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Strong dynamics in the Infrared
In the infrared, theories become strongly-coupled, and (assuming) 

confinement happens if number of flavor is below conformal window. 

Bound states are color singlets and classified under global symmetry, 

which in QCD-like theories (focus of this talk) is

Λ

0

massive composite resonances

(almost) massless states,  
protected by (approximate) symmetries, 

either linearly or nonlinearly realized.

Typical spectrum:

SU(nf )L × SU(nf )R × U(1)V .



The existence of these massless states  

is implied by ’t Hooft anomaly matching, i.e.  

“Anomalies at IR = Anomalies at UV”.
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The existence of these massless states  

is implied by ’t Hooft anomaly matching, i.e.  

“Anomalies at IR = Anomalies at UV”.

Λ

0

massive composite resonances

(almost) massless states,  
protected by (approximate) symmetries

If chiral symmetry breaking happens, (almost) massless states would be 

(pseudo) Nambu-Goldstone bosons; 

Otherwise, instead there are (almost) massless composite chiral fermions.

To break or not to break:



’t Hooft anomaly matching

Strategy of ’t Hooft:

• Chiral symmetry is non-linearly realized; 

• Chiral symmetry is linearly realized,

Given the two possibilities, i.e. 

one assumes chiral symmetry is not broken and tries to  

match anomalies with massless chiral fermions.



’t Hooft anomaly matching

Strategy of ’t Hooft:

• Chiral symmetry is non-linearly realized; 

• Chiral symmetry is linearly realized,

Given the two possibilities, i.e. 

If one fails, i.e. no sensible spectrum of chiral fermions is possible, 

chiral symmetry must be broken.

Otherwise, we know nothing.

one assumes chiral symmetry is not broken and tries to  

match anomalies with massless chiral fermions.



A quick example from ’t Hooft’s original paper and Weinberg’s QFT vol.2:

∑
B

l(B)A(B) = ∑
q

l(q)A(q)

Conclusion of ’t Hooft:  
 no integral {l(B)} are admissible, such that chiral symmetry is broken in QCD.

A(B) are polynomials of nf, 
e.g.

l(B) are nonzero integers for 
chiral fermions.

’t Hooft (1979 Cargese lecture)



bound states

soft probe

hard probe

Bound states and their properties

soft probes are only sensitive to the quantum numbers of 
bound states under the global symmetry in infrared.

Qualitative picture:

At low energies, bound states with different constituents 
but the same quantum number are identical to each other. 
As in ’t Hooft anomaly matching equations, they are 
degenerate.

To break this degeneracy, one needs hard probes in order 
to be sensitive to inner structure.



Bound states are color singlets: 

Massless composites are spin-1/2 fermions (Weinberg-Witten): 

composite operators irreps

κ Nc are both odd integersand

Young tableaux

n(qL) = 1, n(q̄L) = 1, n(qR) = 3, n(q̄R) = 0

(Nc = 3, nf = 3, κ = 1)

(1,8)κ=1

q̄i1 ∼ q̄i1ϵ
i1i2⋯inf

Bound states and their properties

For example: exotics states v.s. baryonic states

n(qL) + n(qR) − n(q̄L) − n(q̄R) = κNc

qi

n(qL) = 0, n(q̄L) = 0, n(qR) = 3, n(q̄R) = 0



As implied by Vafa-Witten, in QCD-like theories bound states that 
contain massive constituents must also be massive.

Persistent mass condition

Turning on a “tiny” mass for one flavor,  
global symmetry is reduced: 

Vafa, Witten (1984)



Persistent mass condition

For example:

Massive states become vectorial  
(except flavor singlets):

As implied by Vafa-Witten, in QCD-like theories bound states that 
contain massive constituents must also be massive.

Turning on a “tiny” mass for one flavor,  
global symmetry is reduced: 

Vafa, Witten (1984)



e.g.

Bound states with different Young tableaux, but still in the same irrep, are distinguishable in 
persistent mass conditions.



e.g.

Bound states with different Young tableaux, but still in the same irrep, are distinguishable in 
persistent mass conditions.

Persistent mass condition provides information on microscopic constituents,  
i.e. it offers a “high energy probe” sensitive to inner structure of bound states.



Summary & Motivation
∑

B

l(B)A(B) = ∑
q

l(q)A(q) apnp
f + ap−1n

p−1
f + ⋯ + a2n2

f + a1nf + a0 = 0AM[nf]:

PMC[nf]: l′�(WL, WR, H, V ) = ∑
YL,YR

κWL
YL

κWR
YR

l(YL, YR, V ) = 0

Notice there are many massive states appearing in the decomposition of Y.

