	0.27 4.18	12.92 1.6	2.25 11.96	2.93 0.5	0.0 4.89	5.42 0.0	0.32 4.98	0.82 2.02	6.33 0.06	12.58 1.44	0.08 4.56	1.18 1.61	5.08 0.04	15.7 2.55
	100 GeV	V1 V3 V5 V11	18.06 24.86 38.36 50.03	$\frac{1.45}{7.24}$	0.06 0.44 4.79 10.0	13.34 7.57 1.3 0.01	1.72 4.57 12.86 20.55		0.32 0.79 5.67 10.89	5.5 2.14 0.06 1.39	0.0 0.74 5.61 11.2	0.77 0.0 2.5 6.54	6.25 2.68 0.0 1.11	12.9 7.25 1.14 0.0	0.1 0.57 5.24 10.52	1.06 0.03 2.04 5.83	5.34 2.04 0.13 1.49	16.03 9.59 2.13 0.16
Complex Vector DM	1000 GeV	V3 V5	19.73 25.96 37.33 54.48	1.78 6.47	0.06 0.65 4.04 12.42	12.46 6.72 1.68 0.13	2.13 5.21 11.72 23.85		0.08 1.12 4.59 13.43	5.02 1.7 0.04 2.41	0.1 1.01 4.84 13.74	0.59 0.03 1.93 8.55	5.83 2.17 0.14 2.03	12.09 6.41 1.55 0.16	0.0 0.85 4.34 13.01	0.89 0.0 1.57 7.73	4.78 1.65 0.0 2.57	15.14 8.6 2.72 0.0

Beyond the EFT


There is no limit on the LSP mass if the mass of strongly interacting SUSY particles above ~ 1.9 TeV

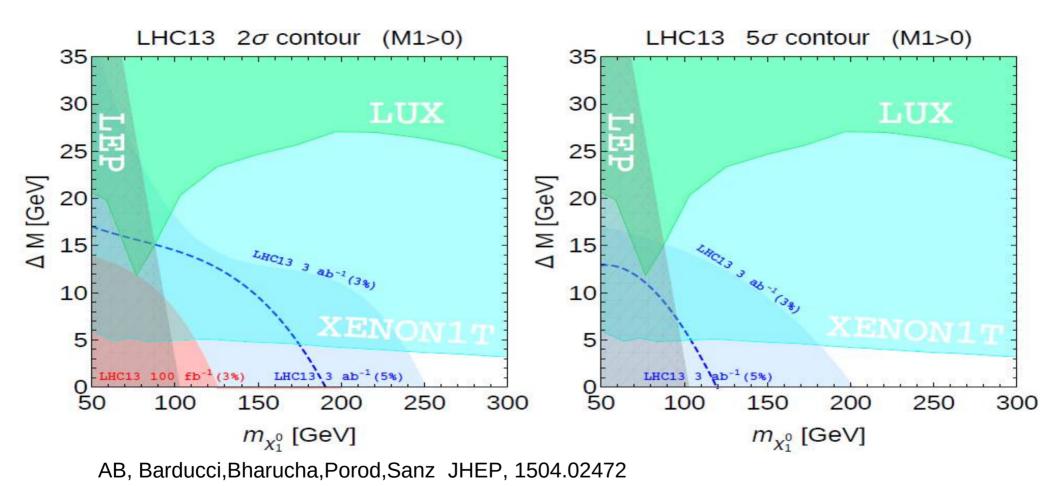
SUSY Compressed Mass Spectrum scenario

- The most challenging case takes place when only $\chi^0_{1,2}$ and χ^{\pm} are accessible at the LHC, and the mass gap between them is not enough for leptonic signatures
- The only way to probe CHS is a mono-jet signature ["Where the Sidewalk Ends? ..." Alves, Izaguirre, Wacker '11], which has been used in studies on compressed SUSY spectra, e.g. Dreiner, Kramer, Tattersall '12; Han, Kobakhidze, Liu, Saavedra, Wu'13; Han, Kribs, Martin, Menon '14



Signal vs Background

but the difference in shapes is


encouraging: large DM mass → biger

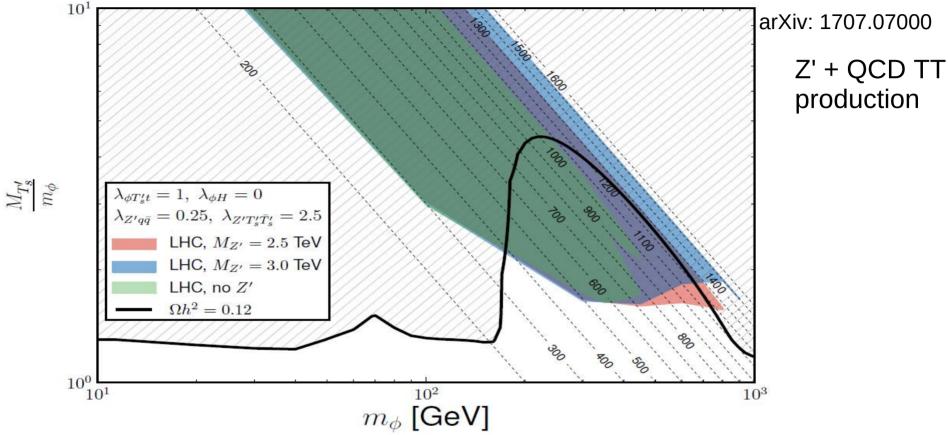
difference in rates is pessimistic ...

Signal and Zj background p_{-}^{j} distributions for the 13 TeV LHC

LHC/DM direct detection sensitivity

- SUSY DM, can be around the corner (~100 GeV), but it is hard to detect it!
- Great complementarity of DD and LHC for small DM (natural)SUSY region

Beyond monojet signature


Beyond the mono-jet signature

Example of the vector resonance in the Composite Higgs model: $Z' \rightarrow TT \rightarrow t \ t \ DM \ DM \ signature$

NE

The role of Z' vs QCD for pp → TT → t t DM DM

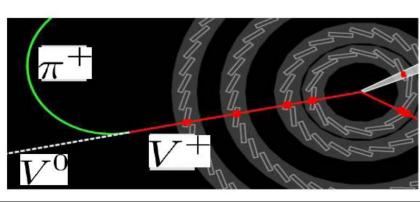
- ☐ LHC is probing now DM and top partner masses up to about 0.9 and 1.5 TeV respectively
- □ bounds from QCD production alone are extended by ~ factor of two
- ☐ DM DD rates are loop-suppressed

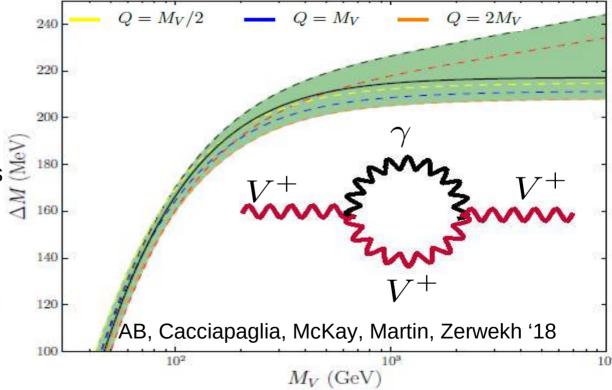
Disappearing Charged Tracks (DCT): VDM as an example

$$\mathcal{L} = \mathcal{L}_{SM} - Tr \{ D_{\mu} V_{\nu} D^{\mu} V^{\nu} \} + Tr \{ D_{\mu} V_{\nu} D^{\nu} V^{\mu} \}$$

$$- \frac{g^{2}}{2} Tr \{ [V_{\mu}, V_{\nu}] [V^{\mu}, V^{\nu}] \}$$

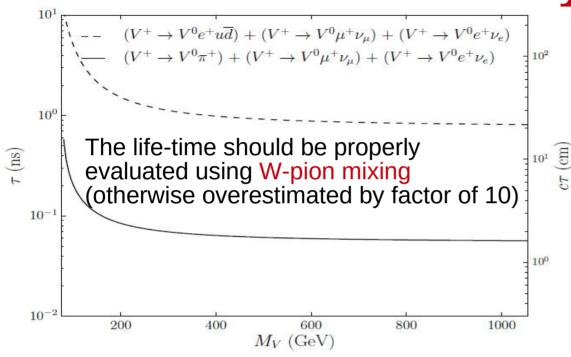
$$- ig Tr \{ W_{\mu\nu} [V^{\mu}, V^{\nu}] \} + \tilde{M}^{2} Tr \{ V_{\nu} V^{\nu} \}$$


$$+ a \left(\Phi^{\dagger} \Phi \right) Tr \{ V_{\nu} V^{\nu} \}$$

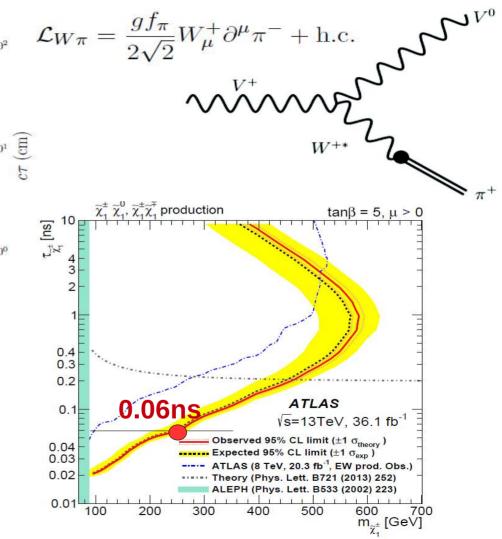

V° and V+ which are degenerate at treelevel are split due to the quantum corrections

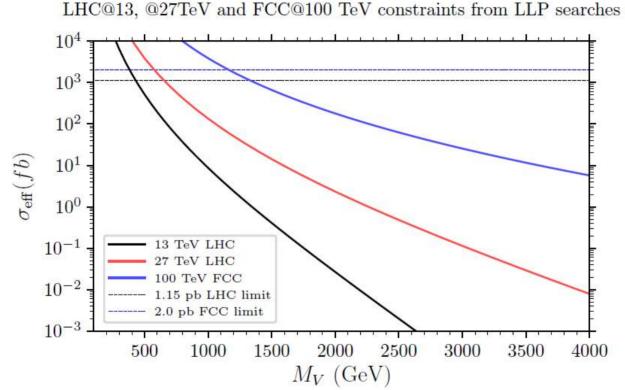
for
$$M_V \gg M_W$$

$$\Delta M = \frac{5g_W^2(M_W - c_W^2 M_Z)}{32\pi} \approx 217.3 \,\text{MeV}$$


The small mass gap (~ pion mass) between DM and its charged partner will lead to the

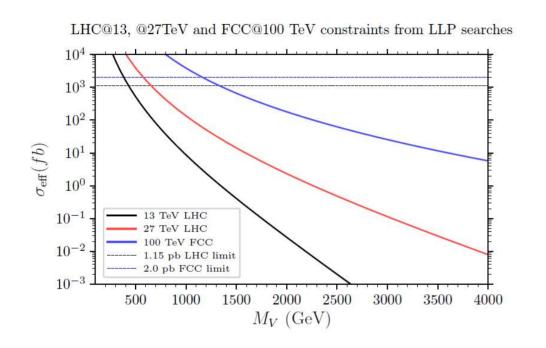
disappearing charge tracks signatures

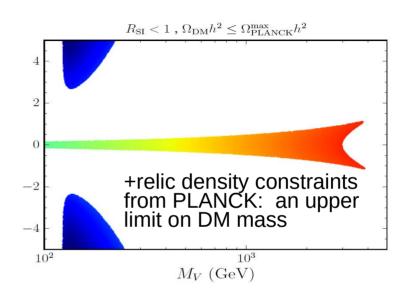



Collider sensitivity to VDM mass

Using ATLAS arXiv:1712.02118 for LHC interpretation and Mahbubani,Schwaller, Zurita ArXiv:1703.05327 For 100 TeV FCC projections

Collider sensitivity to VDM mass

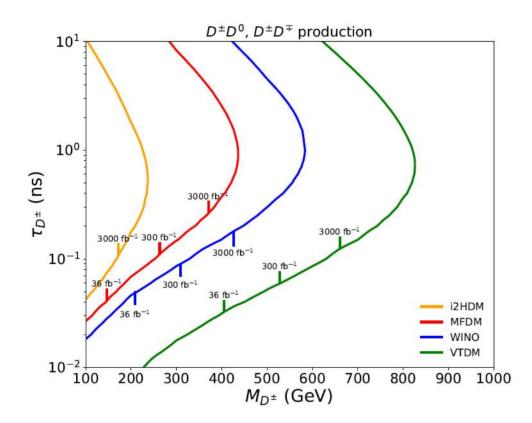



AB, Cacciapaglia, McKay, Martin, Zerwekh arXiv:1808.10464

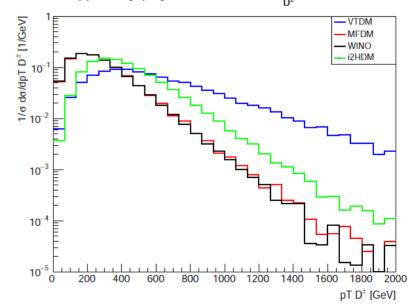
Current bound from LHC on DM mass from the minimal vector triplet model is around **500 GeV**