In order to prove chiral symmetry breaking, one needs to show no integral solution exists. 



Summary & Motivation

The property called “nf independence” (originally guessed by ’t Hooft):  
the same set of multiplicities solves {AM[nf], PMC[nf]}, {AM[nf+1], PMC[nf+1]},  

{AM[nf+2], PMC[nf+2]} and so on.

∑
B

l(B)A(B) = ∑
q

l(q)A(q) apnp
f + ap−1n

p−1
f + ⋯ + a2n2

f + a1nf + a0 = 0AM[nf]:

PMC[nf]: l′�(WL, WR, H, V ) = ∑
YL,YR

κWL
YL

κWR
YR

l(YL, YR, V ) = 0

In order to prove chiral symmetry breaking, one needs to show no integral solution exists. 

Notice there are many massive states appearing in the decomposition of Y.

This system is infamous for its ugliness (as ’t Hooft pointed out), such that 
it’s difficult (almost impossible) to show there is no solution in general. 

(For the moment, let’s assume it’s true and see what it implies.)



1) considering a solution {l(B)} of AM[nf] equation for physically confining nf:

apnp
f + ap−1n

p−1
f + ⋯ + a2n2

f + a1nf + a0 = 0

2) assuming nf independence is true:

ap(n*f )p + ap−1(n*f )p−1 + ⋯ + a2(n*f )2 + a1(n*f ) + a0 = 0

nf * = nf + 1, nf + 2, nf + 3, nf + 4, ⋯where

ai = 0, i = 0,1,2,⋯, p which are functions of multiplicities.

Number of roots is larger than p.



Chiral symmetry breaking arising from nf independence

1) considering a solution {l(B)} of AM[nf] equation for physically confining nf:

apnp
f + ap−1n

p−1
f + ⋯ + a2n2

f + a1nf + a0 = 0

2) assuming nf independence is true:

ap(n*f )p + ap−1(n*f )p−1 + ⋯ + a2(n*f )2 + a1(n*f ) + a0 = 0

nf * = nf + 1, nf + 2, nf + 3, nf + 4, ⋯where

ai = 0, i = 0,1,2,⋯, p which are functions of multiplicities.

We use Farrar’s result: 
the equation a0=0  

only admits non-integral 
solutions!

Number of roots is larger than p.

3)



Original Idea (anomaly matching+decoupling condition+ requiring nf 
independence)

’t Hooft (1979 Cargese lecture)

nf independence if restricting to elbow-shape Young tableaux
Frishman, Schwimmer, Banks, Yankielowicz (1981)

Assuming nf independence for all nf and studying the limit nf=0, 

the only paper including exotics
Farrar (1980)

nf independence being not true in small nf

Cohen, Frishman (1982)

Starting quantitative formulation of nf independence in a “naive” manner, 
however it’s a big step forward

Takeshita, Komatsu, Kakuto, Inoue (1981)

Overview of literature



Pointing out the difference between PMC  
and decoupling condition

Preskill, Weinberg (1981)

PMC being proved in QCD-like theories 
Vafa, Witten (1984)

Overview of literature



1) general numbers of color and flavor;

2)       most general spectrum, i.e. baryons & exotics.

Pointing out the difference between PMC  
and decoupling condition

Preskill, Weinberg (1981)

PMC being proved in QCD-like theories 
Vafa, Witten (1984)

We prove rigorously nf independence in large nf with

Chiral symmetry breaking will follow.

Overview of literature



nf independence
{ l(YTi) }The same set of solves

uplifting:
downlifting:

then one can recursively extrapolate to larger nf.



nf independence
{ l(YTi) }The same set of solves

uplifting:
downlifting:

Uplifting: step 1

It is true, if Young tableaux have one-to-one  
correspondence, and also their decompositions.

then one can recursively extrapolate to larger nf.



Uplifting: step 2 +

by adding and subtracting the massless Young tableaux,  

which are different from the massive Young tableaux.

Summing over the massive Young tableaux



Uplifting: step 2 +

Nc − Nc



Uplifting: step 2 +

?

Nc − Nc

It is true, if 



Uplifting: step 2 +

?
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It is true, if 



Uplifting: step 2 +

?

Nc − Nc

It is true, if 



nf independence: baryonic states as an example
Nc = 3, κ = 1, nf > 3

Ȳ W Y(massive) (massless)

All these conditions are satisfied.