100 TeV FCC will cover DM mass up to 1.2 TeV

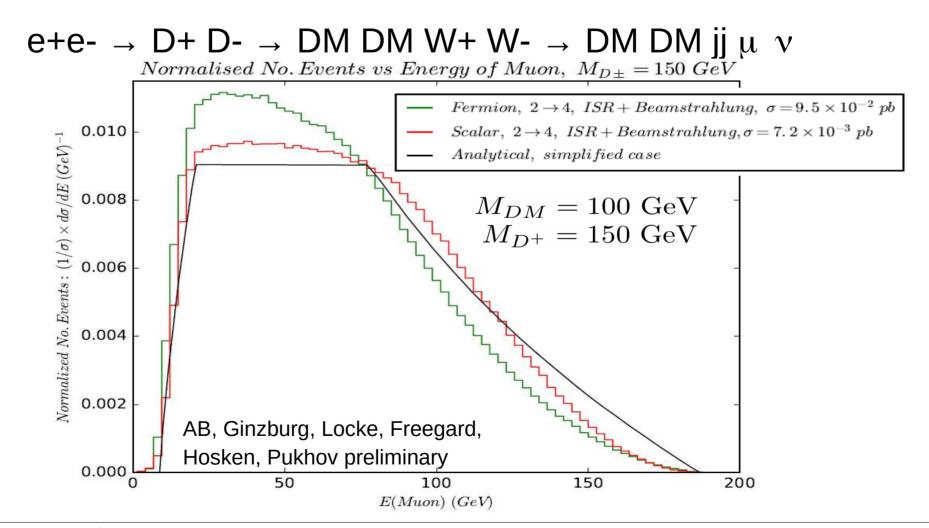
Collider sensitivity to VDM mass



Current bound from LHC on DM mass from the minimal vector triplet model is around **500 GeV**


100 TeV FCC will cover DM mass up to 1.2 TeV but will not fully exclude it

The power of Disappearing Tracks to probe DM models


S.Prestel, F.Rojas-Abate, J.Zurita, AB, arXiv: **2008.08581**

- Delphes simulation & reinterpretation of ATLAS DT 36 fb ⁻¹ results
- Present DT sensitivity goes even beyond HL LHC monojet sensitivity
- The sensitivityy also depends on PT of D+
- The reinterpretation code is public at https://github.com/llprecasting/recastingCodes/ pp→ DDj, pT(j) > 100 [GeV] for M_{D±} = 400 [GeV]

Decoding the nature of DM at the ILC

muon spectrum from the models with scalar and fermion DM

Decoding Problem: Data → **Theory link**

- probably the most challenging problem to solve the inverse problem of decoding of the underlying theory from signal
 - requires database of models, database of signatures
 - requires smart procedure based on machine learning of matching signal from data with the pattern of the signal from data

Decoding Problem: Data → **Theory link**

- probably the most challenging problem to solve the inverse problem of decoding of the underlying theory from signal
 - requires database of models, database of signatures
 - requires smart procedure based on machine learning of matching signal from data with the pattern of the signal from data
- HEPMDB (High Energy Physics Model Database) was created in 2011 hepmdb.soton.ac.uk
 - convenient centralized storage environment for HEP models
 - it allows to evaluate the LHC predictions and perform event generation using CalcHEP, Madgraph for any model stored in the database
 - you can upload their own model and perform simulation

Decoding Problem: Data → **Theory link**

- probably the most challenging problem to solve the inverse problem of decoding of the underlying theory from signal
 - requires database of models, database of signatures
 - requires smart procedure based on machine learning of matching signal from data with the pattern of the signal from data
- HEPMDB (High Energy Physics Model Database) was created in 2011 hepmdb.soton.ac.uk
 - convenient centralized storage environment for HEP models
 - it allows to evaluate the LHC predictions and perform event generation using CalcHEP, Madgraph for any model stored in the database
 - you can upload there your own model and perform simulation
- As a HEPMDB spin-off the PhenoData project was created hepmdb.soton.ac.uk/phenodata
 - stores data (digitized curves from figures, tables etc) from those HEP papers which did not provide data in arXiv or HEPData
 - has an easy search interface and paper identification via arXiv, DOI or preprint numbers

Summary

- DM DD detection provides a very powerful probe of DM theory space
 in general provides DM mass probe beyond the collider reach
- Colliders provide DM detection power in the region "blind" for DM DD, typically below 1 TeV
- Several ways to decode DM nature from the signal which we hope to observe soon (slopes of MET, cross sections, signatures, ...)
- New prospects: new DD experiments, new ideas, prospects for directional DM detection, new signatures at colliders (VFB, LL, ...), future colliders (great potential of ILC and FCC)
- Great synergy of collider and non-collider experiments (DD, CMB, relic density)

Thank you!

Backup Slides

DIM5/6 operators (spin 0,1/2,1)

Complex scalar DM[†]

$\frac{\tilde{m}}{\Lambda^2} \phi^{\dagger} \phi \bar{q} q$	[C1]*
$\frac{m}{\Lambda^2}\phi^{\dagger}\phi \bar{q}i\gamma^5q$	[C2]*
$\frac{1}{\Lambda^2} \phi^{\dagger} i \overleftrightarrow{\partial_{\mu}} \phi \bar{q} \gamma^{\mu} q$	[C3]
$\frac{1}{\Lambda^2}\phi^{\dagger}i\overleftrightarrow{\partial_{\mu}}\phiar{q}\gamma^{\mu}\gamma^5q$	[<i>C</i> 4]
$\frac{1}{\Lambda^2}\phi^{\dagger}\phi G^{\mu\nu}G_{\mu\nu}$	[C5]*
$rac{1}{\Lambda^2}\phi^\dagger\phi ilde{G}^{\mu u}G_{\mu u}$	[<i>C</i> 6]*

Dirac fermion DM[†]

$\frac{1}{\Lambda^2}\bar{\chi}\chi\bar{q}q$	[D1]*
$\frac{\Lambda^2}{\Lambda^2} \bar{\chi} i \gamma^5 \chi \bar{q} q$	[D2]*
$\frac{1}{\Lambda^2} \bar{\chi} \chi \bar{q} i \gamma^5 q$	[D3]*
$\frac{1}{\Lambda^2} \bar{\chi} \gamma^5 \chi \bar{q} \gamma^5 q$	[D4]*
$\frac{1}{\Lambda^2} \bar{\chi} \gamma^{\mu} \chi \bar{q} \gamma_{\mu} q$	[D5]
$\frac{1}{\Lambda^2} \bar{\chi} \gamma^{\mu} \gamma^5 \chi \bar{q} \gamma_{\mu} q$	[D6]
$\frac{1}{\Lambda^2} \bar{\chi} \gamma^{\mu} \chi \bar{q} \gamma_{\mu} \gamma^5 q$	[D7]
$\frac{1}{\Lambda^2} \bar{\chi} \gamma^{\mu} \gamma^5 \chi \bar{q} \gamma_{\mu} \gamma^5 q$	[D8]
$\frac{1}{\Lambda^2} \bar{\chi} \sigma^{\mu\nu} \chi \bar{q} \sigma_{\mu\nu} q$	[D9]*
$\frac{1}{\Lambda^2} \bar{\chi} \sigma^{\mu\nu} i \gamma^5 \chi \bar{q} \sigma_{\mu\nu} q$	[D10]*

Complex vector DM[‡]

$\frac{\tilde{m}}{\Lambda^2}V^{\dagger}_{\mu}V^{\mu}\bar{q}q$	[V1]*
$rac{ ilde{m}}{\Lambda^2} V^\dagger_\mu V^\mu ar{q} q \ rac{ ilde{m}}{\Lambda^2} V^\dagger_\mu V^\mu ar{q} i \gamma^5 q$	[V2]*
$\frac{1}{\sqrt{V^{\dagger}}} \partial_{\nu} V^{\nu} - V^{\nu} \partial_{\nu} V^{\dagger} \partial_{\alpha} V^{\mu} \partial_{\alpha}$	[V3]
$\frac{\frac{1}{2\Lambda^{2}}(V_{\nu}^{\dagger}\partial_{\mu}V^{\nu} - V^{\nu}\partial_{\mu}V_{\nu}^{\dagger})q\gamma^{4}q}{\frac{1}{2\Lambda^{2}}(V_{\nu}^{\dagger}\partial_{\mu}V^{\nu} - V^{\nu}\partial_{\mu}V_{\nu}^{\dagger})\bar{q}i\gamma^{\mu}\gamma^{5}q}$ $\frac{\frac{m}{\Lambda^{2}}V_{\mu}^{\dagger}V_{\nu}\bar{q}i\sigma^{\mu\nu}q}{\frac{m}{\Lambda^{2}}V_{\mu}^{\dagger}V_{\nu}\bar{q}\sigma^{\mu\nu}\gamma^{5}q}$	[V4]
$\frac{2\Lambda}{m^2}V^{\dagger}_{\mu}V_{\nu}\bar{q}i\sigma^{\mu\nu}q$	[V5]
$\frac{\frac{\Lambda_0}{2}}{2}V_{\mu}^{\dagger}V_{\nu}\bar{q}\sigma^{\mu\nu}\gamma^5q$	[V6]
$\frac{1}{2\lambda^2} (V^{\dagger}_{\nu} \partial^{\nu} V_{\mu} + V^{\nu} \partial^{\nu} V^{\dagger}_{\mu}) \bar{q} \gamma^{\mu} q$	[V7P]
$\frac{\frac{2\Lambda^{2}}{1}}{2\Lambda^{2}}(V_{\nu}^{\dagger}\partial^{\nu}V_{\mu}-V^{\nu}\partial^{\nu}V_{\mu}^{\dagger})\bar{q}i\gamma^{\mu}q$	[V7M]
$\frac{\frac{2}{1}}{2\Lambda^2} (V_{\nu}^{\dagger} \partial^{\nu} V_{\mu} + V^{\nu} \partial^{\nu} V_{\mu}^{\dagger}) \bar{q} \gamma^{\mu} \gamma^5 q$	[V8P]
$\frac{1}{2\lambda^2} (V^{\dagger}_{\nu} \partial^{\nu} V_{\mu} - V^{\nu} \partial^{\nu} V^{\dagger}_{\mu}) \bar{q} i \gamma^{\mu} \gamma^5 q$	[V8M]
$\frac{\frac{1}{1}}{2\Lambda^2} \epsilon^{\mu\nu\rho\sigma} (V_{\nu}^{\dagger} \partial_{\rho} V_{\sigma} + V_{\nu} \partial_{\rho} V_{\sigma}^{\dagger}) \bar{q} \gamma_{\mu} q$	[V9P]
$rac{2\Lambda^{2}}{2\Lambda^{2}}\epsilon^{\mu u ho\sigma}(V_{ u}^{\dagger}\partial^{ u}V_{\mu}-V^{ u}\partial^{ u}V_{\mu}^{\dagger})ar{q}i\gamma_{\mu}q$	[V9M]
$\frac{1}{2\lambda^2} \epsilon^{\mu\nu\rho\sigma} (V^{\dagger}_{\nu}\partial_{\rho}V_{\sigma} + V_{\nu}\partial_{\rho}V^{\dagger}_{\sigma}) \bar{q}\gamma_{\mu}\gamma^5 q$	[V10P]
$\frac{\frac{2\Lambda^{2}}{12\Lambda^{2}}}{2\Lambda^{2}}\epsilon^{\mu\nu\rho\sigma}(V_{\nu}^{\dagger}\partial^{\nu}V_{\mu}-V^{\nu}\partial^{\nu}V_{\mu}^{\dagger})\bar{q}i\gamma_{\mu}\gamma^{5}q$	[V10M]
$\frac{1}{\Lambda^2}V^{\dagger}_{\mu}V^{\mu}G^{\rho\sigma}G_{\rho\sigma}$	$[V11]^*$
$\frac{1}{\Lambda^2}V^{\dagger}_{\mu}V^{\mu}\tilde{G}^{\rho\sigma}G_{\rho\sigma}$	[V12]*

^{*} operators applicable to real DM fields, modulo a factor 1/2

[†] Listed in J. Goodman *et al.*, Constraints on Dark Matter from Colliders, Phys.Rev. **D82** (2010) 116010, [arXiv:1008.1783]

[‡] All but V11 and V12 listed in Kumar et al., Vector dark matter at the LHC, Phys. Rev. **D92** (2015) 095027, [arXiv:1508.04466]

Mapping EFT operators to simplified models

C5,C5A
$$\frac{1}{\Lambda^{2}}\phi^{*}\phi G^{\mu\nu}G^{\mu\nu}$$

$$\frac{1}{\Lambda^{2}}\phi^{*}\phi \tilde{G}^{\mu\nu}G^{\mu\nu}$$
D1T-D4T
$$\frac{1}{\Lambda^{2}}\bar{\chi}q\bar{q}\chi$$

$$\frac{i}{\Lambda^{2}}[\phi^{*}(\partial_{\mu}\phi - (\partial_{\mu}\phi^{*})\phi]\bar{q}\gamma^{\mu}q$$

$$\frac{i}{\Lambda^{2}}\bar{\chi}\gamma^{\mu}\chi\bar{q}\gamma_{\mu}q$$

$$\frac{1}{\Lambda^{2}}\bar{\chi}\chi\gamma^{\mu}\chi\bar{q}\gamma_{\mu}q$$

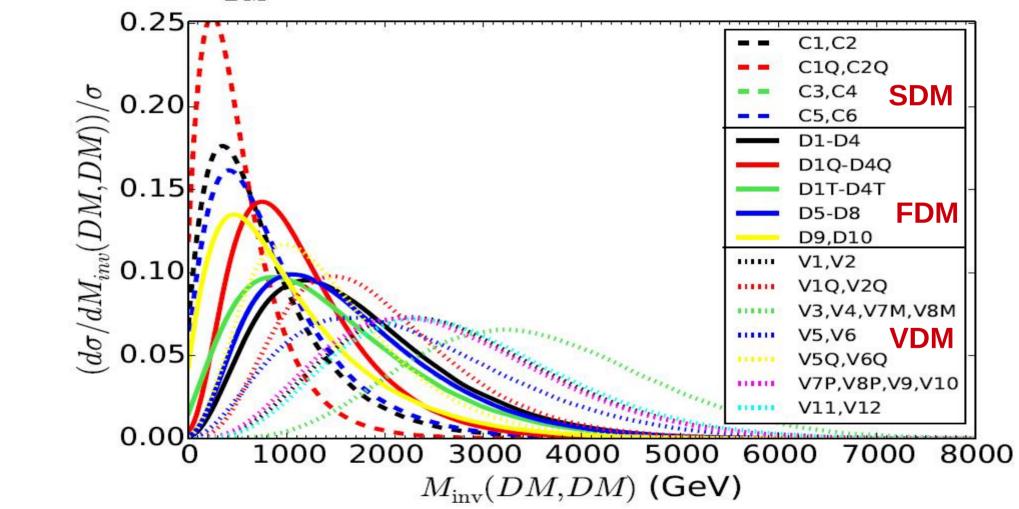
$$\frac{1}{\Lambda^{2}}\bar{\chi}\chi\gamma^{\mu}\chi\bar{q}\gamma_{\mu}q$$

$$\frac{1}{\Lambda^{2}}\bar{\chi}\chi\gamma^{\mu}\chi\bar{q}\gamma_{\mu}q$$

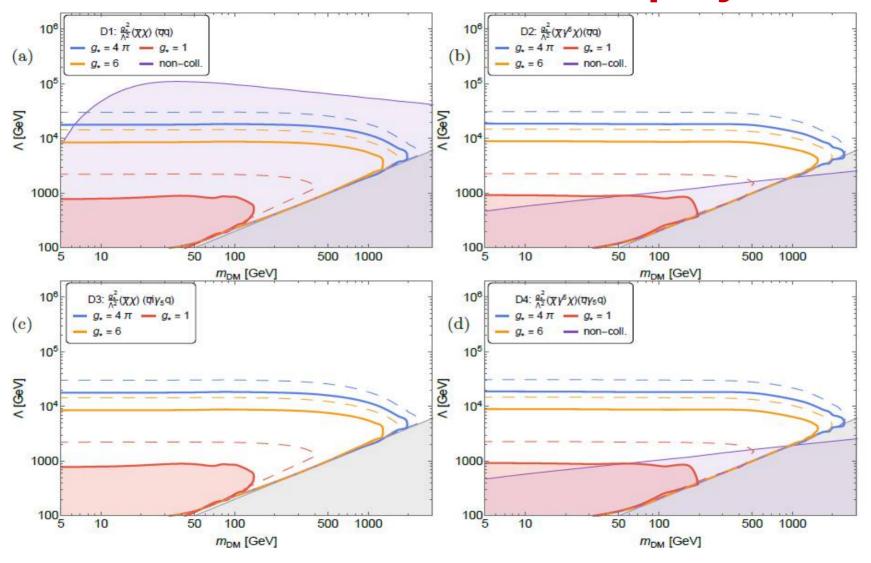
$$\frac{1}{\Lambda^{2}}\bar{\chi}\chi\bar{q}q$$

$$\frac{1}{\Lambda^{2}}\bar{\chi}\chi\gamma^{\mu}\chi\bar{q}\gamma_{\mu}q$$

$$\frac{1}{\Lambda^{2}}\bar{\chi}\chi\bar{q}q$$


$$\frac{1}$$

Alexander Belyaev

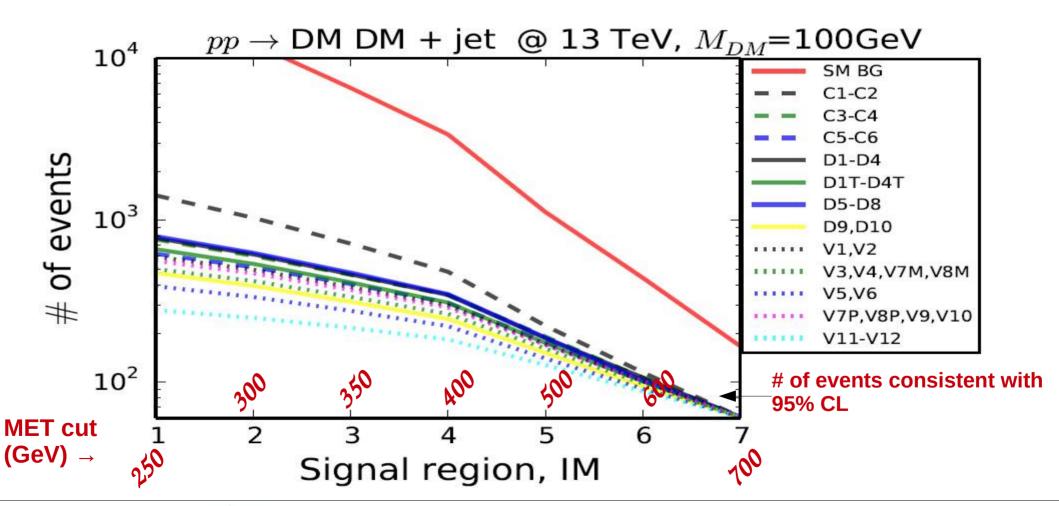

 $\bar{\chi}\gamma^{\mu}\chi\bar{q}\gamma_{\mu}q - \bar{\chi}\gamma^{\mu}\gamma^{5}\chi\bar{q}\gamma_{\mu}\gamma^{5}q$)

On the other hand, M(DM,DM) distributions, defined by the EFT operators are different!

 $\mathrm{M_{DM}}\!=$ 10 GeV, \sqrt{s} = 13 TeV , MET > 500GeV

DM DD \leftrightarrow Collider interplay

Relation of the actual dimension (D) and the naive one (d) for VDM operators


V_{DM} Operator	$ig \Lambda_d$	d	Λ_D	D	$\Delta_{\sigma}(\sigma_{2\to 2} \propto E^{\Delta_{\sigma}})$	Amplitude Enhancement
V1,V2,V5,V6	$\frac{1}{\Lambda}$	5	$\frac{M_{DM}^2}{\Lambda^3}$	7	4	$(E/M_{DM})^2$
V3,V4,V7M,V8M,V11,V12	$\frac{1}{\Lambda^2}$	6	$\frac{M_{DM}^2}{\Lambda^4}$	8	6	$(E/M_{DM})^2$
V7P,V8P,V9,V10	$\frac{1}{\Lambda^2}$	6	$\frac{M_{DM}}{\Lambda^3}$	7	4	E/M_{DM}

- we suggest a new parametrisation of VDM operators: since the energy E and the collider limit on L are of the same order, it is natural to use an additional M_{DM}/Λ factor for each power of E/M_{DM} enhancement, so collider limits are not artificially enhanced [~100 TeV !!! for MDM =1 GeV, see Kumar, Marfatia, Yaylali 1508.04466] and will be of the same order as limits for other operators
- Dictionary between limits on Λ in different parametrisations:

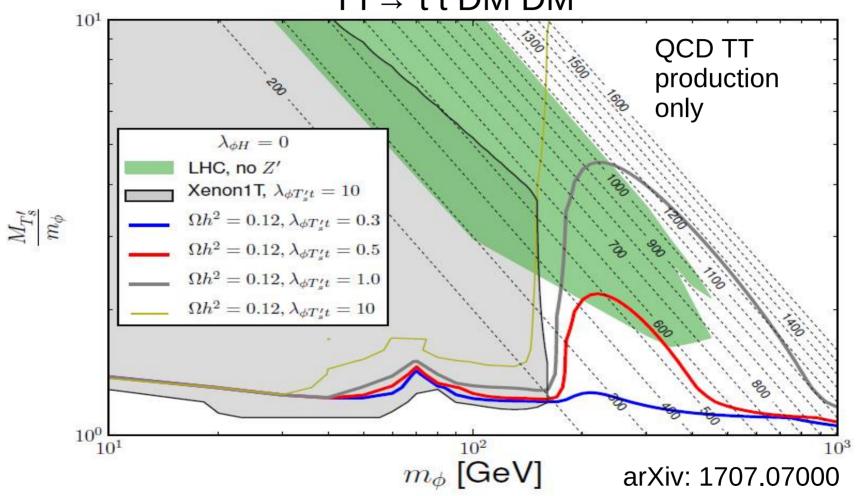
$$\Lambda_D = (\Lambda_d^{d-4} M_{DM}^{D-d})^{\frac{1}{D-4}}$$
 and $\Lambda_d = (\Lambda^{D-4} M_{DM}^{d-D})^{\frac{1}{d-4}}$

Distinguishing DM operators

operator energy dependence \rightarrow M_{DMDM} shape \rightarrow MET shape

On the BG uncertainty

• The BG is statistically driven, e.g. pp-> Zj \rightarrow nnj BG is defined from the pp \rightarrow Zj \rightarrow l⁺l⁻j one


CMS-PAS-EXO-16-013

N			<u> </u>	<u> </u>				-	<u>-</u>	
E ^{miss} Range	$Z(\nu\nu)$ +jets	$W(\ell\nu)$ +jets	$Z(\ell\ell)$ +jets	γ +jets	Top	Diboson	QCD	Total	Total	Data
(GeV)	22 02 03	301 5255 28	200 200 200	. 450 500	326. 1			(Pre-fit)	(Post-fit)	
200 - 230	14919 ± 221	11976 ± 196	207 ± 13	230 ± 14	564 ± 55	251 ± 41	508 ± 171	27761 ± 1464	28654 ± 171	28601
230 - 260	7974 ± 116	5776 ± 101	92.9 ± 5.7	101 ± 6	267 ± 26	157 ± 26	308 ± 104	14114 ± 757	14675 ± 97	14756
260 - 290	4467 ± 70	2867 ± 50	37.9 ± 2.3	63.7 ± 3.9	116 ± 11	77.3 ± 12.7	38.3 ± 21.0	7193 ± 351	7666 ± 68	7770
290 - 320	2518 ± 46	1520 ± 34	18.4 ± 1.1	29.6 ± 1.8	56.7 ± 5.6	42.9 ± 7.1	29.8 ± 10.5	4083 ± 204	4215 ± 48	4195
320 - 350	1496 ± 35	818 ± 20	10.0 ± 0.6	19.7 ± 1.2	33.6 ± 3.3	25.4 ± 4.2	9.0 ± 5.4	2385 ± 118	2407 ± 37	2364
350 - 390	1204 ± 31	555 ± 15	3.9 ± 0.2	12.7 ± 0.8	24.5 ± 2.4	22.1 ± 3.6	6.0 ± 3.5	1817 ± 87	1826 ± 32	1875
390 - 430	684 ± 20	275 ± 9	2.1 ± 0.1	8.3 ± 0.5	9.8 ± 1.0	13.9 ± 2.3	3.0 ± 1.6	978 ± 45	998 ± 23	1006
430 - 470	382 ± 14	155 ± 6	0.96 ± 0.06	4.9 ± 0.3	9.4 ± 0.9	6.6 ± 1.1	1.0 ± 0.8	589 ± 30	574 ± 17	543
470 - 510	248 ± 11	87.3 ± 3.8	0.47 ± 0.03	3.7 ± 0.2	0.22 ± 0.02	5.1 ± 0.8	0.65 ± 0.44	337 ± 15	344 ± 12	349
510 - 550	160 ± 8	52.2 ± 2.7	0.23 ± 0.01	2.0 ± 0.1	2.7 ± 0.3	2.2 ± 0.4	0.28 ± 0.19	211 ± 9	219 ± 9	216
550 - 590	99.5 ± 6.0	29.2 ± 1.9	0.12 ± 0.01	1.8 ± 0.1	0.94 ± 0.09	2.0 ± 0.3	0.19 ± 0.14	134 ± 6	134 ± 7	142
590 - 640	77.3 ± 4.9	18.9 ± 1.4	0.09 ± 0.01	0.46 ± 0.03	< 0.13	1.7 ± 0.3	0.11 ± 0.08	100 ± 4	98.5 ± 5.8	111
640 - 690	44.8 ± 3.5	11.2 ± 0.9	0.017 ± 0.001	0.19 ± 0.01	< 0.13	1.5 ± 0.2	0.06 ± 0.05	59.6 ± 2.6	58.0 ± 4.1	61
690 - 740	27.8 ± 2.5	6.1 ± 0.6	0.013 ± 0.0008	0.57 ± 0.04	< 0.13	0.69 ± 0.11	0.02 ± 0.02	36.6 ± 1.5	35.2 ± 2.9	32
740 - 790	21.8 ± 2.3	5.3 ± 0.6	< 0.005	0.28 ± 0.02	0.23 ± 0.02	0.11 ± 0.02	0.02 ± 0.02	23.8 ± 1.0	27.7 ± 2.7	28
790 - 840	13.5 ± 1.9	2.8 ± 0.4	< 0.005	0.18 ± 0.01	0.27 ± 0.03	0.010 ± 0.001	0.008 ± 0.007	15.3 ± 0.7	16.8 ± 2.2	14
840 - 900	9.5 ± 1.4	2.0 ± 0.3	< 0.005	0.28 ± 0.02	< 0.13	0.25 ± 0.04	< 0.008	12.2 ± 0.6	12.0 ± 1.6	13
900 - 960	5.4 ± 1.0	1.1 ± 0.2	< 0.005	< 0.08	< 0.13	0.37 ± 0.06	< 0.008	7.6 ± 0.3	6.9 ± 1.2	7
960 - 1020	3.3 ± 0.8	0.77 ± 0.21	< 0.005	0.12 ± 0.01	< 0.13	0.23 ± 0.04	< 0.008	5.2 ± 0.3	4.5 ± 1.0	3
1020 - 1160	2.5 ± 0.8	0.52 ± 0.16	< 0.005	< 0.08	< 0.13	0.16 ± 0.03	< 0.008	3.6 ± 0.2	3.2 ± 0.9	1
1160 - 1250	1.7 ± 0.6	0.3 ± 0.11	< 0.005	< 0.08	< 0.13	0.16 ± 0.03	< 0.008	2.3 ± 0.1	2.2 ± 0.7	2
> 1250	1.4 ± 0.5	0.19 ± 0.08	< 0.005	< 0.08	< 0.13	0.06 ± 0.01	< 0.008	1.6 ± 0.1	1.6 ± 0.6	3

http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/EXO-16-013/#AddFig

Complementarity of LHC and non-LHC DM searches

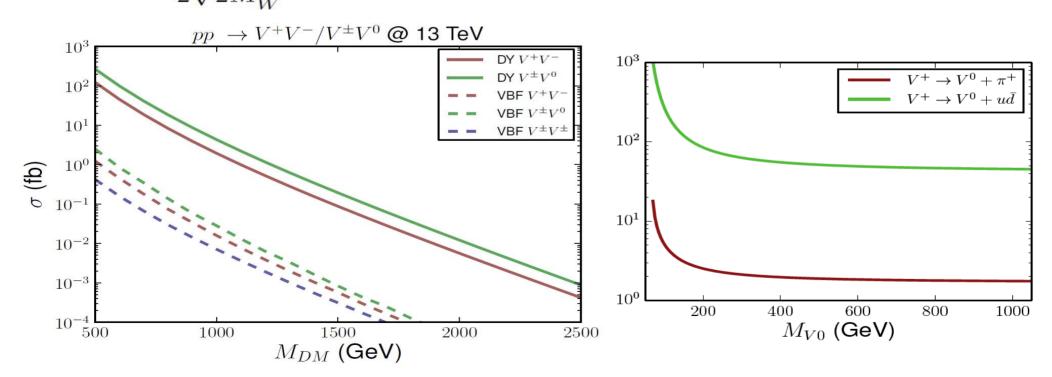
for the model with Vector Resonances, Top Partners and Scalar DM $TT \rightarrow t \ t \ DM \ DM$

LHC@13TeV Reach for spin 0 and ½ DM

			Exclude	$d \Lambda (GeV)$	at 3.2 fb^{-1}	Exclude	dΛ (GeV) a	at 100 fb^{-1}
	Operators	Coefficient		DM Mass	3		DM Mass	3
			$10 \; \mathrm{GeV}$	$100 \mathrm{GeV}$	$1000~\mathrm{GeV}$	$10 \; \mathrm{GeV}$	$100~{\rm GeV}$	$1000~{ m GeV}$
× X	C1 & C2	$1/\Lambda$	456	424	98	1168	1115	267
Complex Scalar DM	C3 & C4	$1/\Lambda^2$	750	746	400	1134	1131	662
Con	C5 & C6	$1/\Lambda^2$	1621	1576	850	2656	2611	1398
	D1 & D3	$1/\Lambda^2$	931	940	522	1386	1405	861
	D2 & D4	$1/\Lambda^2$	952	936	620	1426	1399	1022
M	D1T & D4T	$1/\Lambda^2$	735	729	476	1217	1199	780
O III	D2T	$1/\Lambda^2$	637	638	407	1053	1052	670
rmic	D3T	$1/\Lambda^2$	586	625	391	969	938	644
c Fe	D5 & D7	$1/\Lambda^2$	1058	967	721	1580	1591	1190
Dirac Fermion DM	D6 & D8	$1/\Lambda^2$	978	1050	579	1608	1585	955
	D9 & D10	$1/\Lambda^2$	1587	1592	958	2613	2619	1580

LHC@13TeV Reach for spin 1 DM

			Exclude	${ m d}~\Lambda~({ m GeV})$	at 3.2 fb^{-1}	Excluded Λ (GeV) at 100 fb ⁻¹			
	Operators	Coefficient		DM Mass	3	DM Mass			
	Sperators	4.5	10 GeV	$100 \; \mathrm{GeV}$	$1000~{ m GeV}$	$10~{ m GeV}$	$100 \; \mathrm{GeV}$	$1000~{ m GeV}$	
	V1 & V2	M_{DM}^2/Λ_D^3	831	833	714	1162	1161	997	
	V3 & V4	M_{DM}^2/Λ_D^4	930	931	833	1196	1193	1070	
	V5 & V6	M_{DM}^2/Λ_D^3	784	791	711	1095	1104	993	
DM	V7M & V8M	M_{DM}^2/Λ_D^4	930	926	882	1195	1193	1130	
Vector DM	V7P & V8P	M_{DM}/Λ_D^3	796	791	652	1112	1102	911	
	V9M & V10M	M_{DM}/Λ_D^3	796	799	737	1109	1114	1027	
Complex	V9P & V10P	M_{DM}/Λ_D^3	794	782	609	1110	1089	850	
Con	V11 & V11A	M_{DM}^2/Λ_D^4	1435	1442	1309	1844	1850	1683	


Disappearing Charged Tracks from DM

The small mass gap between (~ pion mass) DM and its charged partner will lead to the disappearing charge tracks

The life-time should be properly evaluated using

W-pion mixing

$$\mathcal{L}_{\pi^-V^+V^0} = \frac{g^2 f_{\pi}}{2\sqrt{2}M_W^2} [g_{\beta\gamma}(p_{V^+} - p_{V^0})_{\alpha} + g_{\alpha\gamma}(p_{V^+} - p_{V^0})_{\beta}] p_{\pi^-}^{\alpha} \pi^- V^{+\beta} V^{0\gamma}$$

Importance of the operator running in the DM DD ↔ Collider interplay

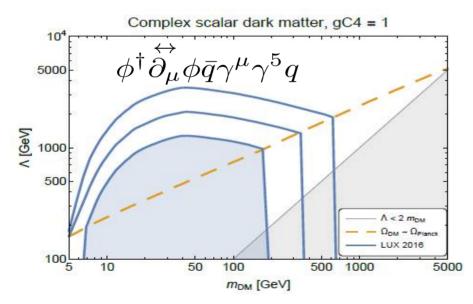
In case of axial operators, e.g $c_A^{(q)}c_\chi\overline{\chi}\gamma^\mu\chi\overline{q}\gamma_\mu\gamma_5q \qquad (D7) \qquad \text{or} \qquad c_A^{(q)}c_\phi\phi^\dagger\overleftarrow{\partial}_\mu\phi\overline{q}\gamma^\mu\gamma_5q \qquad (C4)$ couplings $\mathbf{c}_\mathbf{v}^{(\mathbf{q})}$ arise due to the running of the wilson coefficient $\mathbf{c}_\mathbf{A}^{(\mathbf{q})}$ leading to sizable constraints on the DM DD constraints

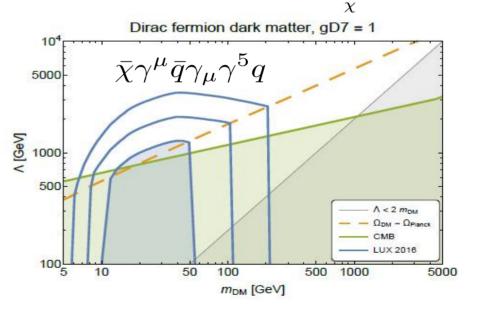
Importance of the operator running in the DM DD ↔ Collider interplay

In case of axial operators, e.g $c_A^{(q)}c_\chi\overline{\chi}\gamma^\mu\chi\overline{q}\gamma_\mu\gamma_5q \qquad (D7) \qquad \text{or} \qquad c_A^{(q)}c_\phi\phi^\dagger\overrightarrow{\partial}_\mu\phi\overline{q}\gamma^\mu\gamma_5q \qquad (C4)$ couplings $\mathbf{c}_V^{(q)}$ arise due to the running of the wilson coefficient $\mathbf{c}_A^{(q)}$ leading to sizable constraints on the DM DD constraints $\mathbf{c}_A^{(u)}, \mathbf{c}_A^{(d)}, \mathbf{c}_V^{(u)}, \mathbf{c}_V^{(d)} = (\mathbf{1},\mathbf{1},\mathbf{0},\mathbf{0})[1\text{TeV}] \rightarrow (\mathbf{1}.\mathbf{1},\mathbf{1}.\mathbf{1},\mathbf{0}.\mathbf{04},\mathbf{-0}.\mathbf{07})[1\text{GeV}]$ runDM program (github.com/bradkav/runDM) by D'Eramo, Kavanagh Panci

Importance of the operator running in the DM DD ↔ Collider interplay

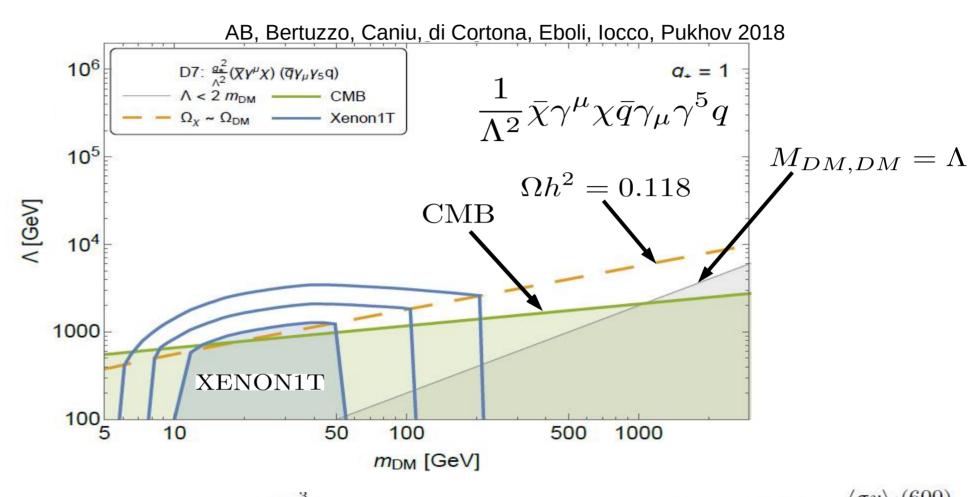
In case of axial operators, e.g $c_A^{(q)} c_\chi \overline{\chi} \gamma^\mu \chi \overline{q} \gamma_\mu \gamma_5 q$ (D7) or $c_A^{(q)} c_\phi \phi^\dagger \overleftrightarrow{\partial}_\mu \phi \overline{q} \gamma^\mu \gamma_5 q$


$$(D7)$$
 or

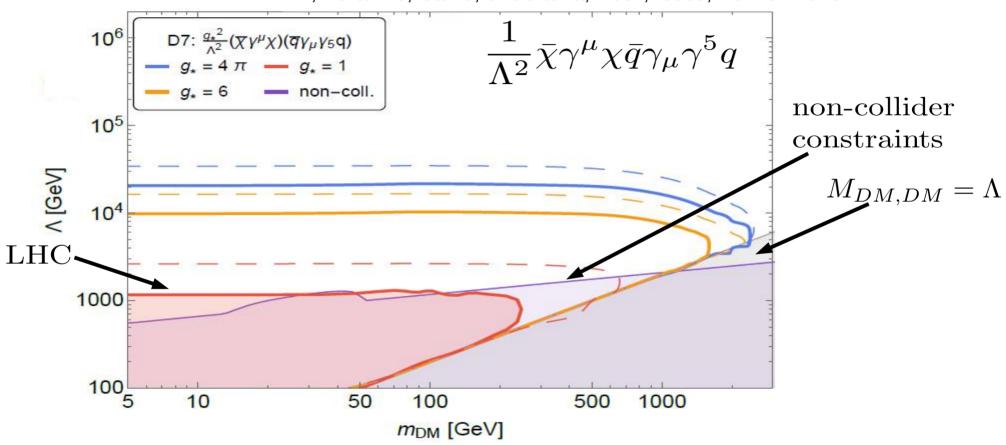

$$c_A^{(q)} c_\phi \phi^\dagger \overleftrightarrow{\partial}_\mu \phi \overline{q} \gamma^\mu \gamma_5 q$$
 (

couplings $\mathbf{c}_{v}^{(q)}$ arise due to the running of the wilson coefficient $\mathbf{c}_{s}^{(q)}$ leading to sizable constraints on the DM DD constraints

$$c_A^{(u)}, c_A^{(d)}, c_V^{(u)}, c_V^{(d)} = (1,1,0,0)[1\text{TeV}] \rightarrow (1.1, 1.1, 0.04, -0.07)[1\text{GeV}]$$


runDM program (github.com/bradkav/runDM) by D'Eramo, Kavanagh Panci

AB, Bertuzzo, Caniu, di Cortona, Eboli, Iocco, Pukhov 2018


DM DD ↔ Collider interplay

CMB: $p_{\text{ann}} < 4.1 \times 10^{-28} \frac{\text{cm}^3}{\text{s GeV}} \text{ at } 95\% \text{ C.L.}$, where $p_{\text{ann}} = \sum_j f_j(600, m_{\text{DM}}) \frac{\langle \sigma v \rangle_j(600)}{m_{\text{DM}}}$

DM DD ↔ Collider interplay

AB, Bertuzzo, Caniu, di Cortona, Eboli, Iocco, Pukhov 2018