Possible caveat for exotic bound states



Persistent mass condition of exotic states as a resolution

Ȳ WBefore  
decomposition:

After 
decomposition:



i′� = 1

In the same spirit, one can show generic exotic states containing any number 
of quark-antiquark singlets are vectorial.

Remarkably, this property is forced by PMC.

If we subtract them, 



Limitations:

0

conformal 

window

failure of 

asymptotic freedom

κNc + 1
baryons

κNc + n(q̄) + 2
exotics

nf

nf independencecontinuity

confinement

NcFor any        : 

nf independence is not true in small nf regime.

Nothing can be learnt if baryon number or antiquark number is too large, 
i.e. above the lower edge of conformal window.

Global overview

(Notice baryon number and antiquark number should be determined by dynamics.  
Here they are just two parameters for us.)



nf massless flavors  
+1 massive flavor

(nf+1) massless flavors

1) Assuming the vacuum of unbroken chiral symmetry
remains the global minimum.

SU(nf )L × SU(nf )R × U(1)V

SU(nf + 1)V is unbroken.2) In (nf+1) massless flavors, vectorial

SU(nf + 1)L × SU(nf + 1)R × U(1)V is unbroken in (nf+1) massless flavors 

(Vafa-Witten)

Continuity in small nf
V(ϕ)

ϕ

continuity
mq > 0 mq = 0

V(ϕ)

ϕ

3) nf massless flavors  
+(mf-nf) massive flavors

continuity
mf massless flavors



Implications of continuity argument:

nf massless flavors  
+(mf-nf) massive flavors

continuity
mf massless flavors

“Theory A” “Theory B”

Continuity: chiral symmetry in “theory A” is unbroken, then 
chiral symmetry in “theory B” is unbroken.

Notice the continuity argument is dynamical, which however 
is different from ’t Hooft anomaly matching.

If chiral symmetry in ‘’theory B’’ is necessarily broken suggest 
by ’t Hooft anomaly matching. By contradiction, chiral 

symmetry in “theory A” must be broken. 

Assuming if there is no phase transition when massive flavors 
in “theory A” decouple, at this limit “theory A” is equivalent to a 

theory of nf massless flavors.

1)

2)

3)

Chiral symmetry breaking occurs for two-flavor QCD.



Conclusions
• In large nf, we show rigorously “nf independence” in the confining 

phase of strongly-coupled QCD-like gauge theories, with any number 
of color and the general spectrum of bound states. Chiral symmetry 
breaking follows. 

• Limitations: small nf; large baryon number and antiquark number. 

• Extension to proving chiral symmetry breaking in other theories seems 
less plausible but certainly interesting, e.g. gluequarks in adjoint QCD 
where strong dynamics is still vectorlike; see Michele Redi’s talk. 

• Many possibilities in strongly-coupled chiral dynamics (e.g. tumbling, 
confining, color-flavor locking, and their complementarities).

Questions and comments are welcome!!!



Backup slides



Lower edge of nf independence

Baryons: 

Nc = 3, κ = 1For example:
Uplifting from 4 flavors to 5 flavors works (and so on), because Young tableaux and their 

massive decompositions are one-to-one correspondent (PMC are the same); at the 
same time there is no overlap between massive and massless Young tableaux after 

decomposition.

Uplifting from 2 flavors to 3 flavors doesn’t work, because one-to-one correspondence 
is not true. 

Step 1 in the proof fails.

Uplifting from 3 flavors to 4 flavors doesn’t work, because the column is a singlet in 
PMC[3] and it won’t give constraints, while it’s not a singlet in PMC[4].



Exotics: In the example of 
only one antiquark, 

uplifting from 4 
flavors to 5 flavors 

doesn’t work, 
because there is 
overlap between 

massless and massive 
Young tableaux.

Step 2 in the proof fails.



Exotics: In the example of 
only one antiquark, 

uplifting from 4 
flavors to 5 flavors 

doesn’t work, 
because there is 
overlap between 

massless and massive 
Young tableaux.

Step 2 in the proof fails.

Uplifting from 6 
flavors to 7 flavors 
works, and so on.

In general, what about uplifting from κNc + δ + 1 to ?κNc + δ + 2 (Step 2 works.)



then what about step 1?

In general it doesn’t work, although it works for pentaquark case.

PMC[κNc + δ + 1] PMC[κNc + δ + 2]



Equations in small nf

nf = 3

nf = 4

nf = 5

⋯

downlifting

Baryonic case:


